Micro Environments Oft and B Lymphocytes

Total Page:16

File Type:pdf, Size:1020Kb

Micro Environments Oft and B Lymphocytes MICRO ENVIRONMENTS OFT AND B LYMPHOCYTES A LIGHT- AND ELECTRONMICROSCOPIC STUDY PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE GENEESKUNDE AAN DE ERASMUS UNIVERSITEIT TE ROTTERDAM OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. B. LEIJNSE EN VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN DE OPENBARE VERDEDIGING ZAL PLAATS VINDEN OP WOENSDAG 30 MAART 1977 DES NAMIDDAGS TE 4.15 UUR PRECIES DOOR WILLEM VAN EWIJK geboren te Rheden PROMOTOR: PROF.DR.O. VOS CO-REFERENTEN: PROF. DR. H. GALJAARD DR. P. NIEUWENHUIS Dit proefschrift werd bewerkt binnen de vakgroep Celbiologie en Geneti<.:a van de Erasmus Universiteit te Rotterdam. Aan mijn ouders Aan Tilly VI Contents pag. Voorwoord Chapter 1 General introduction I 1.1 Pluripotent haemopoietic stem cells I 1.2 Haemopoietic microenvironments I 1.3 Differentiation of lymphoid cells 3 1.3.1 B cell differentiation 4 1.3.2 T cell differentiation 4 1.4 Humoral factors involved in haemopoiesis 6 1.4.1 Erythropoietin 6 1.4.2 Thrombopoietin 6 1.4.3 Colony stimulating factors 6 1.4.4 Humoral factors involved in lymphopoiesis 7 1.5 Purpose of investigation 8 Chapter 2 Architecture of spleen and lymph nodes 9 2 .I The spleen 9 2.1.1 Vascularization of the spleen 9 2.1.2 Haemopoietic compartments in the spleen 9 2.1.3 The white pulp, T and B cell compartments 11 2.2 Lymph nodes 12 Chapter 3 Discussion of the papers 15 3.1 Paper I 15 3.2 Paper II 17 3. 3 Paper III 19 3.4 Paper IV 21 3.5 Paper V 23 3.6 Paper VI 26 Summary 29 Samenvatting 33 References 37 Curriculum vitae VII Papers: Paper I White pulp compartments in the spleen of rats and mice. A light- and electronmicroscopic study of lymphoid and non-lymphoid cell types in T and B areas. A. J.P. Veerman and W. van Ewijk. Cell Tissue Res. 156, 417-441 (1975). Paper II Reconstitution of the thymus dependent area in the spleen oflethally irradiated mice. A light- and electronmicroscopic study of the T cell microenvironment. W. van Ewijk, J.H.M. Verzijden, Th. H. van der Kwast and S. W. M. Luijcx-Meijer. Cell Tissue Res. 149, 43-60 (1974). Paper III Migration of B lymphocytes in lymphoid organs of lethally irradia­ ted, thymocyte reconstituted mice. W. van Ewijk and Th. H. van der Kwast. Submitted for publication. Paper IV Cellular events during the primary immune response in the spleen. A fluorescence-, light- and electronmicroscopic study in germfree m1ce. W. van Ewijk, J. Razing, N.H.C. Brons and D. Klepper. Cell Tissue Res., in press. Paper V Scanning electron microscopy of homing and recirculating lympho­ cyte populations. W. van Ewijk, N.H. C. Brons and J. Razing. Cell. Immunol. 19, 245-261 (1975). Paper VI Cell surface labeling of mononuclear cells with antisera associated to turnip yellow mosaic virus or alphalpha mosaic virus particles. A freeze-etch study. W. van Ewijk and E. de Vries. Histochem. J. in press. VIII Voorwoord Gaame wil ik in dit voorwoord mijn dank betuigen aan allen die meegewerkt hebben aan het tot stand komen van dit proefschrift. In het bijzonder dank ik mijn promotor, Prof. Dr. 0. Vas, voor de mogelijkheden die hij mij geboden heeft om experimenteel onderzoek te verrichten, voor de vrijheid mij gegeven tijdens de keuze en opzet van het hier beschreven experimentele werk en voor de bijzonder stimulerende wijze waarop hij mij begeleid heeft tijdens het tot stand komen van dit proefschrift. Daarnaast wil ik de beide co-referenten noemen die mijn proefschrift op nauwgezette wijze hebben doorgenomen. Prof. Dr. H. Galjaard ben ik zeer erkentelijk voor zijn stimulerende invloed op mijn werk en zijn kritische houding ten opzichte van mijn publicaties en mijn proefschrift. Dr. P. Nieuwenhuis, beste Paul, jou bedank ik voor de wijze waarop jij mij in de afgelopenjaren begeleid hebt. Onze vele besprekingen over dit onderzoek, soms in Groningen, soms in Rotterdam en soms tijdens lange telefoongesprekken tussen Groningen en Rotterdam gaven mij energie om nieuwe experimenten op te zetten, resultaten af te ronden en deze tenslotte op te schrijven. Oak ben ik dank verschuldigd aan zij die direct bijgedragen hebben tot het hier beschreven experimentele werk, met name Suzanne Luijcx-Meijer, Rene Brons en Dick Klepper. Dank voor de eindeloze series dunne en ultradunne coupes welke vaak onder "trillerige" werkomstandigheden vervaardigd moes­ ten worden. Daamaast dank aan Jacques Verzijden, Thea van der Kwast en Egbert de Vries. Jullie hebben als student-assistent een zeer gewaardeerde bijdrage geleverd in het opzetten van de perfusie-fixatie techniek, de autoradiografie en de vries-ets techniek. Voorts wil ik diegenen noemen die dankzij hun technische bijdrage mij het werken mogelijk hebben gemaakt. Piet Hartwijk, Jan Ekas, Peter Lammerts en Anton Hoegee, jullie dank ik voor de constructie van het perfusie apparaat en het "drankorgel". Cor Bakker, van de afdeling elektronenmikroskopie van de Universiteit van Amsterdam ben ik zeer erkentelijk voor instructie en technische hulp tijdens ons scanning elektronenmikroskopisch onderzoek. Joop Bos en Cornelie Francken, mede dank zij jullie waren er goed verzorgde proefdieren, Mevrouw Godijn en Jopie Bolman zorgden altijd voor schoon glaswerk en, niet te vergekH, verse koffie tijdens het werk. Margot van Duuren en Rein Smid wil ik bedanken voor de snelle service tijdens bestellingen van materiaal. Dan wil ik allen noemen die mij in de afgelopen jaren met raad en daad terzijde hebben gestaan. Vooral dank aan Dr. 0. Brocades Zaalberg van het Medisch Biologisch Laboratorium TNO te Rijswijk, Prof. Dr. H.L. Lange­ voort van de afdeling histologie van de Vrije Universiteit te Amsterdam, Dr. E. Ch. M. Hoefsmit van de afdeling elektronenmikroskopie van de Vrije Universiteit te Amsterdam en Dr. W. Leene van het Jan Swammerdam Instituut, Universiteit van Amsterdam. Ook dank aan Jan Razing, Rob Benner, Rob Ploemacher, Wim van Muiswinkel en Anjo Veerman voor collegiale samenwerking en waardevolle discussies tijdens ons werk. En dan natuurlijk IX dank aan onze EM-unit (Rene, Han, Pim, Rob, Peter, Peter, Dick, Nol, Maud) voor het "sfeertje" wat het werken onder soms moeilijke omstandigheden zoveel gemakkelijker maakte. Marilyn Heukels-Dully, jij hebt vaak een zeer gewaardeerde bijdrage geleverd door het kritisch doomemen van de engelse tekst van manuscripten. Dan een bijzonder woord van dank voor de "fotografie" en voor het "sekretariaat". Joop Fengler en Tar van Os, jullie hebben telkens weer met zorg die eindeloze series foto's afgedrukt, dia's ingeraamd, haast-klussen geleverd (vandaag klaar, liever gisteren) en dat bovendien met een bijzonder positieve ins telling en een grate dosis humor. Hartelijk dank hiervoor! Leny Breteler, Inge Horssen- van der Kaai, Rita van den Hoek- Boucke, Thea van Drunen- van Rijn, Cecile van Vugt- van Vliet, en vooral Cary Clerkx, jullie typten brieven, voortgangsverslagen en steeds maar weer nieuwe versies van manuscripten. Voor jullie nauwgezetheid en snelle aflevering ben ik jullie zeer dankbaar. Jan J os en andere "spelers" dank ik voor de fijne samenwerking tijdens de voorbereidingen en uitvoering van drie cabaretprogramma's. Naast een onderlinge vaktechnische samenwerking zijn deze "sociale activiteiten" immers zo belangrijk voor bet goed functioneren van een afdeling. Tenslotte dank ik mijn ouders omdat zij mij in de gelegenheid stelden om biologie te studeren. Lieve Tilly, dank je wei, voor alles. Chapter 1 General Introduction 1.1 Pluripotent Haemopoietic Stem Cells Peripheral blood cells- erythrocytes, granulocytes, monocytes, thrombocy­ tes and lymphocytes-are the end products of a differentiation process which occurs in the bone marrow and, in rodents, also in the spleen. Normal haemopoietic tissue is a cell renewal system with an accurate balance between cell production originating from pluripotent haemopoietic stem cells and continuous cell loss. The important function of haemopoietic stem cells was emphasized by Till and McCulloch (1961) in bone marrow transplantation studies in mice. They noted that intravenous injection of small numbers of bone marrow cells into lethally irradiated syngeneic recipient mice caused the appearance of haemopoietic colonies in the spleen of the recipient mice. These colonies consisted either of erythroid, granuloid, megakaryocytic or mixed cell populations (Curry and Trentln, 1967). The technique used by Till and McCulloch is known as the "spleen colony assay" and has established two major qualities of haemopoietic stem cells: (I) they have the capacity of self replication (Trentin and Fahlberg, 1963; Curry et a!., 1967) and (2) they are pluripotent since they give rise to clones of different cell types of which the differentiated "end" cells recirculate in the blood (Till and McCulloch, 1961; Becker eta!., 1963; Till, 1976). In contrast to erythroid and myeloid colonies, lymphoid colonies were not detectable with the spleen colony assay; however, Ford et al. (1966), Micklem et a!. (1966), and Wu et a!. (1968) demonstrated with chromosome marker techniques that lymphoid cells were also derived from pluripotent haemopoietic stem cells. One of the major questions in cell biological investigations of haemopoiesis concerns the factors which determine the commitment and differentiation of pluripotent haemopoietic stem cells. At present it is generally accepted that two types of factors are involved in the regulation of haemopoiesis: (I) microenvironmental factors (see 1.2), and (2) humoral factors (see 1.4). 1.2 Haemopoietic microenvironments A haemopoietic microenvironment is defined as a special region in a haemopoietic organ which differs from adjacent areas and in which local conditions influence the proliferation and differentiation of immigrant - haemopoietic stem- cells (Metcalf and Moore, 1971). It is assumed that a microenvironment is created by stromal cells in haemopoietic organs (Curry and Trentin, 1967; Trentin, 1970). Convincing evidence that microenviron­ ments determine the differentiation pathway of haemopoietic stem cells came a.o. from the work of Curry eta!.
Recommended publications
  • Milky Spots As the Implantation Site for Malignant Cells in Peritoneal Dissemination in Mice1
    ICANCKR RKSEARCH 53. 687-692. February I. 19931 Milky Spots as the Implantation Site for Malignant Cells in Peritoneal Dissemination in Mice1 Akeo Hagiwara,2 Toshio Takahashi, Kiyoshi Sawai, Hiroki Taniguchi, Masataka Shimotsuma, Shinji Okano, Chouhei Sakakura, Hiroyuki Tsujimoto, Kimihiko Osaki, Sadayuki Sasaki, and Morio Shirasu First Department of Surgery. Kyoto Prefectura! University ¡ifMedicine. Kawaramachi-Hirokoji, Kamigyo-ku Kyoto 602, Japan ABSTRACT MATERIALS AND METHODS We examined the site-specific implantation or cancer cells in peritoneal Animals and Cancer Cell Line. Five-week-old male CDF, mice (Shimi/u tissues after an i.p. inoculation of IO5 P388 leukemia cells. Twenty-four h Laboratory Animal Center, Kyoto, Japan) were maintained under standard after the inoculation, the numher of viable cancer cells infiltrating into conditions (specific pathogen free: 22°C;60% relative humidity; 12-h day- specific tissue sites of the peritoneum was estimated by an i.p. transfer night cycle). method. A descending order of tissue implantation with cancer cells was P388 leukemia cells were maintained through i.p. inoculation in DBA2Cr established as omentum > gonadal fat > mesenterium > posterior ab mice (Shimi/.u Laboratory Animal Center). The ascites containing P388 leu dominal wall > stomach, liver, intestine, anterior abdominal wall, and kemia cells was taken from the carrier mouse and suspended in saline at a lung. A significant correlation was established between the logarithm of concentration of IO7 P388 leukemia cells/ml. The viability of the tumor cells, the number of infiltrating cancer cells and the logarithm of the number of as determined by the trypan blue exclusion lest, was greater than 95%.
    [Show full text]
  • Analysis of Human Omentum-Associated Lymphoid Tissue Components with S-100: an Immunohistochemical Study
    Romanian Journal of Morphology and Embryology 2010, 51(4):759–764 ORIGINAL PAPER Analysis of human omentum-associated lymphoid tissue components with S-100: an immunohistochemical study A. YILDIRIM1), A. AKTAŞ2), Y. NERGIZ2), M. AKKUŞ2) 1)Department of Histology and Embryology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey 2)Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey Abstract Milky spots are opaque patches in the greater omentum. They were first described by von Recklinghausen (1863) in the omentum of rabbits. In man, milky spots are relatively uniform, highly vascularized accumulations of mononuclear cells. The objective of this study was to describe in human omental lymphoid tissue components with S-100. Tissue samples (greater omentum) were collected from 14 patients operated with different reasons in our Department of General Surgery, in order to histologically present the presence of S-100 in the cells making up the milky spots in human omentum tissue. Tissue samples were cut approximately 5–8 micrometer thick with frozen-sections and stained with an indirect immunoperoxidase technique, as described previously. Then milky spots were examined by light microscopy. These data indicate that unstimulated milky spots in the human greater omentum are to a great extent just a preformed specific accumulation of primarily macrophages within the stroma of the greater omentum, secondarily B- and T-lymphocytes. In addition to these cells, we observed that a few mast and reticular cells were seen in the milky spots by S-100 reactive cross-sections of greater omentum. In the human omentum tissue that was stained with indirect immunoperoxidase method using anti S-100 monoclonal antibody, an arteriole cross-section in the center, reactive nerve cross-sections in the adjacent stroma and endogenic peroxidase reactivity in a few granulocytes in omental tissue were observed.
    [Show full text]
  • Bone Marrow Adipocytes: a Link Between Obesity and Bone Cancer
    cancers Review Bone Marrow Adipocytes: A Link between Obesity and Bone Cancer Michaela R. Reagan 1,2,3,*, Heather Fairfield 1,2,3 and Clifford J. Rosen 1,2,3 1 Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, ME 04074, USA; [email protected] (H.F.); [email protected] (C.J.R.) 2 School of Medicine, Tufts University, Boston, MA 02111, USA 3 Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA * Correspondence: [email protected]; Tel.: +1-207-396-8196 Simple Summary: This review discusses the important newly-established roles for bone marrow adipose tissue in cancer progression and highlights the research demonstrating great promise for clinically targeting the cells in oncology. Bone marrow adipose tissue expands during aging and in obesity. It primarily comprises bone marrow adipocytes (also known as fat cells) and can also contain other cells, such as pre-adipocytes, fibroblasts, macrophages, other immune cells, and endothelial cells. Bone marrow adipocytes are scattered throughout the hematopoietic or “red” marrow, or are densely packed in the marrow cavity, creating “yellow” marrow. Bone marrow biologists are interrogating many questions to understand the nature of bone marrow adipocytes, including how aging and obesity affect these cells; their origins, functions, and endocrine roles; and whether they can be targeted to treat osteoporosis. In parallel, and often in concert, cancer researchers are delineating the role of bone marrow adipocytes in oncology and their potential translational significance for future therapeutics. Abstract: Cancers that grow in the bone marrow are for most patients scary, painful, and incurable.
    [Show full text]
  • Redalyc.Protective Compromise of Great Omentum in an Asymptomatic
    Revista Colombiana de Ciencias Pecuarias ISSN: 0120-0690 [email protected] Universidad de Antioquia Colombia González-Domínguez, María S; Hernández, Carlos A; Maldonado-Estrada, Juan G Protective compromise of great omentum in an asymptomatic uterine rupture in a bitch: a case report Revista Colombiana de Ciencias Pecuarias, vol. 23, núm. 3, julio-septiembre, 2010, pp. 369-376 Universidad de Antioquia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=295023477012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative González-Domínguez MS, et al. Asymptomatic uterine rupture in a bitch 369 Casos clínicos Revista Colombiana de Ciencias Pecuarias http://rccp.udea.edu.co CCP Protective compromise of great omentum in an asymptomatic uterine rupture in a bitch: a case report¤ Compromiso protector del omento mayor en una ruptura uterina asintomática en una perra: reporte de un caso Empenho protetor do omento maior em uma rotura uterina asymptomatica numa cadela: um porte de caso 1* 1 2 María S González-Domínguez , MV, Esp.; Carlos A Hernández , MV, MS; Juan G Maldonado-Estrada , MVZ, MS, PhD. 1Grupo de Investigación INCA-CES Facultad de Medicina Veterinaria y Zootecnia, Universidad CES; Medellín, Colombia. 2Grupo de Investigación CENTAURO, Escuela de Medicina Veterinaria, Universidad de Antioquia. Medellín, Colombia. (Recibido: 19 agosto, 2009; aceptado: 15 julio, 2010 ) Summary The great omentum plays an important role in protecting the peritoneal cavity from bacteria and contaminating material and providing the peritoneum with leukocytes from the omental milky spots (OMS).
    [Show full text]
  • For Systemic Lupus Erythematosus Cells in the Target Organs in A
    Defective B1 Cell Homing to the Peritoneal Cavity and Preferential Recruitment of B1 Cells in the Target Organs in a Murine Model for Systemic Lupus Erythematosus This information is current as of September 26, 2021. Toshihiro Ito, Sho Ishikawa, Taku Sato, Kenji Akadegawa, Hideaki Yurino, Masahiro Kitabatake, Shigeto Hontsu, Taichi Ezaki, Hiroshi Kimura and Kouji Matsushima J Immunol 2004; 172:3628-3634; ; doi: 10.4049/jimmunol.172.6.3628 Downloaded from http://www.jimmunol.org/content/172/6/3628 References This article cites 26 articles, 8 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/172/6/3628.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal
    [Show full text]
  • Fat-Associated Lymphoid Clusters in Inflammation and Immunity
    MINI REVIEW published: 21 December 2016 doi: 10.3389/fimmu.2016.00612 Fat-Associated Lymphoid Clusters in inflammation and immunity Sara Cruz-Migoni* and Jorge Caamaño* College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK Fat-associated lymphoid clusters (FALCs) are atypical lymphoid tissues that were originally identified in mouse and human mesenteries due to that they contain a high number of type 2 innate lymphoid cells/nuocytes/natural helper cells. FALCs are located on adipose tissues in mucosal surfaces such as the mediastinum, pericardium, and gonadal fat. Importantly, these clusters contain B1, B2 and T lymphocytes as well as myeloid and other innate immune cell populations. The developmental cues of FALC Edited by: formation have started to emerge, showing that these clusters depend on a different set Andreas Habenicht, of molecules and cells than secondary lymphoid tissues for their formation. Here, we Ludwig Maximilian University of Munich, Germany review the current knowledge on FALC formation, and we compare FALCs and omental Reviewed by: milky spots and their responses to inflammation. Mark Christopher Coles, Keywords: lymphoid tissues, fat-associated lymphoid clusters, peritoneal inflammation, peritoneal immune University of York, UK responses, tertiary lymphoid structures Andrea Brendolan, San Raffaele Hospital (IRCCS), Italy *Correspondence: Sara Cruz-Migoni INTRODUCTION [email protected]; Jorge Caamaño The interactions between different types of immune cells are essential for both innate and adaptive [email protected] immune responses to pathogens. Such interactions require strategically situated microenvironments to increase the chances that rare antigen-specific lymphocytes become activated.
    [Show full text]
  • Fat-Associated Lymphoid Clusters in Inflammation and Immunity Cruz-Migoni, Sara; Caamaño, Jorge
    University of Birmingham Fat-Associated Lymphoid Clusters in Inflammation and Immunity Cruz-migoni, Sara; Caamaño, Jorge DOI: 10.3389/fimmu.2016.00612 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Cruz-migoni, S & Caamaño, J 2016, 'Fat-Associated Lymphoid Clusters in Inflammation and Immunity', Frontiers in immunology, vol. 7, 612. https://doi.org/10.3389/fimmu.2016.00612 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,513,208 B2 Nicolette Et Al
    USOO851.3208B2 (12) United States Patent (10) Patent No.: US 8,513,208 B2 Nicolette et al. (45) Date of Patent: Aug. 20, 2013 (54) TRANSIENT EXPRESSION OF Bessis et al., “Syngeneic fibroblasts transfected with a plasmid IMMUNOMODULATORY POLYPEPTIDES encoding interleukin-4 as non-viral vectors for anti-inflammatory FOR THE PREVENTION AND TREATMENT gene therapy in collagen-induced arthritis' J. Gene Med vol. 4, pp. 300-307 (2002). OF AUTOIMMUNE DISEASE, ALLERGY AND King et al., “TGF-beta1 alters APC preference, polarizing islet anti TRANSPLANT RELECTION genresponses toward a Th2 phenotype” Immunity vol. 8, pp. 601-613 (75) Inventors: Charles A. Nicolette, Durham, NC (US); (1998). C. Garrison Fathman, Portola Valley, Perone et al., “Dendritic cells expressing transgenic galectin-1 delay CA (US); Remi Creusot, San Francisco, onset of autoimmune diabetes in mice” J. Immunol. vol. 177, pp. CA (US) 5278-5289 (2006). (73) Assignees: Argos Therapeutics, Inc., Durham, NC Smith et al., “Localized expression of an anti-TNF single-chain anti (US); The Board of Trustees of the body prevents development of collagen-induced arthritis' Gene Ther: Leland Stanford Junior University, vol. 10, pp. 1248-1257 (2003). Palo Alto, CA (US) Creusotet al., “A shortpulse of Il-4 delivered by DCs electroporated (*) Notice: Subject to any disclaimer, the term of this with modified mRNA can both prevent and treat autoimmune diabe patent is extended or adjusted under 35 tes in NOD mice” Mol. Ther: vol. 18, No. 12, pp. 2112-2120 (Dec. 2010). U.S.C. 154(b) by 66 days. Falcone et al., “IL-4 triggers autoimmune diabetes by increasing (21) Appl.
    [Show full text]
  • Abnormal Development and Differentiation of Macrophages and Dendritic Cells in Viable Motheaten Mutant Mice Deficient in Haematopoietic Cell Phosphatase
    Int. J. Exp. Path. (1997), 78, 245–257 Abnormal development and differentiation of macrophages and dendritic cells in viable motheaten mutant mice deficient in haematopoietic cell phosphatase KEI-ICHIRO NAKAYAMA*†, KIYOSHI TAKAHASHI*, LEONARD D. SHULTZ§, KAZUHISA MIYAKAWA* AND KIMIO TOMITA† *Second Department of Pathology and †Third Department of Internal Medicine, Kumamoto University School of Medicine, Kumamoto, Japan and §The Jackson Laboratory, Bar Harbor, Maine Received for publication 29 January 1997 Accepted for publication 15 May 1997 Summary. In mice homozygous for the ‘viable motheaten’ (mev) mutation, numbers of macrophage progenitor cells, particularly monocytes, were markedly increased in the bone marrow and spleen. Increased mobilization of these precursor cells to peripheral tissues and their differentiation to macrophages were evidenced by striking increases in macrophage numbers. Immunohistochemical double staining of tissue sections and flow cytometry analyses of single cell suspensions from these mice demonstrated CD5 (Ly- 1)-positive macrophages in the peritoneal cavity, spleen and other tissues. Ly-1-positive macrophage precursor cells were demonstrated in the peri- toneal cavity of the mev mice and developed in the omental milky spots. The development of marginal metallophilic and marginal zone macrophages was poor in the splenic white pulp and related macrophage populations were absent in the other lymphoid tissues. The numbers of epidermal Langerhans cells in the skin and T cell-associated dendritic cells in the thymic
    [Show full text]
  • E2410-The Greater Omentum As a Site for Pancreatic Islet Transplantation
    CellR4 2017; 5 (3): e2410 The greater omentum as a site for pancreatic islet transplantation M. Pellicciaro1, I. Vella1, G. Lanzoni2, G. Tisone1, C. Ricordi2 1Liver Transplant Center, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy. 2Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, FL, USA. Corresponding Author: Marco Pellicciaro, MD student; e-mail: [email protected] Keywords: Omentum, Greater omentum, Islet of Lang- fat tissue, and lymphoid aggregates called “milky erhans, Islet of Langerhans transplantation, T1D, Islet trans- spots”. Two monolayers of mesothelium contain plantation, Pancreatic islet transplantation, Diabetes type 1, all the above cell types and structures, with the Beta cell transplantation. exception of milky spots – where the mesotheli- um is interrupted. The macroscopic presentation ABSTRACT of the greater omentum depends on the age of The greater omentum is a highly vascularized the individual, nutrition, pathological conditions anatomical structure in the peritoneal cavity. Its and state of stimulation (such as in foreign body main components are connective, adipose and reactions, peritoneal dialysis). The right and left vascular cells, along with specialized immune Gastroepiploic arteries provide blood supply to cells. The omentum functions as a site for fat ac- the greater omentum. Both arteries derive from cumulation, it has adhesive properties to control the celiac trunk and pass the greater gastric cur- traumatized and inflamed tissues, and a function vature. They progressively branch out towards in local hemostasis, immune responses, and re- the stomach and the omentum, giving terminal vascularization. Other functions include the ab- vessels for the omentum through the right and left sorption of fluids, the phagocytosis of particulate epiploic arteries.
    [Show full text]
  • Characterization of Omental Immune Aggregates During Establishment of a Latent Gammaherpesvirus Infection
    Characterization of Omental Immune Aggregates during Establishment of a Latent Gammaherpesvirus Infection Kathleen S. Gray, Christopher M. Collins, Samuel H. Speck* Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America Abstract Herpesviruses are characterized by their ability to establish lifelong latent infection. The gammaherpesvirus subfamily is distinguished by lymphotropism, establishing and maintaining latent infection predominantly in B lymphocytes. Consequently, gammaherpesvirus pathogenesis is closely linked to normal B cell physiology. Murine gammaherpesvirus 68 (MHV68) pathogenesis in laboratory mice has been extensively studied as a model system to gain insights into the nature of gammaherpesvirus infection in B cells and their associated lymphoid compartments. In addition to B cells, MHV68 infection of macrophages contributes significantly to the frequency of viral genome-positive cells in the peritoneal cavity throughout latency. The omentum, a sheet of richly-vascularized adipose tissue, resides in the peritoneal cavity and contains clusters of immune cell aggregates termed milky spots. Although the value of the omentum in surgical wound-healing has long been appreciated, the unique properties of this tissue and its contribution to both innate and adaptive immunity have only recently been recognized. To determine whether the omentum plays a role in gammaherpesvirus pathogenesis we examined this site during early MHV68 infection and long-term latency. Following intraperitoneal infection, immune aggregates within the omentum expanded in size and number and contained virus-infected cells. Notably, a germinal- center B cell population appeared in the omentum of infected animals with earlier kinetics and greater magnitude than that observed in the spleen.
    [Show full text]
  • The Milky Spots of the Peritoneum and Pleura: Structure, Development and Pathology
    Biomedical Reviews 2004; 15: 47-66. Founded and printed in Varna, Bulgar ia ISSN 1310-392X THE MILKY SPOTS OF THE PERITONEUM AND PLEURA: STRUCTURE, DEVELOPMENT AND PATHOLOGY Krassimira N. Michailova and Kamen G. Usunoff Department of Anatomy and Histology, Faculty of Medicine, Medical University, Sofia, Bulgaria The milky spots (MS), originally described by Ranvier as taches laiteuses, are found on the greater omentum but also in other peritoneal regions, as well as on the pleura and pericardium. They represent aggregations of mesenchymal tissue surrounding blood vessels. These small whitish regions are covered by mesothelium, and within the mesothelial layer are scattered macrophage-like cells. The blood supply of MS is provided by arterioles that give rise to capillary network formed by fenestrated or continuous endothelial cells. Most MS possess also lymphatic vessels, with extremely thin endothelial cells. The most frequent cells in MS are the macrophages, followed by lymphocytes and mast cells. Typically, the macrophages are located in the periphery, while the lymphocytes - in the center of MS. Additional structural elements are plasmocytes, adipocytes, fibroblasts, rounded fibroblast-like cells (undifferentiated mesenchymal cells), as well as collagen, reticular and elastic fibers. The nerve fibers innervating MS are located under the mesothelium and among the free cells. Despite their small size, the MS are a significant organ, functioning at both normal and pathological conditions. Under inflammatory conditions (peritonitis), MS act as the first line of defense, and dramatically change their number, size and structure. MS are also involved in extramedullary hemopoiesis. They are the first target of intraperitoneal (intrapleural) metastases, and appear an important target in the development of immunotherapeutic strategies against malignant diseases.
    [Show full text]