University of California Riverside

Total Page:16

File Type:pdf, Size:1020Kb

University of California Riverside UNIVERSITY OF CALIFORNIA RIVERSIDE Estimation of the Parameters of Skew Normal Distribution by Approximating the Ratio of the Normal Density and Distribution Functions A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Applied Statistics by Debarshi Dey August, 2010 Dissertation Committee: Dr. Subir Ghosh, Chairperson Dr. Barry Arnold Dr. Aman Ullah Copyright by Debarshi Dey 2010 The Dissertation of Debarshi Dey is approved: _____________________________________________________ _____________________________________________________ _____________________________________________________ Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS I would take this opportunity to express my sincere gratitude and thanks to my advisor, Professor Subir Ghosh for his continuous and untiring guidance over the course of the last five years. His sincere interest in not only my academic progress, but also my personal well-being, has been a source of sustained motivation for me. I would also like to extend my sincere thanks to Professor Barry Arnold, of the Department of Statistics, UC Riverside, and Professor Aman Ullah, of the Department of Economics, UC Riverside, for graciously accepting to serve on my PhD Committee and for their valuable time and advice. I wish to thank the entire faculty of the Department of Statistics for enriching me with their vast knowledge in various fields of Statistics. I would like to thank the entire staff of the Department of Statistics who were always ready with their help. My friends here at UCR, have also been a source of major strength and support for the last five years. Your friendship has made my experience at Riverside all the more memorable and fulfilling. iv A very special thanks to my wife, Trupti, for being with me and for being my pillar of strength. Though she joined me only a few months ago, her boundless affection, and immense support are invaluable to me in this accomplishment. I would like to thank my parents, because it is for them and their hard work and sacrifice that made me achieve whatever little I have achieved. Without their constant support, and their immense faith in me, I might not have pursued and persevered. Together with them, my younger brother, Tukan, and my Grandmother, Danni, are equally committed to my success, and have taken immense pride in my accomplishments. Finally I would like to express my most humble gratitude to my Divine Master, Bhagawan Sri Sathya Sai Baba, without whose Grace and Benevolence I could not have achieved anything. v ABSTRACT OF THE DISSERTATION Estimation of the Parameters of Skew Normal Distribution Using Linear Approximations of the Ratio of the Normal Density and Distribution Functions by Debarshi Dey Doctor of Philosophy, Graduate Program in Applied Statistics University of California, Riverside, August 2010 Dr Subir Ghosh, Chairperson The normal distribution is symmetric and enjoys many important properties. That is why it is widely used in practice. Asymmetry in data is a situation where the normality assumption is not valid. Azzalini (1985) introduces the skew normal distribution reflecting varying degrees of skewness. The skew normal distribution is mathematically tractable and includes the normal distribution as a special case. It has three parameters: location, scale and shape. In this thesis we attempt to respond to the complexity and challenges in the maximum likelihood estimates of the three parameters of the skew normal distribution. The complexity is traced to the ratio of the normal density and distribution function in the likelihood equations in the presence of the skewness parameter. Solution to this problem is obtained by approximating this ratio by linear and non-linear functions. We observe that the linear approximation performs quite vi satisfactorily. In this thesis, we present a method of estimation of the parameters of the skew normal distribution based on this linear approximation. We define a performance measure to evaluate our approximation and estimation method based on it. We present the simulation studies to illustrate the methods and evaluate their performances. vii Contents 1. Introduction 1 1.1 Motivation and Historical Development. 2 1.2 Normal Distribution and Simple Linear Regression. .5 1.3 Skew Normal Distribution and Regression. .8 1.4 Thesis Description. .10 viii 2. The Univariate Skew Normal Distribution 11 2.1 The Univariate Skew Normal Distribution. 12 2.2 Moments of the Univariate Skew Normal Distribution. .15 2.3 Likelihood Function and Maximum Likelihood Estimates. .20 2.4 Challenges of the Maximum Likelihood Estimates of the Skew Normal Dsitribution. .30 2.5 Literature review on challenges. 33 3. Approximations of the ratio of the Standard Normal Density and Distribution Functions 35 3.1 Introduction. 36 3.2 Motivation. 38 3.3 Fitting the Linear Approximation to the Ratio. 41 3.4 Fitting the Non-linear Approximation to the Ratio. 46 4. Estimation of the Shape Parameter of the Standard Skew Normal Distribution 51 4.1 Introduction. .52 4.2 The Estimation Procedure using A (z) . 53 ix 4.2.1 Case I : Covariate X Present. 54 4.2.2 Case II : Covariate X Absent. 56 4.2.3 Measure of Goodness of Fit. 57 4.3 The Estimation Procedure using B (z) . 58 4.3.1 Case I : Covariate X Present. 59 4.3.2 Case II : Covariate X Absent. 61 4.3.3 Measure of Goodness of Fit. 63 4.4 A Simulated Data. 64 4.4.1 Case I : Covariate X Present. 65 4.4.2 Case II : Covariate X Absent. 70 4.5 Estimating Bias and Accuracy in Approximations using Simulations.. 75 5. Estimation of Location, Scale and Shape Parameter of a Skew Normal Distribution 80 5.1 Introduction. 81 5.2 Relations Among Estimated Parameters. 82 5.3 Estimation Procedure using . .91 5.4 A simulated Data. 99 5.5 Estimating Bias and Accuracy in Approximation using Simulations. .104 6. Conclusion 124 A (z) Bibliography 127 x List of Figures 2.1 The pdf of Z ~ SN(0,1,) , 1,2 and10 .. 14 2.2 Probability that Z < 0 for values of ranging from 0 to 30. .31 3.1 Plots of R (z) against z for 0.5, 1 and 2 .. .37 3.2 Plots of A (z) against z for , and .. 42 3.3 Plot of against z for 0.5 (continuous lines) and A (z) against z for (dotted lines). 43 3.4 Plot of against z for 1 (continuous lines) and against z for 1 (dotted lines). 44 xi 3.5 Plot of against z for 2 (continuous lines) and against z for 2 (dotted lines). 45 3.6 Plots of B (z) against z for , and .. 47 3.7 Plot of against z for (continuous lines) and B (z) against z for (dotted lines). 48 3.8 Plot of against z for (continuous lines) and against z for (dotted lines). .49 3.9 Plot of against z for (continuous lines) and against z for (dotted lines). .50 4.1 Plots of both R (z) and Aˆ (z) against z when covariate X is present. 67 1 1 4.2 Plots of both and Bˆ (z) against z when covariate X is present. 69 1 4.3 Plots of both and against z when covariate X is absent. 72 4.4 Plots of both and against z when covariate X is absent. .74 ˆ 5.1 Plot of the estimated log-likelihood l against the values of b [0,1) . 102 R (z) 0.5 1 2 5.2 Plot of the estimated log-likelihood against the values of b[0.35,0.50] . .103 0.5 A (z) 1 1 xii List of Tables ˆ ˆ2 ˆ 4.1. The values of Q1 ,Median, Mean, Q3, and SD for , ˆ , ˆ , and Ave A when 0 30, 1 5, 0.5, and 0.5 in approximating (3.1) by (3.2). .77 4.2. The values of Q1 ,Median, Mean, Q3, and SD for , , , and when , and 1.5 in approximating (3.1) by (3.2). .77 4.3. The values of Q1 ,Median, Mean, Q3, and SD for , , , and when 1.0, and in approximating (3.1) by (3.2). .77 4.4. The values of Q1 ,Median, Mean, Q3, and SD for , , , and when 1.0, and 1.5 in approximating (3.1) by (3.2). .78 xiii 2 4.5. The values of Q1 ,Median, Mean, Q3, and SD for , ˆ ˆ , ˆˆ , and Ave B when , and in approximating (3.1) by (3.3). .78 4.6. The values of Q1 ,Median, Mean, Q3, and SD for , , , and when , and 1.5 in approximating (3.1) by (3.3). 78 4.7. The values of Q1 ,Median, Mean, Q3, and SD for , , , and when 1.0, and in approximating (3.1) by (3.3). .79 ˆ 0 30, 1 5, 0.5 0.5 4.8. The values of Q1 ,Median, Mean, Q3, and SD for , , , and when 1.0, and 1.5 in approximating (3.1) by (3.3). 79 5.1 The true values of , the sample size n, and the proportion of times the sign of is correctly determined. .105 5.2 The values of Q1 ,Median, Mean, Q3, and SD for b ,ˆ0 , ˆ1 , ˆ , ,ˆ when n=20, 0 30, 1 5, 0.05, and 0.5in approximating (3.1) by (3.2). .108 5.3 The values of Q1 ,Median, Mean, Q3, and SD for , , , , , when n=50, , and in approximating (3.1) by (3.2). 108 xiv 5.4 The values of Q1 ,Median, Mean, Q3, and SD for , , , , , when n=100, , and in approximating (3.1) by (3.2). 109 5.5 The values of Q1 ,Median, Mean, Q3, and SD for , , , , , when n=500, , and in approximating (3.1) by (3.2).
Recommended publications
  • Autoregressive Conditional Kurtosis
    Autoregressive conditional kurtosis Article Accepted Version Brooks, C., Burke, S. P., Heravi, S. and Persand, G. (2005) Autoregressive conditional kurtosis. Journal of Financial Econometrics, 3 (3). pp. 399-421. ISSN 1479-8417 doi: https://doi.org/10.1093/jjfinec/nbi018 Available at http://centaur.reading.ac.uk/20558/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.1093/jjfinec/nbi018 To link to this article DOI: http://dx.doi.org/10.1093/jjfinec/nbi018 Publisher: Oxford University Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online This is a pre-copyedited, author-produced PDF of an article accepted for publication in the Journal of Financial Econometrics following peer review. The definitive publisher-authenticated version (C. Brooks, S.P. Burke, S. Heravi and G. Persand, ‘Autoregressive Conditional Kurtosis’, Journal of Financial Econometrics, 3.3 (2005)) is available online at: http://jfec.oxfordjournals.org/content/3/3/399 1 Autoregressive Conditional Kurtosis Chris Brooks1, Simon P. Burke2, Saeed Heravi3, Gita Persand4 The authors’ affiliations are 1Corresponding author: Cass Business School, City of London, 106 Bunhill Row, London EC1Y 8TZ, UK, tel: (+44) 20 70 40 51 68; fax: (+44) 20 70 40 88 81 41; e-mail: [email protected] ; 2School of Business, University of Reading 3Cardiff Business School, and 4Management School, University of Southampton.
    [Show full text]
  • Quadratic Versus Linear Estimating Equations
    ST 762 Nonlinear Statistical Models for Univariate and Multivariate Response Quadratic versus Linear Estimating Equations GLS estimating equations 0 1 n fβj 0 2 2 −1 X σ gj 0 Yj − fj @ 2 2 1/σ A 4 4 2 2 2 = 0: 0 2σ gj 0 2σ gj (Yj − fj ) − σ gj j=1 νθj Estimating equations for β are linear in Yj . Estimating equations for β only require specification of the first two moments. GLS is optimal among all linear estimating equations. 1 / 26 Quadratic versus Linear Estimating Equations ST 762 Nonlinear Statistical Models for Univariate and Multivariate Response Gaussian ML estimating equations 0 2 2 1 n fβj 2σ gj νβj 2 2 −1 X σ g 0 Yj − fj j = 0: @ 2 2 1/σ A 4 4 (Y − f )2 − σ2g 2 0 2σ gj 0 2σ gj j j j j=1 νθj Estimating equations for β are quadratic in Yj . Estimating equations for β require specification of the third and fourth moments as well. Specifically, if we let Yj − f (xj ; β) j = ; σg (β; θ; xj ) then we need to know 3 ∗ 2 ∗ E j = ζj and var j = 2 + κj : 2 / 26 Quadratic versus Linear Estimating Equations ST 762 Nonlinear Statistical Models for Univariate and Multivariate Response Questions ∗ ∗ ^ If we know the true values ζj and κj , how much is β improved using the quadratic estimating equations versus using the linear estimating equations? If we use working values (for example ζj = κj = 0, corresponding to ∗ ∗ normality) that are not the true values (i.e., ζj and κj ), is there any improvement in using the quadratic estimating equations? If we use working variance functions that are not the true variance functions, is there
    [Show full text]
  • Inference Based on Estimating Equations and Probability-Linked Data
    University of Wollongong Research Online Centre for Statistical & Survey Methodology Faculty of Engineering and Information Working Paper Series Sciences 2009 Inference Based on Estimating Equations and Probability-Linked Data R. Chambers University of Wollongong, [email protected] J. Chipperfield Australian Bureau of Statistics Walter Davis University of Wollongong, [email protected] M. Kovacevic Statistics Canada Follow this and additional works at: https://ro.uow.edu.au/cssmwp Recommended Citation Chambers, R.; Chipperfield, J.; Davis, Walter; and Kovacevic, M., Inference Based on Estimating Equations and Probability-Linked Data, Centre for Statistical and Survey Methodology, University of Wollongong, Working Paper 18-09, 2009, 36p. https://ro.uow.edu.au/cssmwp/38 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Centre for Statistical and Survey Methodology The University of Wollongong Working Paper 18-09 Inference Based on Estimating Equations and Probability-Linked Data Ray Chambers, James Chipperfield, Walter Davis, Milorad Kovacevic Copyright © 2008 by the Centre for Statistical & Survey Methodology, UOW. Work in progress, no part of this paper may be reproduced without permission from the Centre. Centre for Statistical & Survey Methodology, University of Wollongong, Wollongong NSW 2522. Phone +61 2 4221 5435, Fax +61 2 4221 4845. Email: [email protected] Inference Based on Estimating Equations and Probability-Linked Data Ray Chambers, University of Wollongong James Chipperfield, Australian Bureau of Statistics Walter Davis, Statistics New Zealand Milorad Kovacevic, Statistics Canada Abstract Data obtained after probability linkage of administrative registers will include errors due to the fact that some linked records contain data items sourced from different individuals.
    [Show full text]
  • Generalized Estimating Equations for Mixed Models
    GENERALIZED ESTIMATING EQUATIONS FOR MIXED MODELS Lulah Alnaji A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2018 Committee: Hanfeng Chen, Advisor Robert Dyer, Graduate Faculty Representative Wei Ning Junfeng Shang Copyright c August 2018 Lulah Alnaji All rights reserved iii ABSTRACT Hanfeng Chen, Advisor Most statistical approaches of molding the relationship between the explanatory variables and the responses assume subjects are independent. However, in clinical studies the longitudinal data are quite common. In this type of data, each subject is assessed repeatedly over a period of time. Therefore, the independence assumption is unlikely to be valid with longitudinal data due to the correlated observations of each subject. Generalized estimating equations method is a popular choice for longitudinal studies. It is an efficient method since it takes the within-subjects correla- tion into account by introducing the n n working correlation matrix R(↵) which is fully char- ⇥ acterized by the correlation parameter ↵. Although the generalized estimating equations’ method- ology considers correlation among the repeated observations on the same subject, it ignores the between-subject correlation and assumes subjects are independent. The objective of this dissertation is to provide an extension to the generalized estimating equa- tions to take both within-subject and between-subject correlations into account by incorporating the random effect b to the model. If our interest focuses on the regression coefficients, we regard the correlation parameter ↵ and as nuisance and estimate the fixed effects β using the estimating equations U(β,G,ˆ ↵ˆ).
    [Show full text]
  • Using Generalized Estimating Equations to Estimate Nonlinear
    Using generalized estimating equations to estimate nonlinear models with spatial data ∗ § Cuicui Lu†, Weining Wang ‡, Jeffrey M. Wooldridge Abstract In this paper, we study estimation of nonlinear models with cross sectional data using two-step generalized estimating equations (GEE) in the quasi-maximum likelihood estimation (QMLE) framework. In the interest of improving efficiency, we propose a grouping estimator to account for the potential spatial correlation in the underlying innovations. We use a Poisson model and a Negative Binomial II model for count data and a Probit model for binary response data to demon- strate the GEE procedure. Under mild weak dependency assumptions, results on estimation consistency and asymptotic normality are provided. Monte Carlo simulations show efficiency gain of our approach in comparison of different esti- mation methods for count data and binary response data. Finally we apply the GEE approach to study the determinants of the inflow foreign direct investment (FDI) to China. keywords: quasi-maximum likelihood estimation; generalized estimating equations; nonlinear models; spatial dependence; count data; binary response data; FDI equation JEL Codes: C13, C21, C35, C51 arXiv:1810.05855v1 [econ.EM] 13 Oct 2018 ∗This paper is supported by the National Natural Science Foundation of China, No.71601094 and German Research Foundation. †Department of Economics, Nanjing University Business School, Nanjing, Jiangsu 210093 China; email: [email protected] ‡Department of Economics, City, U of London; Northampton Square, Clerkenwell, London EC1V 0HB. Humboldt-Universität zu Berlin, C.A.S.E. - Center for Applied Statistics and Economics; email: [email protected] §Department of Economics, Michigan State University, East Lansing, MI 48824 USA; email: [email protected] 1 1 Introduction In empirical economic and social studies, there are many examples of discrete data which exhibit spatial or cross-sectional correlations possibly due to the closeness of ge- ographical locations of individuals or agents.
    [Show full text]
  • Stat 8112 Lecture Notes Unbiased Estimating Equations Charles J
    Stat 8112 Lecture Notes Unbiased Estimating Equations Charles J. Geyer September 26, 2020 1 Introduction In this handout we generalize the notion of maximum likelihood estima- tion to solution of unbiased estimating equations. We are much less formal in this handout, merely giving a broad overview. Unlike in Geyer (2013) there is no \no-n" version of these asymptotics (and as far as I can see there cannot be). Thus these asymptotics are based on the law of large numbers (LLN) and the central limit theorem (CLT), and n is sample size. The mathematics we explicitly show in this handout will be for indepen- dent and identically distributed (IID) data. If one has non-IID data, then one must use an LLN or a CLT for such data. Suppose X1, X2, ::: are IID and g(x; θ) is some continuously differen- tiable function of data and the the parameter that satisfies Eθfg(Xi; θ)g = 0; for all θ: (1) Write n 1 X h (θ) = g(X ; θ): n n i i=1 We seek estimators satisfying hn(θ^n) = 0: (2) If g is a vector-to-vector function, then so is hn and thus we say (2) are estimating equations (plural), thinking of each component of (2) as one scalar equation. We say the estimating equations are unbiased if Eθfhn(θ)g = 0; for all θ; (3) which follows from (1). The terminology is a bit different from the usual applications of unbiasedness. Clearly (3) says hn(θ) is an unbiased estimator of zero if θ is the true unknown parameter value, but we usually don't think of random variables containing unknown parameters as \estimators." Nevertheless, this is the accepted terminology for saying that (3) holds.
    [Show full text]
  • Introduction to the Generalized Estimating Equations and Its Applications in Small Cluster Randomized Trials
    Introduction to the Generalized Estimating Equations and its Applications in Small Cluster Randomized Trials Fan Li BIOSTAT 900 Seminar November 11, 2016 1 / 24 Overview Outline Background The Generalized Estimating Equations (GEEs) Improved Small-sample Inference Take-home Message How GEEs work? How to improve small-sample inference, especially in cluster randomized trial (CRT) applications? 2 / 24 Cluster Randomized Trials (CRTs) Randomizing clusters of subjects rather than independent subjects (convenience, ethics, contamination etc.) Intervention administered at the cluster level Outcomes are measured at the individual level Outcomes from subjects within the same cluster exhibit a greater correlation than those from different clusters Intraclass correlation coefficient (ICC) ranges from 0:01 to 0:1 Interest lies in evaluating the intervention effect Small number of clusters with large cluster sizes 3 / 24 The Stop Colorectal Cancer (STOP CRC) Study Study the effect of intervention to improve cancer screening 26 health clinics (n = 26) are allocated to either usual care or intervention (1-to-1 ratio) Usual care - provided opportunistic/occasional screening Intervention - an automated program for mailing testing kits with instructions to patients The clinics contain variable number of patients (mi): Min 461/Med 1426/Max 3302 Primary outcome - The patient-level binary outcome (yij), completion status of screening test within a year of study initiation Baseline clinic- and individual-level covariates Inference { estimand? 4 / 24 The Estimand
    [Show full text]
  • Maximum Likelihood Estimation of Distribution Parameters from Incomplete Data Edwin Joseph Hughes Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1962 Maximum likelihood estimation of distribution parameters from incomplete data Edwin Joseph Hughes Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mathematics Commons Recommended Citation Hughes, Edwin Joseph, "Maximum likelihood estimation of distribution parameters from incomplete data " (1962). Retrospective Theses and Dissertations. 2089. https://lib.dr.iastate.edu/rtd/2089 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 62—6497 microfilmed exactly as received HUGHES, Edwin Joseph, 1928- MAXIMUM LIKELIHOOD ESTIMATION OF DISTRIBUTION PARAMETERS FROM INCOMPLETE DATA. Iôwà State University of Science and Technology Ph.D., 1962 Mathematics University Microfilms, Inc., Ann Arbor, Michigan MAXIMUM LIKELIHOOD ESTIMATION OF DISTRIBUTION PARAMETERS FROM INCOMPLETE DATA by Edwin Joseph Hughes A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Statistics Approved: Signature was redacted for privacy. In Ch _ „ rk Signature was redacted for privacy.
    [Show full text]
  • Application of Generalized Linear Models and Generalized Estimation Equations
    Fisheries Research 145 (2013) 66–75 Contents lists available at SciVerse ScienceDirect Fisheries Research j ournal homepage: www.elsevier.com/locate/fishres Application of Generalized Linear Models and Generalized Estimation Equations to model at-haulback mortality of blue sharks captured in a pelagic longline fishery in the Atlantic Ocean a,∗ b a Rui Coelho , Paulo Infante , Miguel N. Santos a Instituto Português do Mar e da Atmosfera (IPMA I.P.), Avenida 5 de Outubro s/n, 8700-305 Olhão, Portugal b Centro de Investigac¸ ão em Matemática e Aplicac¸ ões (CIMA-UE) e Departamento de Matemática, ECT da Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal a r t a b i s c l e i n f o t r a c t Article history: At-haulback mortality of blue shark (Prionace glauca) captured by the Portuguese pelagic longline fish- Received 31 July 2012 ery targeting swordfish in the Atlantic was modeled. Data was collected by onboard fishery observers Received in revised form 29 January 2013 that monitored 762 fishing sets (1 005 486 hooks) and recorded information on 26 383 blue sharks. The Accepted 16 February 2013 sample size distribution ranged from 40 to 305 cm fork length, with 13.3% of the specimens captured dead at-haulback. Data modeling was carried out with Generalized Linear Models (GLM) and Gener- Keywords: alized Estimation Equations (GEE), given the fishery-dependent source of the data. The explanatory Generalized Estimation Equations variables influencing blue shark mortality rates were year, specimen size, fishing location, sex, season Generalized Linear Models and branch line material.
    [Show full text]
  • M-Estimation (Estimating Equations)
    Chapter 7 M-Estimation (Estimating Equations) 7.1 Introduction In Chapter 1 we made the distinction between the parts of a fully specified statistical model. The primary part is the part that is most important for answering the underlying scientific questions. The secondary part consists of all the remaining details of the model. Usually the primary part is the mean or systematic part of the model, and the secondary part is mainly concerned with the distributional assumptions about the random part of the model. The full specification of the model is important for constructing the likelihood and for using the associated classical methods of inference as spelled out in Chapters 2 and 3 and supported by the asymptotic results of Chapter 6. However, we are now ready to consider robustifying the inference so that misspecification of some secondary assumptions does not invalidate the resulting inferential methods. Basically this robustified inference relies on replacing the 1 b information matrix inverse I.Â/ in the asymptotic normality result for ÂMLE by a generalization I.Â/1B.Â/I.Â/1 called the sandwich matrix. In correctly specified models, I.Â/ D B.Â/, and the sandwich matrix just reduces to the usual I.Â/1. When the model is not correctly specified, I.Â/ ¤ B.Â/, and the sandwich matrix is important for obtaining approximately valid inference. Thus, use of this more general result accommodates misspecification but is still appropriate in correctly specified models although its use there in small samples can entail some loss of efficiency relative to standard likelihood inference.
    [Show full text]
  • Estimated Estimating Equations: Semiparamet- Ric Inference for Clustered/Longitudinal Data
    Estimated estimating equations: Semiparamet- ric inference for clustered/longitudinal data Jeng-Min Chiou Academia Sinica, Taipei, Taiwan and Hans-Georg Muller¨ † University of California, Davis, USA Summary. We introduce a flexible marginal modelling approach for statistical in- ference for clustered/longitudinal data under minimal assumptions. This estimated estimating equations (EEE) approach is semiparametric and the proposed mod- els are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed-effects linear predictor with unknown smooth link, and variance-covariance is an unknown smooth function of the marginal means. We propose to estimate the nonparametric link and variance-covariance functions via smoothing methods, while the regression parameters are obtained via the esti- mated estimating equations. These are score equations that contain nonparamet- ric function estimates. The proposed EEE approach is motivated by its flexibil- ity and easy implementation. Moreover, if data follow a generalized linear mixed model (GLMM), with either specified or unspecified distribution of random effects and link function, the proposed model emerges as the corresponding marginal (population-average) version and can be used to obtain inference for the fixed ef- fects in the underlying GLMM, without the need to specify any other components of this GLMM. Among marginal models, the EEE approach provides a flexible al- ternative to modelling with generalized estimating equations (GEE). Applications of EEE include diagnostics and link selection. The asymptotic distribution of the proposed estimators for the model parameters is derived, enabling statistical infer- ence. Practical illustrations include Poisson modelling of repeated epileptic seizure counts and simulations for clustered binomial responses.
    [Show full text]
  • Association Between Early Cerebral Oxygenation and Neurodevelopmental Impairment Or Death in Premature Infants
    Journal of Perinatology https://doi.org/10.1038/s41372-021-00942-w ARTICLE Association between early cerebral oxygenation and neurodevelopmental impairment or death in premature infants 1 1 1 1 1 1 Anup C. Katheria ● Jacob Stout ● Ana L. Morales ● Debra Poeltler ● Wade D. Rich ● Jane Steen ● 1 1 Shauna Nuzzo ● Neil Finer Received: 6 July 2020 / Revised: 15 October 2020 / Accepted: 19 January 2021 © The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 Abstract Objective To assess the relationship between cerebral oxygenation in the first 72 h of life and neurodevelopmental impairment (NDI) at 2 years corrected age in former premature infants. Study design Prospective observational cohort study of 127 infants <32 weeks GA at birth with cerebral oxygenation monitoring using NIRS in the first 72 h of life. Results Using a threshold cutoff for cerebral hypoxia, infants with NDI or death had increased duration of hypoxia (4 vs 2.3%, p = 0.001), which was more pronounced in the 23–27 week subgroup (7.6 vs 3.2%, p < 0.001). Individual generalized 1234567890();,: 1234567890();,: estimating equations to adjust for repeated measures were modeled in this subgroup for the physiologic parameters including StO2. StO2 < 67% was a predictor for death or NDI (OR 2.75, 95% CI 1.006, 7.5132, p = 0.049). Conclusion An increased duration of cerebral hypoxia is associated with NDI or death in infants born <32 weeks GA. Introduction context of neonatal morbidities like hypoxic ischemic encephalopathy (HIE), late-onset sepsis, and congenital Underdeveloped cerebral circulatory systems of preterm heart disease.
    [Show full text]