The Jehol Biota: Definition and Distribution of Exceptionally Preserved Relicts of a Continental Early Cretaceous Ecosystem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core) Molly F
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln ANDRILL Research and Publications Antarctic Drilling Program 2009 Significance of the Trace Fossil Zoophycos in Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core) Molly F. Miller Vanderbilt University, [email protected] Ellen A. Cowan Appalachian State University, [email protected] Simon H. H. Nielsen Florida State University Follow this and additional works at: http://digitalcommons.unl.edu/andrillrespub Part of the Oceanography Commons, and the Paleobiology Commons Miller, Molly F.; Cowan, Ellen A.; and Nielsen, Simon H. H., "Significance of the Trace Fossil Zoophycos in Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core)" (2009). ANDRILL Research and Publications. 61. http://digitalcommons.unl.edu/andrillrespub/61 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in ANDRILL Research and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Antarctic Science 21(6) (2009), & Antarctic Science Ltd (2009), pp. 609–618; doi: 10.1017/ s0954102009002041 Copyright © 2009 Cambridge University Press Submitted July 25, 2008, accepted February 9, 2009 Significance of the trace fossil Zoophycos in Pliocene deposits, Antarctic continental margin (ANDRILL 1B drill core) Molly F. Miller,1 Ellen A. Cowan,2 and Simon H.H. Nielsen3 1. Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37235, USA 2. Department of Geology, Appalachian State University, Boone, NC 28608, USA 3. Antarctic Research Facility, Florida State University, Tallahassee FL 32306-4100, USA Corresponding author — Molly F. -
A New Understanding of the Lower Cretaceous Jiufotang Formation in Western Liaoning
Open Journal of Geology, 2019, 9, 658-660 https://www.scirp.org/journal/ojg ISSN Online: 2161-7589 ISSN Print: 2161-7570 A New Understanding of the Lower Cretaceous Jiufotang Formation in Western Liaoning Zijie Wu1,2, Longwei Qiu1, Haipeng Wang2 1School of Geosciences, China University of Petroleum, Qingdao, China 2Liaoning Provincial Institute of Geological Exploration Co., Ltd., Dalian, China How to cite this paper: Wu, Z.J., Qiu, Abstract L.W. and Wang, H.P. (2019) A New Un- derstanding of the Lower Cretaceous Jiufo- The Lower Cretaceous Jiufotang Formation in western Liaoning is the most tang Formation in Western Liaoning. Open important fossil production horizon of the Jehol Biota, which is widely dis- Journal of Geology, 9, 658-660. tributed in the Mesozoic basins of western Liaoning. Due to the influence of https://doi.org/10.4236/ojg.2019.910067 historical data, previous scholars believed that there was no volcanic activity Received: August 16, 2019 in the Jiufotang Formation in western Liaoning. In a field investigation in Accepted: September 21, 2019 western Liaoning, the authors discovered basalt and andesite in the Hu- Published: September 24, 2019 jiayingzi bed. In addition, a conformable boundary was found between the Copyright © 2019 by author(s) and Yixian and the Jiufotang formations. It indicates that both the Jiufotang For- Scientific Research Publishing Inc. mation and the Yixian Formation are strata containing volcanic-sedimentary This work is licensed under the Creative rocks, only differing in strength of volcanic activity. Commons Attribution International License (CC BY 4.0). Keywords http://creativecommons.org/licenses/by/4.0/ Open Access Western Liaoning, Lower Cretaceous, Jiufotang Formation, Volcanic Rocks, New Discoveries 1. -
Zircon U-Pb SHRIMP Dating of the Yixian Formation in Sihetun, Northeast China
Cretaceous Research 28 (2007) 177e182 www.elsevier.com/locate/CretRes New evidence for Cretaceous age of the feathered dinosaurs of Liaoning: zircon U-Pb SHRIMP dating of the Yixian Formation in Sihetun, northeast China Wei Yang a, Shuguang Li a,*, Baoyu Jiang b a Department of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China b Department of Earth Sciences, Nanjing University, Nanjing 210093, China Accepted 30 May 2006 Available online 25 January 2007 Abstract We present the first report of U-Pb SHRIMP dating of zircons from three tuffs interbedded within the ‘‘feathered dinosaur’’-bearing deposits in western Liaoning, China. One is a sample from the Bed 6 tuff (LX-SHT-12) of the Yixian Formation in Sihetun, for which our zircon U-Pb SHRIMP analyses gave a Cretaceous age (124.7 Æ 2.7 Ma), in agreement with a previously published sanidine 40Ar/39Ar age (124.60 Æ 0.25 Ma). The other two are from the Bed 1 tuff (LX-HBJ-1) and Bed 8 tuff (LX-HBJ-6) of the Yixian Formation in Huangbanjigou; the former gave an age of 124.9 Æ 1.7 Ma, the latter an age of 122.8 Æ 1.6 Ma. The three consistent ages indicate that the Yixian Formation was deposited in the Early Cretaceous within a very short time period (ca. 2 Ma). Ó 2006 Published by Elsevier Ltd. Keywords: Zircon U-Pb SHRIMP dating; Yixian Formation; Feathered dinosaurs; Liaoning; Jehol Biota 1. Introduction still the subject of disagreement. Previously K-Ar and Rb-Sr dat- ing results for the volcanic rocks of the formation have yielded Recently, a wide variety of spectacular fossils, including the Jurassic ages of 137 Æ 7 Ma and 142.5 Æ 4Ma(Wang and Diao, ‘‘feathered dinosaurs’’ Sinosauropteryx (Chen et al., 1998), Pro- 1984). -
Appendix A. Supplementary Material
Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma. -
A Review of the Systematic Biology of Fossil and Living Bony-Tongue Fishes, Osteoglossomorpha (Actinopterygii: Teleostei)
Neotropical Ichthyology, 16(3): e180031, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20180031 Published online: 11 October 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 30 September 2018 (ISSN 1679-6225) Review article A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton1 and Sébastien Lavoué2,3 The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutio- nary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha. Keywords: Biogeography, Osteoglossidae, Paleontology, Phylogeny, Taxonomy. Os peixes da Superordem Osteoglossomorpha têm sido foco de inúmeros estudos sobre a morfologia, sistemática e evo- lução, particularmente devido à sua posição basal dentre os peixes teleósteos. -
Geochronological and Paleomagnetic Constraints on the Lower Cretaceous Dalazi Formation from the Yanji Basin, NE China, and Its Tectonic Implication
minerals Article Geochronological and Paleomagnetic Constraints on the Lower Cretaceous Dalazi Formation from the Yanji Basin, NE China, and its Tectonic Implication Zhongshan Shen 1,2,3, Zhiqiang Yu 4,5,* , Hanqing Ye 1,2,3, Zuohuan Qin 6 and Dangpeng Xi 6 1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; [email protected] (Z.S.); [email protected] (H.Y.) 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3 Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China 4 Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 CAS Centre for Excellence in Life and Paleoenvironment, Beijing 100044, China 6 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; [email protected] (Z.Q.); [email protected] (D.X.) * Correspondence: [email protected] Abstract: The Lower Cretaceous Dalazi Formation in the Yanji Basin, eastern Jilin Province is of particular interest because it contains key fresh water fossil taxa, oil and gas resources, a potential terrestrial Albian–Cenomanian boundary, and regional unconformities. However, the lack of a Citation: Shen, Z.; Yu, Z.; Ye, H.; Qin, precise chronology for the non-marine strata has precluded a better understanding of the regional Z.; Xi, D. Geochronological and stratigraphic correlation and terrestrial processes. Here, we report magnetostratigraphic and U–Pb Paleomagnetic Constraints on the geochronologic results of a sedimentary sequence from the Xing’antun section in the Yanji Basin. -
Archaeorhynchus Preserving Significant Soft Tissue Including Probable Fossilized Lungs
Archaeorhynchus preserving significant soft tissue including probable fossilized lungs Xiaoli Wanga,b,1, Jingmai K. O’Connorc,d,1,2, John N. Mainae, Yanhong Panf, Min Wangc,d, Yan Wanga,b, Xiaoting Zhenga,b, and Zhonghe Zhouc,d,2 aInstitute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China; bShandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China; cKey Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 10010 Beijing, China; dCAS Center for Excellence in Life and Paleoenvironment, 10010 Beijing, China; eDepartment of Zoology, University of Johannesburg, 2006 Johannesburg, South Africa; and fKey Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 21008 Nanjing, China Contributed by Zhonghe Zhou, September 13, 2018 (sent for review April 10, 2018; reviewed by C. G. Farmer and Mark A. Norell) We describe a specimen of the basal ornithuromorph Archaeor- of preserved traces of lung tissue in a stem bird, occurring in a hynchus spathula from the Lower Cretaceous Jiufotang Formation specimen of the basalmost ornithuromorph Archaeorhynchus with extensive soft tissue preservation. Although it is the fifth spathula (STM7-11; Shandong Tianyu Museum of Nature, Pingyi, specimen to be described, unlike the others it preserves signifi- China; Fig. 1) from the Early Cretaceous Jehol Lagerstätte in cant traces of the plumage, revealing a pintail morphology pre- northeastern China. This Lagerstätte has produced more ex- viously unrecognized among Mesozoic birds, but common in ceptional specimens of early birds and dinosaurs preserving extant neornithines. In addition, this specimen preserves the prob- soft tissue than any other (1, 6, 7), a taphonomic phenomenon able remnants of the paired lungs, an identification supported by likely exaggerated by the enormous volume of collected spec- topographical and macro- and microscopic anatomical observa- imens. -
Molecular Evidence of Keratin and Melanosomes in Feathers of the Early Cretaceous Bird Eoconfuciusornis
Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis Yanhong Pana,1, Wenxia Zhengb, Alison E. Moyerb,2, Jingmai K. O’Connorc, Min Wangc, Xiaoting Zhengd,e, Xiaoli Wangd, Elena R. Schroeterb, Zhonghe Zhouc,1, and Mary H. Schweitzerb,f,1 aKey Laboratory of Economic Stratigraphy and Palaeogeography of the Chinese Academy of Sciences, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences Nanjing 210008, China; bDepartment of Biological Science, North Carolina State University, Raleigh, NC 27695; cKey Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; dInstitute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005, China; eShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; and fNorth Carolina Museum of Natural Sciences, Raleigh, NC 27601 Contributed by Zhonghe Zhou, October 20, 2016 (sent for review August 10, 2016; reviewed by Dominique G. Homberger and Roger H. Sawyer) Microbodies associated with feathers of both nonavian dinosaurs reported microbodies were embedded. Whether keratinous and early birds were first identified as bacteria but have been proteins were preserved in these feathers, and the potential ex- reinterpreted as melanosomes. Whereas melanosomes in modern tent of this preservation, has not been explored. feathers are always surrounded by and embedded in keratin, Indeed, -
Biostratigraphy
Biostratigraphy Geology 331 Paleontology The Grand Canyon of the Colorado River in Arizona Lithostratigraphic correlation between Grand Canyon, Zion, and Bryce Canyon national parks allows construction of a composite stratigraphic column. Lithostratigraphic correlation Grand Canyon, Zion Canyon, Bryce Canyon between Grand Canyon, Zion, and Bryce Canyon national parks Top of Navaho Ss. allows construction of a Top of Kaibab Ls. composite stratigraphic column. Zion Canyon National Park, Jurassic Sedimentary Rocks Jurassic Navaho Sandstone, Zion National Park, wind-blown cross-bedding. Bryce Canyon, Utah, Cretaceous sedimentary rocks Correlation • Determination of the equivalence of bodies of rock at different locations. There are two kinds of correlation: • Lithostratigraphic - matching up continuous formations. • Chronostratigraphic - matching up rocks of the same age. Usually done with fossils using biostratigraphy. Correlation • Over short distances lithostratigraphic correlation is the same as chronostratigraphic correlation. • Over medium distances they are not the same. • Over long distances only chronostratigraphic correlation can be used. Original Lateral Continuity: permits lithostratigraphic correlation – note the continuous beds Lithostratigraphic and Chronostratigraphic Relationships Sedimentary facies, and their subsequent rocks, are usually time-transgressive. http://www.geol.umd.edu/~tholtz/G331/lectures/331strat.html Sedimentary Facies Modern Barrier Island Time Lines Sedimentary Facies in the subsurface Wire line logs Time -
Cranial Osteology of Beipiaosaurus Inexpectus
第57卷 第2期 古 脊 椎 动 物 学 报 pp. 117–132 figs. 1–3 2019年4月 VERTEBRATA PALASIATICA DOI: 10.19615/j.cnki.1000-3118.190115 Cranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria) LIAO Chun-Chi1,2,3 XU Xing1,2* (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 University of Chinese Academy of Sciences Beijing 100049) Abstract Beipiaosaurus inexpectus, a key taxon for understanding the early evolution of therizinosaurians, has not been fully described since it was briefly reported on by Xu, Tang and Wang in 1999. Here we present a detailed description of the cranial anatomy of the holotype of this theropod dinosaur. B. inexpectus is unique in some of its cranial features such as the postorbital process of the frontal is large and its abrupt transition from the orbital rim, a long and sharp anterior process of the parietal, the elongate ventral ramus of the squamosal process of parietal, and external mandibular fenestra deep dorsoventrally and extremely posteriorly located. A number of plesiomorphic cranial features (such as relatively large dentary and less downturned degree of dentary symphysis) suggest that B. inexpectus is an early-branching Therizinosaurian, as proposed by previous studies. New information derived from our study is not only important for our understanding of the cranial anatomy of B. inexpectus but also significant to the study of the evolution of Therizinosauria. -
Fossil “Osteoglossomorphs” from East Asia and Their Implications for Teleostean Phylogeny
Mesozoic Fishes – Systematics and Paleoecology, G. Arratia & G. Viohl (eds.): pp. 261-272, 4 figs., 1 tab., 1 app. © 1996 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 3-923871–90-2 Fossil “osteoglossomorphs” from East Asia and their implications for teleostean phylogeny Mei SHEN Abstract Osteoglossomorphs are primitive teleosts which live in freshwaters of North America and almost all continents of the southern hemisphere. Many fossils, thought to be osteoglossomorphs, are also found in Mesozoic deposits of China. These fossils differ from each other in many morphological characters. Most of them possess a full neural spine on the first preural centrum and only 18 principal rays in the caudal fin. Because these characters were regarded as unique to the Osteoglossomorpha, these fishes were referred to this supercohort without exception. However, these two and most other characters of osteoglossomorphs are found in other non-osteoglossomorph teleosts, and the distribution of these characters implies that they may be primitively shared by early members of a number of teleostean groups. Three analyses are made. The first two are phylogenetic examinations of the Osteoglossomorpha, based on the synapomorphies used by PATTERSON & ROSEN (1977) to characterize the Osteoglossomorpha, the Elo- pocephala, the Clupeocephala, and the Euteleostei. The results suggest that the Osteoglossomorpha is not a monophyletic group according to PATTERSON & ROSEN’s definition. Analysis 3 is investigation of the relation- ships among Chinese fossil osteoglossomorphs. Thirty-nine characters are coded for 11 fossil osteoglossomorphs (†Lycoptera, †Paralycoptera, †Tonxinichthys, †Pulinia, †Plesiolycoptera, †Kuntulunia, †Huashia, †Changichthys, †Ta- nolepis, †Jiaohichthys, and †Yanbiania,) and seven representatives (Elops, Hiodon, Osteoglossum, Notopterus, Denti- ceps, Chanos, and Coregonus) of extant teleosts. -
Paravian Phylogeny and the Dinosaur-Bird Transition: an Overview
feart-06-00252 February 11, 2019 Time: 17:42 # 1 REVIEW published: 12 February 2019 doi: 10.3389/feart.2018.00252 Paravian Phylogeny and the Dinosaur-Bird Transition: An Overview Federico L. Agnolin1,2,3*, Matias J. Motta1,3, Federico Brissón Egli1,3, Gastón Lo Coco1,3 and Fernando E. Novas1,3 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina, 2 Fundación de Historia Natural Félix de Azara, Universidad Maimónides, Buenos Aires, Argentina, 3 Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Recent years witnessed the discovery of a great diversity of early birds as well as closely related non-avian theropods, which modified previous conceptions about the origin of birds and their flight. We here present a review of the taxonomic composition and main anatomical characteristics of those theropod families closely related with early birds, with the aim of analyzing and discussing the main competing hypotheses pertaining to avian origins. We reject the postulated troodontid affinities of anchiornithines, and the Edited by: dromaeosaurid affinities of microraptorians and unenlagiids, and instead place these Corwin Sullivan, University of Alberta, Canada groups as successive sister taxa to Avialae. Aiming to evaluate previous phylogenetic Reviewed by: analyses, we recoded unenlagiids in the traditional TWiG data matrix, which resulted Thomas Alexander Dececchi, in a large polytomy at the base of Pennaraptora. This indicates that the TWiG University of Pittsburgh, United States phylogenetic scheme needs a deep revision. Regarding character evolution, we found Spencer G. Lucas, New Mexico Museum of Natural that: (1) the presence of an ossified sternum goes hand in hand with that of ossified History & Science, United States uncinate processes; (2) the presence of foldable forelimbs in basal archosaurs indicates *Correspondence: widespread distribution of this trait among reptiles, contradicting previous proposals Federico L.