Using generalized estimating equations to estimate nonlinear models with spatial data ∗ § Cuicui Lu†, Weining Wang ‡, Jeffrey M. Wooldridge Abstract In this paper, we study estimation of nonlinear models with cross sectional data using two-step generalized estimating equations (GEE) in the quasi-maximum likelihood estimation (QMLE) framework. In the interest of improving efficiency, we propose a grouping estimator to account for the potential spatial correlation in the underlying innovations. We use a Poisson model and a Negative Binomial II model for count data and a Probit model for binary response data to demon- strate the GEE procedure. Under mild weak dependency assumptions, results on estimation consistency and asymptotic normality are provided. Monte Carlo simulations show efficiency gain of our approach in comparison of different esti- mation methods for count data and binary response data. Finally we apply the GEE approach to study the determinants of the inflow foreign direct investment (FDI) to China. keywords: quasi-maximum likelihood estimation; generalized estimating equations; nonlinear models; spatial dependence; count data; binary response data; FDI equation JEL Codes: C13, C21, C35, C51 arXiv:1810.05855v1 [econ.EM] 13 Oct 2018 ∗This paper is supported by the National Natural Science Foundation of China, No.71601094 and German Research Foundation. †Department of Economics, Nanjing University Business School, Nanjing, Jiangsu 210093 China; email:
[email protected] ‡Department of Economics, City, U of London; Northampton Square, Clerkenwell, London EC1V 0HB. Humboldt-Universität zu Berlin, C.A.S.E. - Center for Applied Statistics and Economics; email:
[email protected] §Department of Economics, Michigan State University, East Lansing, MI 48824 USA; email:
[email protected] 1 1 Introduction In empirical economic and social studies, there are many examples of discrete data which exhibit spatial or cross-sectional correlations possibly due to the closeness of ge- ographical locations of individuals or agents.