Intersectin Multidomain Adaptor Proteins: Regulation of Functional Diversity

Total Page:16

File Type:pdf, Size:1020Kb

Intersectin Multidomain Adaptor Proteins: Regulation of Functional Diversity Gene 473 (2011) 67–75 Contents lists available at ScienceDirect Gene journal homepage: www.elsevier.com/locate/gene Review Intersectin multidomain adaptor proteins: Regulation of functional diversity Liudmyla Tsyba, Oleksii Nikolaienko, Oleksandr Dergai, Mykola Dergai, Olga Novokhatska, Inessa Skrypkina, Alla Rynditch ⁎ Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03680 Kyiv, Ukraine article info abstract Article history: Adaptor/scaffold proteins serve as platforms for the assembly of multiprotein complexes and regulate the Accepted 30 November 2010 efficiency and specificity of signalling cascades. Intersectins (ITSNs) are an evolutionarily conserved adaptor Available online 9 December 2010 protein family engaged in endo- and exocytosis, actin cytoskeleton rearrangement and signal transduction. This review summarizes recent advances in the function of ITSNs in neuronal and non-neuronal cells, the role Received by A.J. van Wijnen of alternative splicing and alternative transcription in regulating the structural and functional diversity of ITSNs, their expression patterns in different tissues and during development, their interactions with proteins, Keywords: Intersectin family as well as the potential relevance of ITSNs for neurodegenerative diseases and cancer. The diversity of Adaptor/scaffold proteins mechanisms in the regulation of ITSN expression and specificity in different cells emphasizes the important Alternative splicing role of ITSN proteins in vesicle trafficking and signalling. Endocytosis © 2010 Elsevier B.V. All rights reserved. 1. Introduction shown to be essential components for initiation of clathrin-coated pit (CCP) formation (Henne et al., 2010). Adaptor/scaffold proteins have emerged as regulators of many In this review, we highlight recent advances in the study of the cellular processes, including proliferation, differentiation, cell-cycle functions of the ITSN family in neuronal and non-neuronal cells and control, cell survival and migration (Pawson and Scott, 1997; provide a picture of experimentally verified ITSN-specific interactions. Szymkiewicz et al., 2004; Zeke et al., 2009). Classical scaffolds usually We also describe the impact of alternative processing on the do not possess any type of enzymatic activity and are characterized by generation of diversity in the ITSN family and regulation of ITSN modular architecture with the presence of multiple protein/lipid genes expression. binding domains and sites for inducible posttranslational modifica- tions. Scaffold molecules selectively control the spatial and temporal 2. Structure of ITSN family proteins assembly of multiprotein complexes. Specifically, they determine the formation and localization of protein complexes and may both ITSNs are evolutionarily conserved proteins present in diverse facilitate or inhibit signal transduction depending on their concen- metazoan organisms ranging from nematodes to mammals. There are tration in certain compartments, regulating the strength, specificity two ITSN genes in humans, ITSN1 and ITSN2 located on chromosomes and duration of signal propagation. 21 (q22.1–q22.2) and 2 (pter–p25.1), respectively (Guipponi et al., Intersectins (ITSNs) are adaptor/scaffold proteins with a unique 1998; Pucharcos et al., 2001). ITSN1 and ITSN2 share significant multidomain structure. By binding to numerous proteins, they sequence identity and a similar domain structure (Pucharcos et al., assemble multimeric complexes implicated in clathrin- and caveo- 2000). Moreover, they both have short and long isoforms produced by lin-mediated endocytosis, rearrangements of the actin cytoskeleton, alternative splicing (Guipponi et al., 1998; Pucharcos et al., 2001). The cell signalling and survival (Sengar et al., 1999; Predescu et al., 2003; short isoform (ITSN-S) consists of two Eps15 homology domains (EH1 Hussain et al., 2001; Mohney et al., 2003; Das et al., 2007; Predescu et and EH2), a coiled-coil region (CCR) and five Src homology 3 domains al., 2007). The roles of ITSN proteins as adaptors have been studied (SH3A–E) (Fig. 1). The EH domains which bind to Asn-Pro-Phe motifs intensively in different cell types and organisms. Recently, ITSNs were have been identified in several proteins implicated in endocytosis and vesicle transport. The SH3 domains bind to proline-rich sequences Abbreviations: ITSNs, intersectins; ITSN1-S, short isoform of ITSN1; ITSN1-L, long and are commonly found in proteins implicated in cell signalling isoform of ITSN1; CCP, clathrin-coated pit; CCV, clathrin-coated vesicle; GEF, guanine pathways, cytoskeletal organization and membrane traffic. They nucleotide exchange factor; CME, clathrin-mediated endocytosis; Dap160, Drosophila possess the most diverse specificity among interaction domains (Li, homolog of human ITSN; NMJ, neuromuscular junction; RTK, receptor tyrosine kinases; 2005). The long isoform (ITSN-L) contains three additional C-terminal EGFR, epidermal growth factor receptor; CCR, coiled-coil region; SV, synaptic vesicle; domains, a Dbl homology domain (DH), a Pleckstrin homology DS, Down syndrome; AD, Alzheimer's disease. ⁎ Corresponding author. Tel.: +380 44 526 9618; fax: +380 44 526 0759. domain (PH) and a C2 domain (Guipponi et al., 1998; Sengar et al., E-mail address: [email protected] (A. Rynditch). 1999). The DH and PH domains usually form a tandem in the Dbl 0378-1119/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.gene.2010.11.016 68 L. Tsyba et al. / Gene 473 (2011) 67–75 Fig. 1. Schematic representation of the structure of ITSN proteins in vertebrates, D. melanogaster and C. elegans. family of guanine nucleotide exchange factors (GEFs). The DH domain Pucharcos et al., 2001; Sengar et al., 1999). Numerous additional is sufficient to catalyse exchange of bound GDP for GTP and therefore splicing events affecting ITSN1 and ITSN2 transcripts will be briefly activate Rho GTPases. The DH domain of ITSN specifically activates the reviewed in this section. Cdc42 GTPase (Hussain et al., 2001). The PH domain of ITSN binds Four evolutionarily conserved in-frame alternative splicing events phosphoinositides (Snyder et al., 2001). C2 domains are usually affecting ITSN1 mRNAs were found in mice and humans (Okamoto et involved in Ca2+-dependent and Ca2+-independent phospholipid al., 1999; Pucharcos et al., 2001; Tsyba et al., 2004)(Fig. 2A). These binding (Rizo and Südhof, 1998). Multiple domains of ITSNs mediate events include: (1) the use of an alternative 3′-splice site internal to their association with a wide range of proteins. So far, we know of exon 6 that results in truncation of exon 6 and deletion of 37 amino more than 30 proteins that interact with ITSNs. However, the list of acids between the EH1 and EH2 domains, (2) splicing of the neuron- ITSN-binding proteins is not believed to be complete. The vast specific exon 20 that encodes 5 amino acids in the SH3A domain, (3) majority of the publications focuses on ITSN1. Despite limited deletion of exons 25 and 26 that encode the SH3C domain, (4) information on ITSN2, it is apparent that ITSN2 plays an important skipping of exon 35 encoding 31 amino acids of the DH domain and 25 role in clathrin- and caveola-mediated endocytosis (Pucharcos et al., residues of the DH–PH interdomain spacing. Inclusion of exon 22a 2000; Klein et al., 2009). results in the generation of the shortest ITSN1 transcript that encodes Proteins with similarity to the ITSN-S domain structure were found a protein containing two EH domains, the CCR, the SH3A domain and in mammals, frogs, flies and nematodes (Sengar et al., 1999; Okamoto the exon 22a-specific C-terminal sequence (Skrypkina et al., 2005). et al., 1999; Yamabhai et al., 1998; Roos and Kelly, 1998; Rose et al., Except for splicing of exon 30, three additional alternative splicing 2007), while ITSN-L isoforms have been identified only in vertebrates. events that do not introduce premature termination codons were The ITSN ortholog in Drosophila consists of two EH domains, a CCR and reported for ITSN2 (Fig. 2B). Truncation of exon 19 and brain-specific four SH3 domains (Roos and Kelly, 1998), while the Caenorhabditis inclusion of exon 17 change the structure of the CCR of ITSN2, while elegans ITSN contains five SH3 domains (Rose et al., 2007)(Fig. 1). skipping of exons 27 and 28 results in deletion of the SH3D domain Proteins homologous to ITSN were not found in S. cerevisiae. (exon numbering according to NM_006277) (Pucharcos et al., 2001; The organization of the ITSN1 and ITSN2 genes of vertebrates is Seifert et al., 2007). very similar (Pucharcos et al., 1999, 2001). They comprise more than Many splicing events cause frameshifts in ITSNs mRNA and 40 exons, while orthologous ITSN genes of nematodes (C. elegans) and introduce premature termination codons that lie more than 50 arthropods (D. melanogaster) contain 8 and 11 exons, respectively. nucleotides upstream of an exon–exon junction (Tsyba et al., 2004; Moreover, in vertebrates most of the exon boundaries are conserved Kropyvko et al., 2010a; Pucharcos et al., 2001; Seifert et al., 2007). between ITSN1 and ITSN2, and the mechanisms of generation of the Such mRNAs are expected to be degraded via the nonsense-mediated two major spliced variants are the same for these paralogous genes mRNA decay (NMD) pathway (McGlincy and Smith, 2008). The (Pucharcos et al., 2001). This suggests that, the long isoform produced relatively high abundance of mRNAs with premature termination by alternative
Recommended publications
  • Intersectin 1 Forms Complexes with SGIP1 and Reps1 in Clathrin-Coated
    Biochemical and Biophysical Research Communications 402 (2010) 408–413 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Intersectin 1 forms complexes with SGIP1 and Reps1 in clathrin-coated pits ⇑ Oleksandr Dergai a, ,1, Olga Novokhatska a,1, Mykola Dergai a, Inessa Skrypkina a, Liudmyla Tsyba a, Jacques Moreau b, Alla Rynditch a a Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03680 Kyiv, Ukraine b Molecular Mechanisms of Development, Jacques Monod Institute, Development and Neurobiology Program, UMR7592 CNRS – Paris Diderot University, 15 rue Hélène Brion, 75205 Paris Cedex 13, France article info abstract Article history: Intersectin 1 (ITSN1) is an evolutionarily conserved adaptor protein involved in clathrin-mediated endo- Received 7 October 2010 cytosis, cellular signaling and cytoskeleton rearrangement. ITSN1 gene is located on human chromosome Available online 12 October 2010 21 in Down syndrome critical region. Several studies confirmed role of ITSN1 in Down syndrome pheno- type. Here we report the identification of novel interconnections in the interaction network of this endo- Keywords: cytic adaptor. We show that the membrane-deforming protein SGIP1 (Src homology 3-domain growth Endocytosis factor receptor-bound 2-like (endophilin) interacting protein 1) and the signaling adaptor Reps1 (RalBP Adaptor proteins associated Eps15-homology domain protein) interact with ITSN1 in vivo. Both interactions are mediated Intersectin 1 by the SH3 domains of ITSN1 and proline-rich motifs of protein partners. Moreover complexes compris- Protein interactions SGIP1 ing SGIP1, Reps1 and ITSN1 have been identified. We also identified new interactions between SGIP1, Reps1 Reps1 and the BAR (Bin/amphiphysin/Rvs) domain-containing protein amphiphysin 1.
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Cooperation to Amplify Gene-Dosage-Imbalance Effects
    Update TRENDS in Molecular Medicine Vol.12 No.10 Research Focus Cooperation to amplify gene-dosage-imbalance effects Susana de la Luna1 and Xavier Estivill2 1 ICREA and Gene Function Group, Genes and Disease Program, Center for Genomic Regulation-CRG, 08003-Barcelona, Spain 2 Genetic Causes of Disease Group, Genes and Disease Program, Center for Genomic Regulation-CRG and Pompeu Fabra University, Barcelona Biomedical Research Park, 08003-Barcelona, Spain Trisomy 21, also known as Down syndrome (DS), is a From gene-dosage imbalance to pathology complex developmental disorder that affects many ThepresenceofanextracopyofHSA21 genes predicts an organs, including the brain, heart, skeleton and increased expression of 1.5-fold at the RNA level for immune system. A working hypothesis for understand- those genes in trisomy. Experiments in which this effect ing the consequences of trisomy 21 is that the over- has been evaluated indicate that this is indeed the case expression of certain genes on chromosome 21, alone for most HSA21 genes in DS samples and for their or in cooperation, is responsible for the clinical features orthologs in mouse trisomic models [3].Inthesimplest of DS. There is now compelling evidence that the scenario, the overexpression of one specific gene would protein products of two genes on chromosome 21, lead to the disturbance of a biological process and, as a Down syndrome candidate region 1 (DSCR1)and result, a single gene would be responsible for each patho- dual-specificity tyrosine-(Y)-phosphorylation regulated logical feature of DS. However, it is more probable that kinase 1A (DYRK1A), interact functionally, and that the overexpression of several of the 250 HSA21 genes their increased dosage cooperatively leads to dysregu- would contribute to alter a functional pathway in a lation of the signaling pathways that are controlled by specific cell at a specific time.
    [Show full text]
  • RCAN2 Isoform 2 Recombinant Protein Cat
    RCAN2 Isoform 2 Recombinant Protein Cat. No.: 95-114 RCAN2 Isoform 2 Recombinant Protein Specifications SPECIES: Mouse SOURCE SPECIES: E. coli SEQUENCE: aa 2 - 197 FUSION TAG: Fusion Partner: C-terminal His-tag TESTED APPLICATIONS: ELISA, WB APPLICATIONS: This recombinant protein can be used for WB and ELISA. For research use only. PREDICTED MOLECULAR 26 kDa (Calculated) WEIGHT: Properties PURITY: ~95% PHYSICAL STATE: Liquid 100mM sodium phosphate, 10mM Tris, 500mM NaCl, 25 mM imidazole, 2mM MgCl2, 10% BUFFER: gycerol Store in working aliquots at -70˚C. Avoid freeze/thaw cycles. When working with proteins STORAGE CONDITIONS: care should be taken to keep recombinant protein at a cool and stable temperature. September 29, 2021 1 https://www.prosci-inc.com/rcan2-isoform-2-recombinant-protein-95-114.html Additional Info OFFICIAL SYMBOL: Rcan2 RCAN2 Antibody: Csp2, MCIP2, ZAKI-4, Dscr1l1, Zaki4, Calcipressin-2, Calcineurin inhibitory ALTERNATE NAMES: protein ZAKI-4 ACCESSION NO.: AAH62141 PROTEIN GI NO.: 38328420 GENE ID: 53901 Background and References Regulator of calcineurin 2 (RCAN2), also known as ZAKI4 and DSCR1L1, is expressed as two isoforms differing at their N-terminus. The longer of the two (isoform 1) is expressed exclusively in the brain, while isoform 2 is ubiquitously expressed, with highest expression in brain, heart, and muscle (1,2). Both isoforms bind to the catalytic subunit of calcineurin, a Ca++-dependent protein phosphatase involved in several neuronal functions, though BACKGROUND: their C-terminal region and inhibit calcineurin’s activity (3). Unlike isoform 1 of RCAN2, the expression of the second isoform is not induced by the thyroid hormone T3 (3).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Effects and Mechanisms of Eps8 on the Biological Behaviour of Malignant Tumours (Review)
    824 ONCOLOGY REPORTS 45: 824-834, 2021 Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review) KAILI LUO1, LEI ZHANG2, YUAN LIAO1, HONGYU ZHOU1, HONGYING YANG2, MIN LUO1 and CHEN QING1 1School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500; 2Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China Received August 29, 2020; Accepted December 9, 2020 DOI: 10.3892/or.2021.7927 Abstract. Epidermal growth factor receptor pathway substrate 8 1. Introduction (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which Malignant tumours are uncontrolled cell proliferation diseases is involved in cell mitosis, differentiation and other physiological caused by oncogenes and ultimately lead to organ and body functions. Numerous studies over the last decade have demon- dysfunction (1). In recent decades, great progress has been strated that Eps8 is overexpressed in most ubiquitous malignant made in the study of genes and signalling pathways in tumours and subsequently binds with its receptor to activate tumorigenesis. Eps8 was identified by Fazioli et al in NIH-3T3 multiple signalling pathways. Eps8 not only participates in the murine fibroblasts via an approach that allows direct cloning regulation of malignant phenotypes, such as tumour proliferation, of intracellular substrates for receptor tyrosine kinases (RTKs) invasion, metastasis and drug resistance, but is also related to that was designed to study the EGFR signalling pathway. Eps8 the clinicopathological characteristics and prognosis of patients.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Noonan Syndrome and Related Disorders Sos1, Raf1, Kras & Shoc2 Gene Sequencing
    Molecular Diagnostic Laboratory 1600 Rockland Road, Wilmington, DE 19803 302.651.6775 email: [email protected] NOONAN SYNDROME AND RELATED DISORDERS SOS1, RAF1, KRAS & SHOC2 GENE SEQUENCING Noonan syndrome (OMIM 163950) is an autosomal dominant disorder due to mutations in several genes that are involved in the Ras-mitogen-activated protein kinase (RAS/MapK) pathway. Specifically, Noonan syndrome is caused by mutations in PTPN11* (OMIM 176876), SOS1 (OMIM 182530), RAF1 (OMIM 164760), and KRAS (OMIM 190070). Noonan syndrome is characterized by heart defects including hypertrophic cardiomyopathy and pulmonic valve stenosis, facial dysmorphology, short stature, chest wall deformities, and developmental delay. Noonan syndrome-like disorder with loose anagen hair (OMIM 607721) is a closely related disorder characterized by the above features as well as actively growing hair that is sparse, easy to pluck, thin, and slow-growing. This related disorder is due to mutations in SHOC2 (OMIM 602775), which is also involved in the RAS/MapK pathway. PTPN11* and RAF1 are also associated with LEOPARD syndrome (OMIM 151100). LEOPARD syndrome is an acronym for multiple lentigines, electrocardiogram abnormalities, ocular hypertelorism, pulmonic valvular stenosis, abnormalities of genitalia, retardation of growth, and sensorineural deafness. LEOPARD syndrome is an autosomal dominant disorder, and can present much like Noonan syndrome with additional features. * Please note: We are no longer able to offer diagnostic testing for the PTPN11 gene due to patent restrictions enforced by U.S. Patent 7,335,469. Testing: Testing can be performed in tiers, moving to the next tier only if the preceding test is negative. Testing can also be performed concurrently or in any order requested.
    [Show full text]
  • Intersectin-1S Deficiency in Pulmonary Pathogenesis Niranjan Jeganathan1*, Dan Predescu2 and Sanda Predescu3
    Jeganathan et al. Respiratory Research (2017) 18:168 DOI 10.1186/s12931-017-0652-4 REVIEW Open Access Intersectin-1s deficiency in pulmonary pathogenesis Niranjan Jeganathan1*, Dan Predescu2 and Sanda Predescu3 Abstract Intersectin-1s (ITSN-1s), a multidomain adaptor protein, plays a vital role in endocytosis, cytoskeleton rearrangement and cell signaling. Recent studies have demonstrated that deficiency of ITSN-1s is a crucial early event in pulmonary pathogenesis. In lung cancer, ITSN-1s deficiency impairs Eps8 ubiquitination and favors Eps8-mSos1 interaction which activates Rac1 leading to enhanced lung cancer cell proliferation, migration and metastasis. Restoring ITSN-1s deficiency in lung cancer cells facilitates cytoskeleton changes favoring mesenchymal to epithelial transformation and impairs lung cancer progression. ITSN-1s deficiency in acute lung injury leads to impaired endocytosis which leads to ubiquitination and degradation of growth factor receptors such as Alk5. This deficiency is counterbalanced by microparticles which, via paracrine effects, transfer Alk5/TGFβRII complex to non-apoptotic cells. In the presence of ITSN-1s deficiency, Alk5-restored cells signal via Erk1/2 MAPK pathway leading to restoration and repair of lung architecture. In inflammatory conditions such as pulmonary artery hypertension, ITSN-1s full length protein is cleaved by granzyme B into EHITSN and SH3A-EITSN fragments. The EHITSN fragment leads to pulmonary cell proliferation via activation of p38 MAPK and Elk-1/c-Fos signaling. In vivo, ITSN-1s deficient mice transduced with EHITSN plasmid develop pulmonary vascular obliteration and plexiform lesions consistent with pathological findings seen in severe pulmonary arterial hypertension. These novel findings have significantly contributed to understanding the mechanisms and pathogenesis involved in pulmonary pathology.
    [Show full text]
  • The Long Isoform of Intersectin-1 Has a Role in Learning and Memory
    ORIGINAL RESEARCH published: 25 February 2020 doi: 10.3389/fnbeh.2020.00024 The Long Isoform of Intersectin-1 Has a Role in Learning and Memory Nakisa Malakooti 1, Melanie A. Pritchard 2, Feng Chen 1, Yong Yu 2, Charlotte Sgambelloni 1, Paul A. Adlard 1*† and David I. Finkelstein 1*† 1Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia, 2Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia Down syndrome is caused by partial or total trisomy of chromosome 21 and is characterized by intellectual disability and other disorders. Although it is difficult to determine which of the genes over-expressed on the supernumerary chromosome contribute to a specific abnormality, one approach is to study each gene in isolation. This can be accomplished either by using an over-expression model to study increased Edited by: gene dosage or a gene-deficiency model to study the biological function of the gene. Denise Manahan-Vaughan, Here, we extend our examination of the function of the chromosome 21 gene, ITSN1. Ruhr University Bochum, Germany We used mice in which the long isoform of intersectin-1 was knocked out (ITSN1- Reviewed by: Sajikumar Sreedharan, LKO) to understand how a lack of the long isoform of ITSN1 affects brain function. National University of Singapore, We examined cognitive and locomotor behavior as well as long term potentiation (LTP) Singapore and the mitogen-activated protein kinase (MAPK) and 3 -kinase-C2b-AKT (AKT) cell Mahesh Shivarama Shetty, 0 University of Iowa, signaling pathways. We also examined the density of dendritic spines on hippocampal United States pyramidal neurons.
    [Show full text]
  • PTPN11, SOS1, KRAS, and RAF1 Gene Analysis, and Genotype–Phenotype Correlation in Korean Patients with Noonan Syndrome
    J Hum Genet (2008) 53:999–1006 DOI 10.1007/s10038-008-0343-6 ORIGINAL ARTICLE PTPN11, SOS1, KRAS, and RAF1 gene analysis, and genotype–phenotype correlation in Korean patients with Noonan syndrome Jung Min Ko Æ Jae-Min Kim Æ Gu-Hwan Kim Æ Han-Wook Yoo Received: 30 July 2008 / Accepted: 27 October 2008 / Published online: 20 November 2008 Ó The Japan Society of Human Genetics and Springer 2008 Abstract After 2006, germline mutations in the KRAS, KRAS (1.7%), and RAF1 (5.1%) genes. Three novel SOS1, and RAF1 genes were reported to cause Noonan mutations (T59A in PTPN11, K170E in SOS1, S259T in syndrome (NS), in addition to the PTPN11 gene, and now RAF1) were identified. The patients with PTPN11 muta- we can find the etiology of disease in approximately tions showed higher prevalences of patent ductus 60–70% of NS cases. The aim of this study was to assess arteriosus and thrombocytopenia. The patients with SOS1 the correlation between phenotype and genotype by mutations had a lower prevalence of delayed psychomotor molecular analysis of the PTPN11, SOS1, KRAS, and development. All patients with RAF1 mutations had RAF1 genes in 59 Korean patients with NS. We found hypertrophic cardiomyopathy. Typical facial features and disease-causing mutations in 30 (50.8%) patients, which auxological parameters were, on statistical analysis, not were located in the PTPN11 (27.1%), SOS1 (16.9%), significantly different between the groups. The molecular defects of NS are genetically heterogeneous and involve several genes other than PTPN11 related to the RAS- MAPK pathway. Electronic supplementary material The online version of this article (doi:10.1007/s10038-008-0343-6) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]