Bioinformatics Methods and Biological Interpretation for Next-Generation Sequencing Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Complete Genome Sequence of Methanocorpusculum Labreanum Type Strain Z
Standards in Genomic Sciences (2009) 1: 197-203 DOI:10.4056.sigs.35575 Complete genome sequence of Methanocorpusculum labreanum type strain Z Iain J. Anderson1*, Magdalena Sieprawska-Lupa2, Eugene Goltsman1, Alla Lapidus1, Alex Co- peland1, Tijana Glavina Del Rio1, Hope Tice1, Eileen Dalin1, Kerrie Barry1, Sam Pitluck1, Lo- ren Hauser1,3, Miriam Land1,3, Susan Lucas1, Paul Richardson1, William B. Whitman2, and Nikos C. Kyrpides1 1Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California, USA 2Microbiology Department, University of Georgia, Athens, Georgia, USA 3Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA *Corresponding author: Iain Anderson Keywords: archaea, methanogen, Methanomicrobiales Methanocorpusculum labreanum is a methanogen belonging to the order Methanomicro- biales within the archaeal phylum Euryarchaeota. The type strain Z was isolated from surface sediments of Tar Pit Lake in the La Brea Tar Pits in Los Angeles, California. M. labreanum is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. labreanum type strain Z and its annotation. This is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea. Introduction Methanocorpusculum labreanum is a methanogen the Methanosarcinales are capable of using various belonging to the order Methanomicrobiales within methyl compounds as substrates for methanoge- the archaeal phylum Euryarchaeota. Strain Z is the nesis including acetate, methylamines, and me- type strain of this species. It was isolated from thanol, but Methanomicrobiales are restricted to surface sediments of Tar Pit Lake at the La Brea the same substrates as the Class I methanogens Tar Pits in Los Angeles [1]. -
Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide
microorganisms Article Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide Kelly J. Hidalgo 1,2,* , Isabel N. Sierra-Garcia 3 , German Zafra 4 and Valéria M. de Oliveira 1 1 Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas–UNICAMP, Av. Alexandre Cazellato 999, 13148-218 Paulínia, Brazil; [email protected] 2 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, 13083-862 Campinas, Brazil 3 Biology Department & CESAM, University of Aveiro, Aveiro, Portugal, Campus de Santiago, Avenida João Jacinto de Magalhães, 3810-193 Aveiro, Portugal; [email protected] 4 Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Universidad Industrial de Santander, Cra 27 calle 9, 680002 Bucaramanga, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +55-19981721510 Abstract: Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to decipher metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301.2 Gb of metagenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 metagenome-assembled genomes (MAGs) of high and medium quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to archaea. The profiles of these MAGs were related to the physicochemical parameters and recovery management applied. -
Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations. -
Geomicrobiological Processes in Extreme Environments: a Review
202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments. -
Genotyping of Uncultured Archaea in a Polluted Site of Suez Gulf, Egypt, Based on 16S Rrna Gene Analyses
Egyptian Journal of Aquatic Research (2014) 40,27–33 National Institute of Oceanography and Fisheries Egyptian Journal of Aquatic Research http://ees.elsevier.com/ejar www.sciencedirect.com FULL LENGTH ARTICLE Genotyping of uncultured archaea in a polluted site of Suez Gulf, Egypt, based on 16S rRNA gene analyses Hosam Easa Elsaied * Aquagenome Resources and Biotechnology Research Group, National Institute of Oceanography, 101-El-Kasr El-Eini Street, Cairo, Egypt Received 3 February 2014; revised 11 March 2014; accepted 11 March 2014 Available online 18 April 2014 KEYWORDS Abstract Culture-independent 16S rRNA gene analysis approach was used to explore and evalu- Archaea; ate archaea in a polluted site, El-Zeitia, Suez Gulf, Egypt. Metagenomic DNA was extracted from a 16S rRNA gene diversity; sediment sample. Archaeal 16S rRNA gene was PCR amplified using universal archaeal primers, Sediment; followed by cloning and direct analyses by sequencing. Rarefaction analysis showed saturation, Suez Gulf recording 21 archaeal 16S rRNA gene phylotypes, which represented the total composition of archaea in the studied sample. Phylogenetic analysis showed that all recorded phylotypes belonged to two archaeal phyla. Sixteen phylotypes were located in the branch of methanogenic Eur- yarchaeota and more closely related to species of the genera Methanosaeta and Methanomassiliicoc- cus. Five phylotypes were affiliated to the new archaeal phylum Thaumarchaeota, which represented by species Candidatus nitrosopumilus. The recorded phylotypes had unique sequences, characteriz- ing them as new phylogenetic lineages. This work is the first investigation of uncultured archaea in the Suez Gulf, and implicated that the environmental characteristics shaped the diversity of archa- eal 16S rRNA genes in the studied sample. -
Research Article Diversity and Distribution of Archaea in the Mangrove Sediment of Sundarbans
Hindawi Publishing Corporation Archaea Volume 2015, Article ID 968582, 14 pages http://dx.doi.org/10.1155/2015/968582 Research Article Diversity and Distribution of Archaea in the Mangrove Sediment of Sundarbans Anish Bhattacharyya,1 Niladri Shekhar Majumder,2 Pijush Basak,1 Shayantan Mukherji,3 Debojyoti Roy,1 Sudip Nag,1 Anwesha Haldar,4 Dhrubajyoti Chattopadhyay,1 Suparna Mitra,5 Maitree Bhattacharyya,1 and Abhrajyoti Ghosh3 1 Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019, India 2RocheDiagnosticsIndiaPvt.Ltd.,Block4C,AkashTower,NearRubyHospital,781Anandapur,Kolkata700107,India 3Department of Biochemistry, Bose Institute, P1/12, C. I. T. Road, Scheme VIIM, Kolkata, West Bengal 700054, India 4Department of Geography, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019, India 5Norwich Medical School, University of East Anglia and Institute of Food Research, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK Correspondence should be addressed to Dhrubajyoti Chattopadhyay; [email protected], Suparna Mitra; [email protected], Maitree Bhattacharyya; [email protected], and Abhrajyoti Ghosh; [email protected] Received 30 March 2015; Revised 25 June 2015; Accepted 14 July 2015 Academic Editor: William B. Whitman Copyright © 2015 Anish Bhattacharyya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mangroves are among the most diverse and productive coastal ecosystems in the tropical and subtropical regions. Environmental conditions particular to this biome make mangroves hotspots for microbial diversity, and the resident microbial communities play essential roles in maintenance of the ecosystem. -
WO 2018/064165 A2 (.Pdf)
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Crystalline Iron Oxides Stimulate Methanogenic Benzoate Degradation in Marine Sediment-Derived Enrichment Cultures
The ISME Journal https://doi.org/10.1038/s41396-020-00824-7 ARTICLE Crystalline iron oxides stimulate methanogenic benzoate degradation in marine sediment-derived enrichment cultures 1,2 1 3 1,2 1 David A. Aromokeye ● Oluwatobi E. Oni ● Jan Tebben ● Xiuran Yin ● Tim Richter-Heitmann ● 2,4 1 5 5 1 2,3 Jenny Wendt ● Rolf Nimzyk ● Sten Littmann ● Daniela Tienken ● Ajinkya C. Kulkarni ● Susann Henkel ● 2,4 2,4 1,3 2,3,4 1,2 Kai-Uwe Hinrichs ● Marcus Elvert ● Tilmann Harder ● Sabine Kasten ● Michael W. Friedrich Received: 19 May 2020 / Revised: 9 October 2020 / Accepted: 22 October 2020 © The Author(s) 2020. This article is published with open access Abstract Elevated dissolved iron concentrations in the methanic zone are typical geochemical signatures of rapidly accumulating marine sediments. These sediments are often characterized by co-burial of iron oxides with recalcitrant aromatic organic matter of terrigenous origin. Thus far, iron oxides are predicted to either impede organic matter degradation, aiding its preservation, or identified to enhance organic carbon oxidation via direct electron transfer. Here, we investigated the effect of various iron oxide phases with differing crystallinity (magnetite, hematite, and lepidocrocite) during microbial 1234567890();,: 1234567890();,: degradation of the aromatic model compound benzoate in methanic sediments. In slurry incubations with magnetite or hematite, concurrent iron reduction, and methanogenesis were stimulated during accelerated benzoate degradation with methanogenesis as the dominant electron sink. In contrast, with lepidocrocite, benzoate degradation, and methanogenesis were inhibited. These observations were reproducible in sediment-free enrichments, even after five successive transfers. Genes involved in the complete degradation of benzoate were identified in multiple metagenome assembled genomes. -
Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. -
Clostridium Sufflavum Sp. Nov., Isolated from a Methanogenic Reactor Treating Cattle Waste
International Journal of Systematic and Evolutionary Microbiology (2009), 59, 981–986 DOI 10.1099/ijs.0.001719-0 Clostridium sufflavum sp. nov., isolated from a methanogenic reactor treating cattle waste Tomomi Nishiyama, Atsuko Ueki, Nobuo Kaku and Katsuji Ueki Correspondence Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Atsuko Ueki Japan [email protected] A strictly anaerobic, mesophilic, cellulolytic bacterial strain, designated CDT-1T, was isolated from rice-straw residue from a methanogenic reactor treating waste from cattle farms. The isolation was performed using enrichment culture with filter paper as a substrate. Cells stained Gram-negative, but reacted Gram-positively in the KOH test. Cells were slightly curved rods and were motile by means of peritrichous flagella. The strain produced yellow pigment when grown on filter-paper fragments. Although spore formation was not confirmed microscopically, thermotolerant cells were produced when the strain was grown on filter paper. The optimum temperature for growth was 33 6C and the optimum pH was 7.4. Oxidase, catalase and nitrate-reducing activities were absent. The strain utilized xylose, fructose, glucose, cellobiose, xylooligosaccharide, cellulose (filter-paper fragments and ball-milled filter paper) and xylan. The major fermentation products were acetate, ethanol, H2 and CO2. The major cellular fatty acids were iso-C15 : 0, iso-C14 : 0 and C16 : 0 DMA. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The genomic DNA G+C content was 40.7 mol%. On the basis of 16S rRNA gene sequence similarities, strain CDT-1T could be placed in cluster III of the genus Clostridium, being closely related to type strains of Clostridium hungatei (96.6 % sequence similarity), Clostridium termitidis (96.2 %) and Clostridium papyrosolvens (96.1 %). -
Tree Scale: 1 D Bacteria P Desulfobacterota C Jdfr-97 O Jdfr-97 F Jdfr-97 G Jdfr-97 S Jdfr-97 Sp002010915 WGS ID MTPG01
d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermodesulfobacterium s Thermodesulfobacterium commune WGS ID JQLF01 d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermosulfurimonas s Thermosulfurimonas dismutans WGS ID LWLG01 d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f DG-60 g DG-60 s DG-60 sp001304365 WGS ID LJNA01 ID WGS sp001304365 DG-60 s DG-60 g DG-60 f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f Desulfofervidaceae g Desulfofervidus s Desulfofervidus auxilii RS GCF 001577525 1 001577525 GCF RS auxilii Desulfofervidus s Desulfofervidus g Desulfofervidaceae f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfatatoraceae g Thermodesulfatator s Thermodesulfatator atlanticus WGS ID ATXH01 d Bacteria p Desulfobacterota c Desulfobacteria o Desulfatiglandales f NaphS2 g 4484-190-2 s 4484-190-2 sp002050025 WGS ID MVDB01 ID WGS sp002050025 4484-190-2 s 4484-190-2 g NaphS2 f Desulfatiglandales o Desulfobacteria c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g QOAM01 s QOAM01 sp003978075 WGS ID QOAM01 d Bacteria p Desulfobacterota c BSN033 o UBA8473 f UBA8473 g UBA8473 s UBA8473 sp002782605 WGS -
WO 2014/135633 Al 12 September 2014 (12.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2014/135633 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 9/04 (2006.01) C12P 7/16 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 9/88 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP2014/054334 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 6 March 2014 (06.03.2014) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 13 158012.8 6 March 2013 (06.03.2013) EP (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicants: CLARIANT PRODUKTE (DEUTSCH- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, LAND) GMBH [DE/DE]; Briiningstrasse 50, 65929 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Frankfurt am Main (DE).