Department of Geography and Geology, University of Turku

Krista Mönkäre

GEOCHEMISTRY OF VOLCANIC ROCKS FROM THE SOUTHEAST OF THE CENTRAL FINLAND GRANITOID COMPLEX

Master’s Thesis in Geology

Turku 2016

UNIVERSITY OF TURKU Faculty of Mathematics and Natural Sciences Department of Geography and Geology

MÖNKÄRE, KRISTA: of volcanic rocks from the southeast of the Central Finland Granitoid Complex

Master’s Thesis, 76 p., 1 appendix Geology April 2016

The approximately 60 by 80 km wide study area is situated in the southeastern corner of the Central Finland Granitoid Complex. The study area consists mainly of different plutonic rocks, whereas the supracrustal and subvolcanic rocks form a discontinuous and scattered NE-SW oriented belt in the middle of the area. The aim of the Master’s thesis is to characterize the volcanic rocks in the area and interpret whether they resemble other Svecofennian volcanic rocks in southern Finland. The Master’s thesis study is part of the Central Finland mineral potential estimation –project conducted by the Geological Survey of Finland.

Due to scattered occurrence of the volcanic rocks and an extensive Quaternary coverage in the study area, geochemical approach was chosen. The material consists of bedrock observations, whole-rock geochemical analyses, thin sections and aeromagnetic maps. Altogether, 184 whole-rock analyses were used in the study.

On the basis of field relationships and lithological differences, the volcanic rocks were divided into five different belts (Makkola, Kauppila, Halttula, Leivonmäki and Korospohja) which were compared with each other. Apart from a few exceptions, all the volcanic rocks have the same geochemical features and all of the belts are characterized by a wide range of volcanic rocks from basaltic to rhyolitic in composition. Intermediate, calc-alkaline compositions are the most common in all of the belts. All the volcanic rocks are enriched in LILEs and LREEs relative to HFSEs and are depleted in Ti and Nb. The trace element geochemistry of the volcanic rocks is more strongly correlated with the SiO2 content than the location of the sample as the rocks have more evolved compositions than the rocks. The Makkola and Korospohja belts represent slightly more felsic and evolved compositions on average, whereas the Kauppila, Halttula and Leivonmäki belts have more mafic compositions.

Based on the available data it seems that all of the volcanic belts are part of the same system as no significant compositional differences between them exist. The study revealed that both the major and trace element geochemistry of the volcanic rocks indicate a mature, Andean-type continental arc setting. Some of the volcanic rocks also exhibit adakite-like geochemical features. The geochemical features of the volcanic rocks resemble in many ways the volcanic rocks from the Tampere and Häme belts. Similarities with the Tampere belt are more evident because of its more mature characteristics compared to the Häme belt.

Key words: geochemistry, volcanic arc, , Proterozoic

TURUN YLIOPISTO Matemaattis-luonnontieteellinen tiedekunta Maantieteen ja geologian laitos

MÖNKÄRE, KRISTA: Keski-Suomen granitoidikompleksin kaakkoisosan vulkaniittien geokemia

Pro gradu -tutkielma, 76 s., 1 liite Geologia Huhtikuu 2016

Tutkimusalue sijaitsee Keski-Suomen granitoidikompleksin kaakkoisosassa ja on kooltaan noin 60 x 80 km. Pääosa tutkimusalueesta koostuu erilaisista syväkivistä, kun taas suprakrustiset ja subvulkaaniset kivet muodostavat alueen keskelle epäyhtenäisen koilis-lounas-suuntaisen vyöhykkeen. Pro gradu -työn tarkoituksena on tutkia tarkemmin alueen vulkaniitteja ja vertailla niitä Etelä- ja Keski-Suomessa sijaitsevien liuskealueiden vulkaniittien kanssa. Pro gradu-tutkielma on suoritettu osana geologian tutkimuskeskuksen Keski-Suomen mineraalipotentiaalin arviointi-projektia.

Tutkimuksen aineisto koostuu kallioperähavainnoista, kokokivikemian analyyseista, ohuthieistä sekä aeromagneettisista kartoista. Tässä tutkimuksessa käytettiin yhteensä 184 kokokivianalyysiä. Tutkimusmenetelmäksi valittiin kivien kokokivigeokemian tutkiminen, sillä vulkaniitit esiintyvät tutkimusalueella hyvin hajanaisina vyöhykkeinä ja tutkimusaluetta päällystää laaja kvartääriaikainen peite.

Vulkaniitit jaettiin kenttähavaintojen ja litologisten erojen avulla viiteen eri alueseen (Makkola, Kauppila, Halttula, Leivonmäki ja Korospohja), joita vertailtiin keskenään. Lukuun ottamatta muutamia poikkeuksia, vulkaniittien geokemialliset piirteet ovat kaikilla alueilla samanlaiset. Kaikille alueille on ominaista vulkaniittien laaja koostumusvaihtelu basalteista ryoliitteihin, mutta intermediäärinen ja kalkki-alkalinen koostumus on yleisin. Makkola ja Korospohja edustavat koostumukseltaan hieman felsisempiä ja kehittyneempiä alueita, kun taas Kauppila, Halttula ja Leivonmäki ovat pääkoostumukseltaan mafisempia. Kaikki vulkaniitit ovat rikastuneita LIL-alkuaineista suhteessa HFSE-alkuaineisiin, ja vulkaniiteilla on alhaiset Ti- ja Nb-pitoisuudet. Hivenalkuainekoostumuksen vaihtelun huomattiin liittyvän enemmän SiO2-pitoisuuden vaihteluun kuin vulkaniittien sijaintiin.

Tutkimus osoitti, että vulkaniittien pääalkuaine- ja hivenalkuainegeokemia viittaa mantereiseen, Andit-tyypin vulkaanisen kaaren ympäristöön. Lisäksi joillakin vulkaniiteilla havaittiin adakiittisia piirteitä. Vulkaniiteilla todettiin lisäksi olevan samanlaisia piirteitä Tampereen ja Hämeen liuskealueiden vulkaniittien kanssa, mikä viittaa samanlaiseen tektoniseen synty-ympäristöön. Yhteneväisyys Tampereen liuskealueen kanssa on ilmeisempi vulkaniittien kehittyneemmän koostumuksen takia.

Asiasanat: geokemia, vulkaaninen kaari, vulkaniitti, proterotsooinen

Table of contents

1. INTRODUCTION ...... 1

1.1 PURPOSE OF THE STUDY ...... 3 2. OVERVIEW OF VOLCANIC ARCS ...... 3

2.1 GEOLOGICAL STRUCTURE ...... 4 2.2 PETROGENESIS AND MAGMATISM ...... 6 2.2.1 Sources of magma ...... 8 2.2.2 Role of fluids ...... 9 2.2.3 Evolution of magma ...... 9 2.2.4 Magmatypes ...... 10 2.2.5 Volcanic outputs ...... 11 2.3 GEOCHEMICAL FEATURES ...... 12 3. MATERIAL AND METHODS ...... 14

3.1 SCREENING OF THE GEOCHEMICAL DATA ...... 15 3.2 FIELD WORK ...... 16 3.3 PETROGRAPHY...... 16 3.4 GEOCHEMICAL ANALYSES ...... 17 4. GEOLOGY OF THE STUDY AREA ...... 17

4.1 REGIONAL GEOLOGY ...... 17 4.1.1 Plutonic rocks ...... 18 4.1.2 Subvolcanic and supracrustal rocks ...... 19 4.2 LOCAL GEOLOGY AND SUBDIVISION OF THE STUDY AREA ...... 20 4.2.1 Makkola ...... 22 4.2.2 Kauppila...... 22 4.2.3 Halttula ...... 23 4.2.4 Leivonmäki ...... 23 4.2.5 Korospohja...... 23 5. PETROGRAPHY OF THE VOLCANIC ROCKS ...... 25

5.1 SUBVOLCANIC ROCKS ...... 25 5.1.1 Plagioclase porphyrites ...... 25 5.1.2 Plagioclase-uralite porphyrites ...... 25 5.1.3 Uralite porphyrites ...... 25 5.2 SUPRACRUSTAL ROCKS ...... 26 5.2.1 Mafic tuffs ...... 26 5.2.2 Felsic and intermediate tuffs...... 26 6. MAJOR ELEMENT GEOCHEMISTRY ...... 27

6.1 COMMON FEATURES OF THE VOLCANIC ROCKS ...... 28 6.2 DIFFERENCES BETWEEN THE VOLCANIC BELTS ...... 30

7. TRACE ELEMENT GEOCHEMISTRY ...... 34

7.1 COMMON FEATURES OF THE VOLCANIC ROCKS ...... 34 7.2 DIFFERENCES BETWEEN THE VOLCANIC BELTS ...... 40 7.2.1 Trace element vs. silica diagrams...... 40 7.2.2 Multielement diagrams ...... 42 7.2.3 Element mobility ...... 48 8. COMPARISONS TO VOLCANIC BELTS IN SOUTHERN AND CENTRAL SVECOFENNIA ...... 49

8.1 SOURCE OF THE COMPARISON DATA ...... 49 8.2 MAJOR ELEMENT GEOCHEMISTRY ...... 50 8.3 TRACE ELEMENT GEOCHEMISTRY ...... 52 9. DISCUSSION ...... 55

9.1 TECTONIC SETTING ...... 56 9.1.1 Discrimination diagrams ...... 57 9.2 PETROGENESIS AND EVOLUTION OF MAGMAS ...... 61 9.2.1 Differentiation ...... 61 9.2.2 Adakitic magmatism ...... 62 9.2.3 Source of magmas ...... 64 9.4 REGIONAL INTERPRETATIONS ...... 67 10. CONCLUSIONS ...... 69 11. ACKNOWLEDGEMENTS ...... 71 12. REFERENCES ...... 72 Appendices 1

1. Introduction

The geology of southern and central Finland is characterized mostly by plutonic rocks and also several supracrustal belts which consist of turbiditic sedimentary and arc-type volcanic rocks that are 1.90–1.88 Ga old (Kähkönen 2005). The supracrustal rocks are long thought to represent products of volcanic arc systems which developed close to an ancient continent during the Svecofennian orogeny (e.g Laajoki 1986). The supracrustal rocks are divided into three domains: southern Svecofennia, central Svecofennia and the Savo belt (Kähkönen 2005). The Central Finland Granitoid Complex (CFGC) forms the core of central Svecofennia and it is bordered by the Pirkanmaa and Tampere belts in the south, the Savo belt in the north and the Bothnian belt in the west. Many smaller and fragmentary volcanic rock successions also occur within the complex.

The approximately 60 by 80 km wide study area is situated in the southeastern corner of the CFGC (Fig. 1). The study area consists mainly of different plutonic rocks, whereas the supracrustal and subvolcanic rocks form a discontinuous and scattered NE-SW oriented belt in the middle of the area. This Master’s thesis study is part of the Central Finland mineral potential estimation -project of the Geological Survey of Finland (GTK). The whole study area has been poorly investigated so the first objective of the project was to improve the basic scientific geological knowledge on the area (Mikkola et al. 2014). The most recent research from the study area, including only 300 observations, is from 2003 when an updated map and a report of investigation from the CFGC were made (Nironen 2003). The only more detailed study of the volcanic rocks is from year 1981 when Ossi Ikävalko studied the volcanic rocks of Makkola and Kokonkylä in his Master’s Thesis (Fig. 1).

The aim of the Master’s thesis is to characterize the volcanic rocks and interpret whether they resemble other Svecofennian volcanic rocks in southern Finland. Due to scattered and varying occurrence of the volcanic rocks as well as extensive Quaternary coverage in the study area, stratigraphic interpretations are difficult to make and therefore geochemical approach was chosen. Geochemistry is one of the most important tools in reconstructing the tectonic settings of ancient volcanic formations, especially when the rocks have undergone metamorphism and primary textures have been often destroyed by deformation. A literature based overview of volcanic arcs initiates this study since the studied volcanic rocks have most possibly formed in some sort of volcanic arc setting. 2

Fig 1. Geological map of the study area and the location of the study area. Volcanic rocks are illustrated with light greenish and greyish colors whereas plutonic rocks are illustrated with reddish colours. Dashed lines on the map illustrate faults (unpublished project map by GTK).

3

1.1 Purpose of the study

The main purpose of the Master’s thesis is to find answers to following questions:

1) Are the separate volcanic rock belts geochemically and mineralogically similar and do they represent one larger geological unit?

2) What the geochemistry of the volcanic rocks can tell about the tectonic environment where they have formed?

3) Are the volcanic rocks similar to other volcanic rocks in southern Finland?

2. Overview of volcanic arcs

Volcanic arc is a chain of volcanoes formed above a subduction zone when an oceanic plate subducts under another tectonic plate. Convergent plate margins are one of the most important tectonic settings on Earth generating magmas and producing new continental crust. Although volcanic arcs are small compared to the extensive subduction system itself, they give important information of the mantle and the subducted materials by volcanic rocks that erupt from them. Study of ancient volcanic arcs helps also to understand the early stages of the Earth’s history and they give information of the mantle and lithosphere at that time.

Volcanic arcs can be divided into two main types depending on whether the oceanic plate subducts under another oceanic plate or under a continental plate. When an oceanic plate subducts under another oceanic plate, it is called an island arc (IA), oceanic arc or an intra-oceanic arc. When an oceanic plate subducts a continental plate, it is called a continental arc, an active continental margin (ACM) or an Andean-type arc. Another definition is that if most of the volcanic front lies below the sea level, it is normally an oceanic arc, and if most of the volcanic front lies above the sea level, it is most likely a continental arc (Stern 2010). Terminology varies widely in the literature and sometimes the term island arc is used to mean both of the volcanic arc types.

Locations of active volcanic arcs are illustrated in Fig. 2. The Mariana Islands and Japan are some of the best known examples of oceanic arcs, whereas the Andes and the Cascade arc are the best examples of continental arcs. 4

Fig 2. Location of active convergent plate margins on Earth (Stern 2002).

2.1 Geological structure

The main difference that sets a continental arc apart from an oceanic arc is the up to 70– 80 km thick continental crust overlying the subduction zone. That induces significant differences particularly in the magmatic processes and volcanism in the continental arc compared to oceanic arcs with typically 25–30 km thick crust (Stern 2002). It has to be remembered that there are a lot of variety in the structure of subduction zones, and there are many different factors that have an influence on what kind of structure and composition the forming arc will have.

Volcanic arc system can be roughly divided into the following environments: a forearc with a trench, an accretionary prism and a fore arc basin, a volcanic arc with an intra- arc basin and a back-arc with a fold-thrust belt, back-arc basin and a retroarc foreland basin (Fig. 3). Igneous activity is concentrated to the magmatic front; about 200–300 km inland from a trench and it decreases gradually further away (Condie 1997). Arc volcanoes are typically stratovolcanoes which consist of felsic lava flows and interbedded pyroclastic material. Stratovolcanoes have a spacing of about 50–80 km along arc strike (Ducea et al. 2015). Usually the more felsic composition the erupted material has, the higher is the volcano (Condie 1997). Basaltic magma usually erupts from smaller cinder cones or shield volcanoes that surround the stratovolcanoes (Sen 2014). 5

Fig 3. Simplified illustration of a subduction zone (Stern 2002).

The main structure of the both arc systems is quite similar but there are some differences (Fig. 4). Trenches of continental arcs are usually filled with sediments delivered by rivers and glaciers from the continent, whereas in oceanic arcs there is no significant sediment supply. Continental sediment sources dominate when the trench is close to continent but otherwise the trench sediments originate from the volcanic arc itself or from the plutonic sources (Condie 1997). Also, the forearcs of continental arcs usually have thick sedimentary basins and accretionary prisms because of high sediment supply (Stern 2010). An accretionary prism is a complex of wedges of sediments and volcanic rocks above a descending slab which have accreted to the front of the arc. The accretionary prism mainly comprises the trench sediments and the sediments and volcanic rocks of the oceanic crust. Forearc basins overlie the accretionary prisms and they can have several kilometers thick sediment layers. In oceanic arc there is usually no forearc basin and accretionary prism, so the igneous basement is fully exposed (Stern 2002). Apart from that, an oceanic arc can have an active or inactive back-arc basin and remnant arc whereas in a continental arc they are usually absent. Seafloor-spreading and rifting is also typical especially for the back-arcs of oceanic arcs.

6

Fig 4. Simplified comparison of A) continental arc and B) oceanic arc systems (modified after Stern 2010).

2.2 Petrogenesis and magmatism

Magmatism in volcanic arcs is complicated as it is controlled by several factors. The term “subduction factory” is used in the literature for the interaction between the subducting slab, fluids and the mantle that form arc magmas. An oceanic arc forms when an oceanic crust and lithosphere subducts another oceanic plate, melting process starts in the mantle wedge and the formed melts rise through the overriding oceanic plate. As far as the continental arc is concerned, the system is much more complex because of the presence of a less dense continental crust. The uprising magma has to ascend the silica-rich continental crust before reaching the surface. This results in strong fractionation and assimilation of the magmas. Also, the sub-continental lithospheric mantle (SCLM) in continental arc system differs from the lithosphere beneath ocean basins, because it is strongly enriched and it has stayed put since its formation. 7

Batholith belts are a spesific feature of continental arcs. Batholith is a large pluton formed deep in the crust and they are even more evolved than the volcanics. Plutons are usually , and . They are formed when thick continental crust works as a density trap for the ascending magma. Plutons are most commonly seen in areas where volcanism has already ceased, and where the uplift of the crust has exposed the plutons.

Magmatism in volcanic arcs is also strongly controlled by steepness of the subduction angle. In continental arcs the active volcanism is focused on segments with steep dip because of the presence of astenospheric mantle (Cross & Pilger 1982). If the dip angle is too shallow, the mantle wedge above the slab is thinner, which causes very low or totally absent volcanism (Fig. 5). The age of the subducting slab is one of the main controllers of the subduction angle: old and dense lithosphere tends to sink deeper than young lithosphere which also increases volcanism (Jarrard 1986).

Fig 5. Illustration of how the shallow dip of the subducting slab can cause thinning of the overlying asthenosphere in the mantle wedge (Winter 2001). 8

2.2.1 Sources of magma

In the early years of the subduction zone research it was believed that only the subducted slab melted and formed arc magmas. Later studies suggest that melting of the mantle beneath the arc has a more important role. For example, Plank & Langmuir (1988) found similarities in the major element composition of arc magmas and mid- ocean ridge (MORB), which proved that arc basalts are mainly derived from mantle, not from the slab. Besides mantle, other possible magma sources are thought to be the arc crust, lithospheric mantle of the subducting slab and asthenosphere in the mantle wedge. The following factors have also an effect on what kind of composition the forming magma will have: composition of the mantle wedge, composition of the subducted plate, “subduction component” (the term refers to the geochemical signature of the magma which is made by the subducting crust) and its moving to the melting zone, processes in the melting zone and interaction between magma and lithosphere (Pearce & Peate 1995). Usually the role of different magma sources varies with time inducing variability in the arc magmatism.

Although it is widely known that there is always more than one magma source, it is still uncertain how big role the crust and sediments of the subducting slab have. B/Be ratio and 10Be in arc volcanics are used as evidence for input from sediments because 10Be is only formed in atmosphere and thus can only be derived from sediments (Morris et al. 1990). The composition and thickness of the sediments on top of the slab vary regionally (Stern 2002). Also the amount of sediments actually subducted to the mantle varies as majority of them are reincorporated into the upper plate by subduction erosion (Hacker et al. 2015). From the subducted sediments and crust only <10 % have been estimated to return back to crust in arc magmas (Stern 2011). Two mechanisms explain the enrichment of upper crustal materials in some of the volcanic arcs: tectonic underplating and relamination (Ducea et al. 2015). Tectonic underplating is a process where trench sediments and parts of forearc are thrust at the base of the volcanic arc during shallow subduction (Ducea et al. 2009). Relamination is a process by which large amounts of eroded sediment from the subducting plate detach and rise diapirically through the mantle wedge beneath arcs (Hacker et al. 2011).

9

2.2.2 Role of fluids

Fluids have an essential role in the magmatic processes of volcanic arcs because they reduce the melting temperature combined with decompression, and they carry most of the incompatible elements to the melting zone creating the distinctive trace element signature of arc melts. Fluids are released from the subducting lithosphere (sediments, oceanic crust) mainly by metamorphic dehydration reactions. Aqueous fluids are more common compared to carbonic fluids because of greater abundance and more suitable partitioning of H2O (Manning 2004). Most of the H2O is chemically bound in hydrous silicate minerals (e.g. epidotes, amphiboles, chlorites, micas). As the subducting slab moves downwards, pressure and temperature increase and the trapped water is released by metamorphic chemical reactions. The dehydration depth is strongly controlled by thermal state of the slab. For example the age of the slab and the mass of previous subducted material affect the thermal state (Peacock et al. 1994). After the dehydration processes has taken place, the fluid phase moves upwards. When fluids arrive to the melting zone in the mantle wedge, they enable melting at lower temperatures than in dry melting. Magmas can be fractionated and crystallized even without cooling when the magmatic water escapes.

2.2.3 Evolution of magma

Evolution of magma is complicated in volcanic arc environment when processes like magma mixing, crustal contamination and fractional crystallization take place and evolve magmas producing intermediate and felsic compositions. In oceanic arcs crustal signature is not that extensive compared to continental arcs, although magma is evolved by the same processes, but at lesser extent (Davidson et al. 2005).

Abundance of intermediate has been a subject of interest because they are very common in continental arcs, but their exact origin is still unclear. There is still uncertainty what really causes the enrichment of the magmas, but the most important causes are thought to be subduction and melting of the slab and the interaction between magma and the silica rich continental crust. There is still a lot of debate which process has the most important role. Fractional crystallization seems to have the greatest role in making intermediate magmas. For example Lee & Bachmann (2014) showed, using Zr and P systematics, that it is an important mechanism in order to evolve arc magmas. There is also an argument that they are not primary products of subduction factory but 10 result of mingling and mixing (Reubi & Blundy 2009). The related intermediate plutonic rocks also appear to be products of mingling and mixing (Reubi & Blundy 2009). Besides magma mixing, crustal contamination have been suggested for the enrichment of the magmas in continental arcs; crustal contamination occurs when partial melts and silica rich crust meet and interact with each other (Hawkesworth et al. 1994). However, it is evident that differentiation is a combination of all these processes acting together. The MASH (melting, assimilation, storage, and homogenization) model has also been considered as an important process for formation of intermediate magmas in continental arcs (Hildreth & Moorbath 1988). The MASH zone locates in the transition of lower crust and mantle where partial melting of lower crustal rocks produce intermediate and felsic magmas.

Density differences between the continental crust and mantle have been suggested to increase differentiation as the light continental crust stops the upward movement of denser mafic magmas, and further differentiation is possible when magma chambers stay stagnant (Herzberg et al. 1983). Kay & Kay (1993) also suggested that when denser mafic cumulates sink in the asthenosphere the residual magma becomes more felsic.

There has been lot of research how intense the partial melting is in the mantle wedge. Plank & Langmuir (1988) studied the matter with major elements and noticed that a thick crust caused only 10 % partial melting whereas a thin crust caused 25 % partial melting. Hawkesworth et al. (1994) also noticed that the degree of melting varies with crustal thickness. Crustal thickness determines how high the mantle column is and thus thinner column leads to lower degree of melting. Overall, the degree of melting is usually 10–30 % and its main controllers are thickness of the lithosphere and water content of the mantle (Pearce & Peate 1995).

2.2.4 Magmatypes

Magmas of volcanic arcs are typically wet, silica-rich and more fractionated than other magma types and cause very violent eruptions (Perfit et al., 1980). In oceanic arcs tholeiitic and calc-alkaline series are the dominating magma series, whereas calc- alkaline and alkaline series are more common in continental arcs. Calc-alkaline magmas differ from tholeiitic magmas by higher redox-state (tholeiitic magmas are reduced and calc-alkaline magmas are oxidized). 11

A temporal trend has also been found: tholeiitic magmatism dominates in the early stage and calc-alkaline magmatism in the later stages (e.g. Winter 2001, Sen 2014). The possible reason for this is that more magma is produced in young hot arcs, and the possibility of more primitive melts reaching the surface is greater. Also, the thin crust of young arcs provides ready conduits for melts to the surface. Some astenospheric melts form in the backarc region during rifting, and these melts can induce more alkaline composition to the resulting main arc magmas (Pearce & Peate 1995).

2.2.5 Volcanic outputs

Active volcanism in the volcanic front results in variable amounts of different igneous rocks. Volcanic rocks of oceanic arcs are mostly basaltic andesites and andesites. Basalts are also important at some level. As noticed before, volcanic rocks in continental arcs are more evolved and they are richer in potassium and silica. Volcanic rocks of continental arcs are mainly andesites, and - ignimbrites. Andesites can be further divided into three groups depending on the amount of kalium: low-K (tholeiitic), medium-K (calc-alkaline) and high-K (mixed) (Gill 1981). Mean composition of oceanic arc lava is usually close to oceanic crust whereas continental arc lava is closer to upper continental crust (Stern 2002). All the volcanic rocks are usually rich in phenochrysts which are mostly plagioclase and sometimes olivine, pyroxene and hornblende. Plagioclase is usually a dominant phenocryst in calc-alkaline basalts and andesites, whereas augite and anorthitic plagioclase dominate basalts and hornblende and biotite dominate high-K calc-alkaline andesites, dacites and (Sen 2014). Arc volcanics are thus a mixture of both melt and crystals (Stern 2002). Granitoids related to volcanic arcs are I-types, typically meta-aluminous, with or granodiorite dominating (Condie 1997). It has been noted, that the plutonic rocks are usually more felsic than the erupted arc volcanics (Reubi & Blundy 2009).

Boninites are mafic andesites with relative high Mg content, and they are characteristic especially for oceanic arcs. For boninites to form there has to be hydrous and ultradepleted mantle source (Hickey 1982, Cameron et al. 1983). Boninites are only found in fore arc region, which indicates early stages of arc evolution (Kim & Jacobi 2002).

Intermediate or felsic adakites are also found to be specific to volcanic arcs. Drummond and Defant (1990) originally suggested that partial melting of subducted oceanic 12 will produce relatively high-Al silicic melts called adakites which differ from normal arc magmas by their high Sr/Y and La/Yb ratios. Active adakitic magmatism is strongly related to subduction zones as all the occurences related to them are located in the Pacific margins (Martin 1999). Adakites have been found for example from Aleutians (Kay 1978). However, adakitic-like rocks can be found from other tectonic settings such as continental collision zones or extensional environments (Castillo 2006).

Recent studies suggest that adakites and adakite-like volcanic rocks can be formed in several ways from which melting of subducting plate is only one. Adakitic compositions can be usually consider as evidence of high pressure melting of garnet-bearing mafic sources, because rocks with high Sr/Y and La/Yb ratios require involvement of garnet and/or amphibole in their generation during partial melting or magmatic differentiation. The higher the ratio, the deeper is the source region. Majority of adakites are thought to have been formed by melting of the mantle metasomatized by slab melt (e.g. Rapp et al 1999). Several other mechanisms are also proposed: for example Macpherson et al. (2006) studied that adakitic rocks can be produced by high pressure crystal fractionation of the original arc basalts derived from the metasomatized mantle wedge which were stagnated at the base of the lower crust. Melting of the lower crust is also suggested by several authors for example from China (e.g. Wen et al. 2008, Long et al. 2015) and the Andes (e.g. Coldwell et al. 2011). Paleoprotorezoic Svecofennian orogeny is also characterized by adakite-like rocks which are suggested to have been generated through crustal melting of the lower part of the previously generated mafic arc crust (Väisänen et al. 2012). Väisänen et al. (2012) proposed that arc accretion combined with magmatic intrusions thickened the crust so that melting of the lower crust yielded adakitic compositions.

2.3 Geochemical features

The trace element geochemistry of arc melts is distinctive from other tectonic settings (Fig. 6). Rocks of volcanic arcs are characterized by strong enrichment of incompatible LILE (large-ion lithophile elements K, Rb, Cs, Sr, Ba, Pb, U) relative to HFSE (high field strength elements Y, Zr, Hf, Nb, Ta, HREE), known also as “subduction component” (e.g. Tatsumi et al. 1986). LILEs have large ionic radius whereas HFSEs have large ionic valences. LIL-elements are more mobile and soluble in aqueous fluids than HFSEs, so their higher content has been taken as evidence that there has to be a 13 fluid in the process when producing arc magmas. Shervais & Jean (2012) demonstrated that all fluid mobile elements (Li, B, Be, Rb, Th, Pb) in volcanic arc rocks are from subducted slab and their continuous adding during melting is necessary to maintain the high concentrations. Also, Pearce & Peate (1995) noticed that LIL-element contents in arc magmas are strongly controlled by slab contributions. Both the subducting sediments and the oceanic crust have an effect to the composition of the arc lavas and elements are released from both igneous and sedimentary part of the crust. The magma has higher concentrations of the elements most strongly partitioned into aqueous fluids. Stolper & Newman (1994) noticed that if the fluid has to travel long it gradually loses its slab-components and transforms more mantle-like.

Another specific feature to volcanic arcs is depletion of Nb (and often Ta, Zr and Ti) relative to Th and Ce (Fig. 6). There is still some uncertainty why HFSEs (particularly Ta and Nb) are more depleted relative to MORB and hot spot lavas. One suggestion is that Nb fractionates from Th and Ce during dehydration and partial melting of subducted crust (Pearce 1996). Several other authors such as Audétat & Kepler (2005) and Baier et al. (2008) also suggest that Nb and Ta depletion is related to their low solubility in aqueous fluids and presence of rutile is not necessary for the development of negative Nb and Ta anomaly. Alternatively depletion is thought to be a result of residual titanium phases (e.g rutile, ilmenite) that have high partition coefficients for HFS-elements (e.g Brenan et al. 1995).

Fig 6. NMORB normalized multielemet diagram (after Sun & McDonough 1989) for two typical volcanic arc outputs with andesitic composition. The Mariana sample is from the Southern Seamount Province of the Mariana arc and the Andean sample is from Parinacota volcano, Chile. The data of the Mariana arc sample is from Pearce et al. (2005) and the data of the Andean sample is from GEOROC (Geochemistry of Rocks of the Oceans and Continents) database: http://georoc.mpch-mainz.gwdg.de/. 14

A temporal trend in the LIL-element enrichment has been found and the earliest erupted volcanics are less LIL-enriched than the later volcanics which are more LIL-enriched (Condie 1997). Also, the LIL/LREE ratios (for example Ba/La) are higher in arc basalts than in oceanic basalts and trench sediments (Pearce & Peate 1995). Hawkesworth et al. (1994) observed that high LIL/HFSE and LIL/REE ratios are most distinguishable in rocks with low HREE and HFSE abundances. Tholeiitic volcanic arc basalts are characterized by stronger depletion of Zr, Ti and Y relative to N-MORB whereas calc- alkaline volcanic arc basalts have higher concentrations of Nb and Zr (Pearce 1996). Calc-alkaline basalts are also more enriched in Th, Ce, P and Sm relative to other HFSE-elements.

Geochemical features of the both volcanic arc systems are quite similar, but mean compositions of continental arcs are closer to upper continental crust whereas oceanic arcs resemble more MORB-type lavas (Stern 2002). More enriched and evolved compositions in continental arcs indicates more heterogeneous mantle source than in oceanic arcs. It has been also noticed that the isotopic composition in oceanic arcs is much more primitive than in continental arcs. In continental arcs both isotopic composition and bulk composition are more evolved.

3. Material and methods

The research material for the study was provided by the Geological Survey of Finland. The material consists of bedrock observations, whole-rock geochemical analyses, thin sections and aeromagnetic maps.

Most of the analyzed rocks samples were gathered during the project, but some older samples from Rasilainen et al. (2007) were also included in the data. Unpublished project map from the study area was used to make the geological maps. The study is mainly based on the bedrock observations and geochemical analyses. The major and trace element data of the volcanic rocks are presented in Appendix 1.

15

3.1 Screening of the geochemical data

The original geochemical data consist of geochemical analytical results from 1840 rock and soil samples from central Finland. As the aim of the study was to study only the supracrustal and subvolcanic rocks of the study area, heavy reduction of the geochemical data had to be made to find only the relevant samples. The first aim was to find all the samples related to the volcanic belts within the research area and eliminate all the other samples. Among the analytical data was also lots of heterogeneity as some of the samples had only results from precious and base metal analyses which were not taken into account in the study.

Following procedures were made to the geochemical data:

1. The locations of all the 1840 samples were plotted to the geological map in the ArcMap GIS software and only the samples which fell inside the exact study area were selected. After that 980 samples remained. However, a few volcanic rock samples just outside the border of the research area were later accepted to the dataset.

2. After the first elimination, sedimentary rock samples (including paragneisses, paraschicsts and greywackes) and quartz veins were removed resulting in 909 samples remaining. One sample was removed because there was uncertainty what rock type was analyzed.

3. At the next step all the samples with only base and precious metal analysis were removed. After this 570 samples remained.

4. Then all the 570 remaining samples were plotted again to the preliminary geological map in ArcMap. The exact locations of all the samples were checked one by one and the samples were divided into ten different regions according to their location. Regions were chosen only approximately to help further editing and plotting.

5. In the middle of editing, a whole new geochemical dataset was given by GTK. The previously described procedure was repeated for the 122 new rock samples. Overall 59 samples remained and were added into the dataset.

6. At this point some preliminary plotting with the GCDKit program was made to get some preliminary understanding of the characteristics of the samples.

7. After that more samples were removed. All the samples without any information of rock type and all the samples which were not plotted as igneous rock were removed. In 16 addition, some small basic and ultrabasic inclusions were removed and some hornblendites were removed. Boulder samples were also removed. After this 620 samples remained.

8. After the fieldwork in summer 2015 further removals was made. Samples ASM$- 2012-360.1 and K_1865 turned out to be boulder observations and they were therefore removed from the data. After consulting with the supervisor, some uncertain samples, including gabros, , and were removed. Two samples from very narrow veins from drill cores were also removed.

9. After the outscreening, the remaining data consisted of 566 samples which included all the relevant volcanic, plutonic and subvolcanic rocks from the whole study area.

10. Because of the big size of the study area and the large amount of samples, plutonic rocks only in the vicinity of volcanic rocks were selected to further diminish the amount of data; number of samples was reduced to 322 samples. The number of volcanic rock samples is 184. Locations of the samples are presented in Fig. 8.

3.2 Field work

The field work consisted of systematic bedrock mapping, drillings and geophysical measurements which mainly took place during years 2011–2015. All the fieldwork included to the material of the study was done by GTK. Most of the field work was carried out during the mineral potential estimation project of GTK, but some older observations and samples were also included in the original material. The writer did field work in the summer 2015 doing new observations from the volcanic belts. The terrain of the study area is challenging because it is characterized by several lakes and thick vegetation which caused some difficulties to find good outcrops. Geochemical analyses were made from selected hand- and drill core samples.

3.3 Petrography

Overall, 75 thin sections were included to the study and they were examined with polarization microscope and the major rock types were distinguished among the volcanic belts. 17

3.4 Geochemical analyses

The samples were collected covering the whole study area. The samples were analysed at Labtium Oy, the former laboratory of GTK. The main oxides SiO2, TiO2, Al2O3,

Fe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5 were analyzed with X-ray fluorescence (XRF) method. Also Bi, Cl, Ga and Sn were analyzed with XRF. ICP-MS was used to analyze As, Ba, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Gd, Hf, Ho, La, Lu, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Rb, S, Sb, Sc, Sm, Sr, Ta, Tb, Th, Tm, U, V, Y, Yb, Zn and Zr. Some of the elements were analyzed with both XRF and ICM-PM methods, but only ICM-PM results are presented in the given geochemical data if both methods have been applied. A few samples were analyzed only with XRF and they are marked in Appendix 1. Detailed descriptions of the analytical methods are presented in Rasilainen et al. (2007).

The geochemical data have been analyzed and edited to diagrams with Geochemical Data Toolkit (GCDKit)-programme (Janoušek et al. 2006) and the diagrams are further edited with Corel Draw and Paint Shop Pro 9 image-editing softwares.

4. Geology of the study area

4.1 Regional geology

The study area is situated in the south-eastern corner of the Paleoproterozoic Central Finland Granitoid Complex (CFGC), south-east of the city of Jyväskylä. The study area is about 60 by 80 km in size and it includes parts of the municipalities of Kangasniemi, Toivakka, Leivonmäki and Pieksämäki in central Finland and southern Savonia regions. The location of the study area is presented in Figs 1 and 7.

The CFGC forms almost 40000 km2 wide geological unit covering a major part of central Finland dominated by different plutonic rocks. The rocks of the CFGC formed during the Svecofennian orogeny and the emplacement of the plutonic rocks relate to accretion of two arc complexes at 1.91–1.89 Ga (Nironen 2005). The complex was formed by a low degree of partial melting of a meta-igneous source and the granitoids were derived from thicker crust than the surrounding granitoids (Front & Nurmi 1987). The granitoids are mostly I-type (Front & Nurmi 1987) and consist mostly of different felsic and intermediate plutonic rocks, whereas mafic rocks are less voluminous (Nironen 2003). 18

Fig 7. Generalized geological map of southern and central Finland showing the location of the Central Finland Granitoid Complex and the location of the study area. Black and dashed lines on the map show the boundaries of supracrustal belts around the complex (modified after Kähkönen 1998).

4.1.1 Plutonic rocks

The plutonic rocks of the CFGC are synorogenic and they are divided into synkinematic (1.89–1.87 Ga) and postkinematic (1.88–1.86 Ga) with reference to prominent deformation in the area (Nironen 2005). Felsic plutonic rocks are typically synkinematic and which are usually but sometimes even-grained. In granites the size of K-feldspar phenocrysts is 1–5 cm and plagioclase phenocrysts 0.5–2 19 cm. Porphyritic granodiorites have up to 7 cm sized feldspar phenocrysts. Even-grained and medium-grained granodiorites are also typical, and they grade into . Quartz monzonites are postkinematic and they appear rarely and they are coarse-grained or coarse-porphyritic (Nironen 2003).

Intermediate plutonic rocks are medium- and even-grained quartz monzodiorites, monzodiorites and quartz . Few -diorite bodies and ultramafic bodies occur in the area and they form strong positive magnetic anomalies. Their grain sizes vary from fine-grained to medium-grained (Nironen 2003).

4.1.2 Subvolcanic and supracrustal rocks

In addition to plutonic rocks, there are belts, areas and regions of different supracrustal rocks all over the CFGC and the complex itself gradually grade into the surrounding supracrustal belts. Subvolcanic rocks in the CFGC are mainly porphyritic with plagioclase, uralite, quartz and K-feldspar phenocrysts, and they usually have . Their contacts with the plutonic rocks are often gradual. Supracrustal rocks in the CFGC are intermediate fine-grained tuffites and plagioclase- or plagioclase-uralite porphyritic tuffs. The mafic volcanic rocks are typically uralite- porphyrites and they occur mainly in southern part of the complex, forming interlayers in intermediate rocks. The most common felsic rocks are quartz-feldspar schists and gneisses which are found throughout the complex (Nironen 2003).

Several svecofennian supracrustal belts surround the complex. The supracrustal rocks of southern Svecofennia are divided to the Häme and Uusimaa belts, and the supracrustal rocks of central Svecofennia are divided into the Pirkanmaa, Tampere and Pohjanmaa belts. The Savo belt borders the complex in the north-east. (Kähkönen 2005). The supracrustal rocks are typically 1.91–1.88 Ga arc-type volcanic rocks or MORB to WPL-type gneisses and they have been metamorphosed in greenschist/amphibolite facies to granulite facies conditions (Kähkönen 2005). The studied volcanic rocks are compared to the volcanic rocks of the Häme and Tampere belts in the discussion.

20

4.2 Local geology and subdivision of the study area

The study area consists mainly of different plutonic rocks typical for the CFGC and the supracrustal and subvolcanic rocks form discontinuous and scattered belts in the area. Regardless of the discontinuity, some continuous features are still visible which enable the division of the study area into different belts. Since the aim is to compare the volcanic rocks with each other, the division of the rocks into different belts was necessary to help further investigation. According to field relationships and some lithological differences, volcanic rocks are here divided into five different geographical groups: Makkola, Kauppila, Halttula, Leivonmäki and Korospohja (Fig. 8). The subdivision was made using the knowledge from the field work and grouping observations close to each other into a group. The geochemical results are later presented using this same grouping to discuss the similarities and differences between the belts.

Fig 8. Geological map of the study area showing the locations of the analyzed volcanic rocks and their division to five different belts. Dashed lines on the map illustrate the faults. Rock types are same as in Fig. 1. 21

The Makkola, Kauppila, Halttula and Leivonmäki belts form parallel NE-SW-oriented belts whereas the southwestern Korospohja volcanic rocks are NW-SE oriented. Several shear zones cross the study area breaking it into smaller fragments and for example Kauppila is aparted from Makkola by a shear zone. Many, but not all of the volcanic rocks form a clear positive anomaly on the aeromagnetic map which results from presence of magnetic minerals (Fig. 9). In the vicinity of the volcanic rocks there are also small gabbro-, diorite- and quartzdiorite intrusions which also stand out from the aeromagnetic map. The volcanic rocks are categorized to supracustal and subvolcanic rocks and the different rock types are presented later. Detailed descriptions of the typical volcanic rocks on different belts are however presented below. Photographs of the selected outcrops are seen in Fig. 10.

Fig 9. Aeromagnetic map of the study area showing positive anomalies in the volcanic rock belts (GTK’s low altitude aeromagnetic data). Symbols are same as in Fig. 8.

22

4.2.1 Makkola

The Makkola belt is the best exposed volcanic belt in the middle of the study area. It is also the most thoroughly investigated region having major portion of the observations and analyzed samples. Makkola is also the only belt that has been studied at some level earlier (Ikävalko 1981). The age detemination samples from the Makkola belt yielded ages of 1894±4 Ma and 1891±4 and thus it represents the oldest volcanic belt in the study area (H. Huhma, written communication 2015). The age determinations were made from a felsic tuff and a plagioclase-porphyrite, both typical for the Makkola belt (Fig. 10 A, B).

The typical rock types in Makkola are tuffs and lava intruded by uralite- porphyrites, plagioclase-porphyrites and mafic dykes. The fragments of the lava breccias are typically lighter coloured than the matrix and the size of the fragments is usually same as the size of lapilli, but sometimes the fragments are even bigger. Some of the fragments contain uralite- and plagioclase phenocrysts. Some of the fine-grained tuffs have garnet and sillimanite porphyroblasts as a sign of later metamorphism. The volcanic rocks show a wide range of variation in the deformation: from mylonitic to massive with no signs of deformation. In the west, Makkola belt ends in a NS-oriented shear zone which has caused local alteration to the rocks. Those rocks are sometimes weakly migmatized or very massive and that causes difficulties to distinguish them from paraschists. Mafic volcanic rocks appear as inclusions in granites near the shear zone (Fig. 10, E).

4.2.2 Kauppila

The Kauppila belt can be assumed to be a continuation of the Makkola belt, but it is more deformed and altered. Compared to Makkola, Kauppila is cut by several shear zones and both plutonic and volcanic rocks have a strong vertical lineation and volcanic textures are rarely visible. Discrimination of the volcanic rocks from the plutonic rocks is sometimes very difficult due to alteration and deformation. Volcanic rocks are typically fine-grained tuffs which are cut by even-grained or porphyric mafic dikes. Feldspar-porphyric dikes are also specific to the region. Epidotitization through cracks is typical for the rocks. In the northern part of the area, the volcanic rocks turn more gneissic. 23

4.2.3 Halttula

The Halttula belt is located west of the Kauppila belt, north of Makkola. Granite that crosscuts the belt yielded an age of 1876 Ma which is the minimum age for the volcanic rocks (H. Huhma, written communication 2015). Typical volcanic rocks in Halttula are tuffs and porphyric dikes. Uralite-plagioclase-porphyrites dominate in the west, whereas uralite-porphyrites, plagioclase-porphyrites and mafic tuffs are more common in the east. As in the Kauppila belt, epidotitization is typical for the rocks and the outcrops are sometimes very weathered. In the most south-western part of the belt tuffs contain also fragments which are light coloured and usually <50 cm in size. These rocks have also load cast textures made by the overlying plagioclase-porphyrite.

4.2.4 Leivonmäki

The Leivonmäki belt is located in the south-west part of the study area. It is characterized by banded, grey and fine-grained volcanic rocks, and an area called Kivisuo is more characterized by mafic volcanic rocks (Fig. 10, D). Porphyric rocks specific to Makkola are quite rare in Leivonmäki apart from the southern contact in Kivisuo where uralite-porphyrites are well-exposed (location of Kivisuo in Fig. 1). These porphyrites have large phenocrysts and they are greener in colour than for example porphyrites in Kauppila. Pyroclastic rocks are absent in the southern part of the belt. Altogether, the volcanic rocks in the south are more chlorite- and amphibole rich than elsewhere in the study area. Generally the volcanic rocks are massive and foliation is sometimes almost non-existent. In the vicinity of the mafic rocks there are often coarse-grained and amphibolites.

4.2.5 Korospohja

The Korospohja belt forms a divergently NW-SE-oriented belt in the south-west corner of the study area. It yielded an age of 1889 Ma being thus the same age with the Makkola belt (H. Huhma, written communication 2015). The volcanic rocks can be divided into three different groups which gradually grade into each other: 1) amphibole- rich and uralite-porphyric rocks 2) strongly foliated plagioclase-uralite-porphyrites (Fig. 10 F.) and 3) massive or banded fine-grained volcanic rocks. Uralite-porphyrites resemble more the Kivisuo-type than Makkola-type because of the strong green colour 24 and well-distinguishable phenocrysts. In the middle of the belt rocks turn to strongly schistose and banded (Fig. 10, C).

Fig 10. Outcrop photographs of the analyzed volcanic rocks. A) Felsic volcanic rock (KK4$-2012-802.1) from Makkola. B) Felsic volcanic rock (JKL$-2012-72.1) from Makkola, C) Felsic volcanic rock (PIM$- 2013-20.1) from Korospohja. D) Mafic volcanic rock (ASM$-2012-391.1) from Leivonmäki. E) Mafic volcanic rock (HEKI-2012-1.1) from Makkola, F) Plagioclase-uralite porphyrite (PIM$-2013-21.1) from Korospohja. (Photographs by GTK).

25

5. Petrography of the volcanic rocks

5.1 Subvolcanic rocks

5.1.1 Plagioclase porphyrites

Plagioclase porphyrites from the Makkola, Halttula and Korospohja belts were examined. The main minerals are plagioclase and quartz, with variably amounts of biotite, amphibole, feldspar and chlorite. The accessory minerals are opaques, apatite, epidotite, , magnetite, muscovite and hematite. Size of the plagioclase phenocrysts vary from 1 mm to 2.5 mm and the grain size of the ground mass is 0.1– 0.15 mm (Fig. 11, A). The ground mass is typically recrystallized, and compositional banding is visible in some of the samples. Some of the rocks are also moderately or strongly oriented and some of the plagioclase phenocrysts are sericitized.

5.1.2 Plagioclase-uralite porphyrites

Plagioclase-uralite porphyrites from the Makkola and Korospohja were examined. The main minerals are plagioclase, quartz and biotite, and also variably amphibole and opaques. Size of the plagioclase- and uralite phenocrysts varies from 1 to 5 mm. The rocks are weakly oriented and banded. Some of the rocks are also recrystallized.

5.1.3 Uralite porphyrites

Uralite porphyrites from the Makkola, Halttula and Korospohja were examined. The main minerals are plagioclase, amphibole, hornblende, biotite and quartz, with variably amounts of feldspar and chlorite. Chlorite is the result of alteration of hornblende. The accessory minerals are opaques, epidotite and carbonatite. Size of the uralite phenocrysts vary from 1 mm to 4 mm and grain size of the ground mass is 0.1–0.3 mm (Fig. 11, B). The ground mass is often recrystallized and some of the rocks are moderately or strongly oriented. Some of the samples are weakly banded. Granoblastic texture is common.

26

5.2 Supracrustal rocks

5.2.1 Mafic tuffs

Mafic volcanic rocks are considered here together as the mafic tuffecous rocks and they include for example amphibolites and chlorite-schists. Eight thin sections of amphibolites were examined from Makkola and Kauppila. The main minerals are amphiboles and plagioclase, and variably also hornblende, quartz, biotite and K- feldspar. The accessory minerals are chlorite, opaques, titanite, epidote, apatite and magnetite. They are fine-grained and usually moderately or strongly oriented (Fig. 11, D). Grain size varies between 0.1–2 mm. Some of the rocks are slightly banded or weakly porphyritic.

Four chlorite-schists were studied from Makkola and Halttula. The main minerals are plagioclase, chlorite, quartz and biotite. They are fine-grained, oriented and banded. Two of them are weakly porphyritic having quartz and feldspar “phenocrysts”.

5.2.2 Felsic and intermediate tuffs

Felsic and intermediate tuffs are examined from all the belts. The main minerals are plagioclase and quartz, with variably amounts of biotite, hornblende and K-feldspar. The accessory minerals are epidotite, magnetite, titanite, apatite, zircon, carbonatite, ilmenite and opaques. Plagioclase is typically moderately altered to sericite or saussurite. The texture is granoblastic and the rocks are oriented and sometimes recrystallized and weakly banded (Fig. 11, C). The grain size varies from 0.1 to 0.4 mm.

Quartz-feldspar-schists are found from Kauppila and Halttula. The main minerals are quartz, feldspar and plagioclase. The accessory minerals are variably biotite, opaques, titanite, chlorite and magnetite. They are fine-grained and recrystallized, and sometimes quartz forms very fine-grained stripes. The rocks are also clearly oriented and banded. 27

Fig 11. Photomicrographs of some of the typical volcanic rock types in the study area: A) plagioclase porphyrite, HEKI-2013-173.1 B) uralite porphyrite, MAAH-2012-205.1 C) felsic tuff, PIM$-2013-239.1 D) amphibolite, PIM$-2013-299.1. All the photographs have been taken in cross-polarized light except the photograph D which is taken in plane-polarized light. (Photomicrographs by Marjaana Ahven, GTK).

6. Major element geochemistry

Both the major element and trace element geochemistry are presented separately from the Makkola, Kauppila, Halttula, Leivonmäki and Korospohja belts. It should be noted that the number of analyzed samples vary between different belt as there are 89 samples from Makkola, 22 samples from Kauppila, 27 samples from Halttula, 18 samples from Leivonmäki and 28 samples from Korospohja.

The major elements are presented in silica vs. oxides Harker diagrams (wt %) where all the belts are included together. The magnesium number (Mg#) has been calculated with the formula 100*Mg/(Mg+Fe2+). Classification of rock types is presented with the total alkali vs. silica (TAS) diagram (Le Bas et al. 1986), and the K2O–SiO2 diagram by Peccerillo & Taylor (1976) is used to distinguish tholeiitic and calc-alkaline rocks.

28

6.1 Common features of the volcanic rocks

All the five volcanic belts are characterized by similar major element geochemistry

(Fig. 14–15). The SiO2 content of the volcanic rocks varies from 42.50 % to 74.20 % and an igneous rock suite from basaltic to dacitic and rhyolitic composition is present in all of the belts. The linear trends typical for the igneous suite are obvious as Na2O and

K2O increase, whereas MgO, Fe2O3, TiO2 and CaO all decrease with increasing silica

(Fig. 14–15). A decline in the contents of Fe2O3, MgO, and TiO2 indicates fractional crystallization of the ferromagnesian minerals. Ti follows Fe in fractional crystallization and Ti4+ is predominantly partitioned into Fe-Ti or Fe oxides. Decreasing CaO content reflects the fractional crystallization of monoclinic pyroxene and calcic plagioclase.

The TiO2 content of the volcanic rocks is generally low, varying from 0.08 % to 1.64 %, basic rocks having the highest contents. The Al2O3 content is quite high with the average value of 16.52 %. Otherwise the Al2O3 content vary from 9.29 % to 22.10 %.

The high contents may refer to the presence of feldspars. The Fe2O3 content is 1.76– 14.30 %, but the content is especially high in the basic rocks and in some of the intermediate rocks. In the basic rocks the content is 7–14 %, average value being 11 %. Also, some of the intermediate and acid rocks have high values, up to 7–12 % which may be a result of the presence of amphiboles. MgO and CaO contents are highest in the basic rocks, with MgO content of 0.23–16 % and CaO content of 0.91–16.45 %. The

Na2O content vary from 0.46 % to 6 % while the highest values are in the acid rocks. One sample has higher value (8.74 %) which may refer to hydrothermal alteration of the rock. K2O is also quite high being 0.07–6 %, especially in the acid rocks where the average value is 3.88 %. One reason for the high K2O contents is that potassium is usually progressively concentrated during magmatic fractionation, and is thus enriched in felsic relative to mafic igneous rocks. Three samples stand out with even higher K2O values which may refer to hydrothermal alteration of the rocks. Potassium is mobile during hydrothermal alteration and it can be enriched secondary. The magnesium number is 6.06–63.50 %, being highest in the basic rocks. P2O5 is generally low varying from 0.03 to 1.94 % and the values are slightly lower in the acid rocks reflecting the fractional crystallization of apatite.

In the TAS diagram, the compositions of the volcanic rocks vary widely from basaltic to rhyolitic (Fig. 12). It should be noted that the TAS diagram is very approximate and descriptive because it does not take into account the possibility of metamorphism, 29 weathering and alteration of the rocks. Most of the samples plot in the andesitic fields, but all the belts are also contain basalts and dacites/rhyolites.

In the K2O–SiO2 diagram the volcanic rocks range from tholeiitic to shoshonitic, but calc-alkaline and high-K calc-alkaline series are the most common series among all of the belts (Fig. 13). A few tholeiitic samples are found from the Makkola and Leivonmäki belts. Majority of the shoshonitic samples are found from the Makkola, Halttula and Korospohja representing thus the most alkaline belts. Alike the TAS diagram, the K2O–SiO2 diagram is not considered very reliable since the rocks are metamorphosed and possibly altered.

Fig 12.The total alkalis vs. silica classification diagram (TAS) of the volcanic rocks (after Le Bas et al. 1986). Above the dashed line rocks are classified as alkaline and below the dashed line as subalkaline/tholeiitic. Vertical dashed lines represent the division to basic, intermediate and acid rocks. 30

Fig 13. K2O–SiO2 diagram of the volcanic rocks (after Peccerillo & Taylor 1976).

6.2 Differences between the volcanic belts

Statistical boxplots of the major oxide compositions are used to illustrate the minor differences between the volcanic belts (Fig. 16). The Kauppila, Halttula and Leivonmäki belts represent the most basic belts on average with the majority of basic rocks. By contrast, the Makkola and Korospohja belts are on average the most acid among all the belts. Due to the differences in average SiO2 contents also the other oxide compositions vary in the same manner. The lowest TiO2 contents are in the Makkola belt because of the most felsic rocks. Each volcanic belt (especially six samples from

Halttula) has also some intermediate samples that stand out with lower TiO2 contents compared to other intermediate samples in the study area. The Al2O3 contents are slightly higher in the Makkola and Korospohja belts. Fe2O3, MgO and CaO contents are higher in the Kauppila, Halttula and Leivonmäki belts because of the most mafic rocks. 31

Na2O contents vary most in the Makkola and Leivonmäki belts compared to the other belts. K2O contents are slightly higher in the Makkola and Korospohja belts.

Two samples stand out from the diagrams being different. The most felsic sample, felsic tuff from the Makkola belt (MAAH-2012-32.1) has the lowest values of TiO2 (0.08 %),

Fe2O3 (1.76 %), MgO (0.29 %), CaO (0.91 %) and P2O5 (0.03 %) of all the volcanic rock samples in the study area. One felsic sample from the Makkola belt (JKL$-2012-

68.1) is pronounced with with very high K2O content (9.80 %). On contrary the Na2O composition of the sample is very low with the value of 0.59 % which refers to hydrothermal alteration.

Two samples from Kivisuo, the Leivonmäki belt are altered and differ from other samples. The sample JKL$-2013-31.1 is pronounced with very high TiO2 (1.64 %),

Al2O3 (19.50 %), Fe2O3 (14.30 %), MnO (0.21 %) and P2O5 (1.94 %) contents whereas the alkali compositions are very low. Sample ASM$-2012-374.1 has the lowest K2O content (0.07 %), but the highest Na2O content (8.74 %) in the whole study area.

32

Fig 14. Major elements vs. silica diagrams of the volcanic rocks (wt %). Symbols are same as in Figs 12 and 13.

33

Fig 15. Major elements vs. silica diagrams of the volcanic rocks (wt %). Symbols are same as in Figs 12 and 13.

Fig 16. Boxplots of the major oxides of the volcanic belts. The plots involve minimums, maximums, 25 % quartiles, medians (= 50 % quartile) and 75 % quartiles. Small circles represent the outliers. 34

7. Trace element geochemistry

The trace element results are presented by division to different volcanic belts (Makkola, Kauppila, Halttula, Leivonmäki and Korospohja) and because of the noticed similarities between the belts, results are also presented by division of SiO2 content to illustrate differences in the basic, intermediate and acid rocks. The classification derives from the

TAS-diagram; SiO2 = <45 % (ultrabasic), SiO2 = 45–52 % (basic), SiO2 = 52–63 %

(intermediate) and SiO2 >63 % (acid). From all the studied volcanic rocks 2 samples are ultrabasic, 36 samples are basic, 79 samples are intermediate and 45 samples are acid. Rock types classified as basic include uralite porphyrites, mafic tuffs and other mafic volcanic rocks and amphibolites. Rock types classified as intermediate include plagioclase-uralite porphyrites, plagioclase porphyrites and intermediate tuffs and some of the uralite porphyrites. Rock types classified as acid are plagioclase porphyrites, feldspar porphyrites and felsic tuffs.

The trace elements are illustrated with trace elements vs. silica Harker diagrams, NMORB-normalized multielement diagrams (after Sun & McDonough 1989) and chondrite-normalized REE diagrams (after Boynton 1984). In the classification diagrams the incompatible immobile elements are preferred over the mobile elements because they are not affected to secondary processes such as alteration. Ionic potential of elements act as a measure of mobility: elements with low and high ionic potentials are considered mobile whereas elements with intermediate ionic potential tend to remain in the solid phase and are therefore immobile (Pearce 1996). For example Ti, Zr, Hf, Nb, Ta, REE, Cr, Th, Al and Ga are usually immobile.

The chondrite normalized REE diagrams are only made from samples which have analytical results from REE. For that reason also a few samples are missing from NMORB normalized diagrams. The symbols and colors of the volcanic belts are same as previously in Figs 12–13 and 19–20.

7.1 Common features of the volcanic rocks

The trace element geochemistry of the studied volcanic rocks is more strongly correlated with the SiO2 content than the location of the sample. Because each volcanic belt has a wide range of basic, intermediate and acid rocks, the trace element contents also vary widely. On the NMORB normalized multielement diagrams, all the volcanic 35 rocks are enriched in LIL-elements (Rb, Ba, Th, K, Pb, Sr) relative to HFS-elements Nb, P, Zr and Ti and REE which show decreasing peaks in the diagram (Fig. 17). Ti shows the clearest and most negative trough plotting mostly below the typical NMORB composition. Occasionally P and Zr also show negative troughs. Nb has also a clear trough in the diagram.

There is no major difference in trace elements between the acid, intermediate and basic rocks (Fig. 17). The acid rocks are slightly more enriched in the LIL-elements relative to the HFSE-elements compared to the basic and intermediate rocks which show more variation in the LIL compositions. The HFSE contents are slightly lower in the basic rocks compared to the intermediate and acid rocks. Especially Zr shows a clear negative through in the basic and intermediate rocks but not in the acid rocks. Ti show most negative trend in acid rocks compared to the basic and intermediate rocks.

In the chondrite normalized REE diagram the volcanic rocks show LREE enrichment relative to HREE and there is no significant difference between acid, intermediate and basic rocks (Fig. 18). The average LaN/YbN ratio of the volcanic rocks is 10.57, but the ratio increases when SiO2 content increases: the average LaN/YbN ratio is 7.33 in basic rocks, 10.65 in intermediate rocks and 13.83 in acid rocks. Most of the acid rocks are more enriched in LREEs compared to the basic and intermediate rocks. The intermediate rocks show most variety in the compositions falling variably on the diagram. The HREE trend is similar in all the volcanic rocks but some of the basic rocks have lower values. Negative Eu-anomaly is more common in the acid rocks than mafic rocks. Some of the samples exhibit a positive Eu-anomaly.

36

Fig 17. NMORB normalized (after Sun & McDonough 1989) multielement diagram of the volcanic rocks by the division to ultrabasic, basic, intermediate and acid rocks.

Fig 18. Chondrite normalized (after Boynton 1984) REE diagram of the volcanic rocks by the division to ultrabasic, basic, intermediate and acid rocks.

37

Classification of rock types is presented with the Winchester & Floyd (1977) Zr/TiO2 vs. Nb/Y plot which is a well-known proxy for TAS diagram as it uses the immobile elements instead of the mobile elements and is therefore more suitable for altered and metamorphosed rocks. The volcanic rocks plot widely in the diagram ranging from subalkaline basalts to rhyolites (Fig. 19). Andesitic composition is the most common among all the belts as most of the samples plot as trachyandesites and andesites/basalts. A few rhyolites, rhyodacites and dacites are found from all of the belts. The Leivonmäki belt shows more variation in the rock types than the other belts. Most of the volcanic rocks from the Kauppila and Halttula belts plot in the subalkaline basalt field.

Co vs. Th plot by Hastie et al. (2007) is additionally used to classify the volcanic rocks as it is a good proxy for the Peccerillo & Taylor (1976) K2O–SiO2 diagram. In the diagram the volcanic rocks plot in the calc-alkaline, high-K calc-alkaline and shoshonitic fields, but the calc-alkaline series is the most common (Fig. 20). One sample from the Kauppila belts plots in the tholeiitic field.

Fig 19. Zr/TiO2 vs. Nb/Y plot of the volcanic rocks (after Winchester & Floyd 1977). 38

Fig 20. Co vs. Th plot of the volcanic rocks. B=basalt; BA/A=basaltic and andesite; D/R*=dacite and rhyolite, but also trachytes (after Hastie et al 2007).

In the trace element vs. silica diagrams the HFSE-elements increase linearly with increasing silica (Fig. 21–22). By contrast, the Ni, Cr (and Co) contents decrease with increasing silica, inducing thus the highest contents in the basic rocks (Fig. 21). On the other hand, the contents of HFSEs Nb, Th, La, Ta, Hf and Zr are lowest in the basic rocks whereas the contents are highest in the acid rocks. Rb and Ba contents are slightly higher in some of the acid rocks. Sr, Ce and Y contents do not have any particular trend and their contents vary widely.

39

Fig 21. Selected trace elements vs. silica diagrams of the volcanic rocks. Symbols are same as in Figs 19– 20. 40

Fig 22. Selected trace elements vs. silica diagrams of the volcanic rocks. Symbols are same as in Figs 19– 20.

7.2 Differences between the volcanic belts

7.2.1 Trace element vs. silica diagrams

Statistical boxplots of the selected trace element compositions are used to illustrate the minor differences between the volcanic belts (Fig. 23). The Leivonmäki belt shows the most variety in the Ni and Cr compositions. Ni and Cr contents are exceptionally high in four mafic rocks in Kivisuo (Leivonmäki) compared to other samples. The samples may represent pyroxene and/or olivine cumulates. Ni content in the samples is <20–365 ppm and Cr content <20–1712 ppm. Some of the mafic subvolcanic rocks from Synsiö are also pronounced with higher Ni and Cr contents than the other volcanic rocks; for example a subvolcanic rock (N4332013R6 78.80-78.95) has Ni content of 587 ppm an Cr content of 1040 ppm.

LIL-element contents show a lot of variety. Average Rb content is slightly higher in the Korospohja belt, where one mafic volcanic rock (PIM$-2013-118.1) has exceptional Rb content of 313 ppm. Ba contents are highest in the Makkola belt with the highest content of 5286 ppm in an intermediate volcanic rock (N4342013R2 36.00-37.00).

Certain HFSE-element (e.g. Zr, Th, Nb, Hf and Ta) abundances are highest in the Makkola belt due to the most acid samples. For example, a felsic volcanic rock (JKL$- 2012-72.1) is pronounced with the highest Th (21.70 ppm), Hf (10.3 ppm), Zr (367 ppm), Nb (36.8 ppm) contents of the whole study area. Ta contents are also higher in some of the acid samples from the Makkola belt (highest value 2.66 ppm). The Makkola 41 belt also differs from the other belts with higher Th and Hf contents in the Ukonsuo drill core samples (location marked in Fig. 1). According to the drilling report, the drill core profile contains moderate pyrrhotite dissemination, and the drill core is chloritized and sericitized, indicating that these analyzed samples are altered (Mikkola et al. 2014). In the Korospohja belt Th contents show also higher values in six samples, ranging from 15 ppm to 21 ppm, when the rest of the samples in the study area have contents less than 10 ppm.

Lowest HFSE-element contents are in the Kauppila, Halttula and Leivonmäki belts. The most primitive samples of the study area locate in the Kauppila belt, for example an amphibolite (91919985) has very low HFSE-contents; Zr (41.6 ppm), Th (1.1 ppm), Nb (4.2 ppm), Hf (1.1 ppm) and Ta (0.19 ppm). One intermediate sample (MAAH-2012- 177.2) has also a very low Th content (1 ppm).

In the Leivonmäki belt one mafic rock (91011001) has exceptionally high contents of Nb (24 ppm) and Ta (1.34 ppm) compared to other mafic rocks in the study area. The Leivonmäki belt has also two altered volcanic rock samples (ASM$-2012-374.1 and JKL$-2013-31.1) with slightly deviating geochemistry. For example, sample JKL$- 2013-31.1 have high P content and low Zr and Th contents. 42

Fig 23. Boxplots of the selected trace elements of the volcanic belts. The plots involve minimums, maximums, 25 % quartiles, medians (= 50 % quartile) and 75 % quartiles. Small circles represent the outliers.

7.2.2 Multielement diagrams

The multielement diagrams are presented separately from the different volcanic belts in Figs 24–33.

In the chondrite normalized REE diagram a subvolcanic rock (ASM$-2013-259.1) differs from the other samples from Makkola with the lowest HREE contents relative to the chondrite values (Fig. 24). The sample is taken from a plagioclase porphyrite vein from a plutonic rock. 43

Fig 24. NMORB normalized (after Sun & McDonough 1989) multielement diagram of the volcanic rocks from Makkola.

Fig 25. Chondrite normalized (after Boynton 1984) REE diagram of the volcanic rocks from Makkola.

44

In the NMORB normalized multielement diagram a subvolcanic rock (SMHA-2012- 37.2) differs from the other samples from Kauppila with lower contents of Sr, P and Ti relative to NMORB (Fig. 26).

Fig 26. NMORB normalized (after Sun & McDonough 1989) multielement diagram of the volcanic rocks from Kauppila.

Fig 27. Chondrite normalized (after Boynton 1984) REE diagram of the volcanic rocks from Kauppila. 45

Fig 28. NMORB normalized (after Sun & McDonough 1989) multielement diagram of the volcanic rocks from Halttula.

Fig 29. Chondrite normalized (after Boynton 1984) REE diagram of the volcanic rocks from Halttula.

46

In the NMORB normalized multielement diagram an altered volcanic rock (JKL$-2013- 31.1) differs from the other samples from Leivonmäki with higher content of P and Ti relative to NMORB (Fig. 30).

Fig 30. NMORB normalized (after Sun & McDonough 1989) multielement diagram of the volcanic rocks from Leivonmäki.

Fig 31. Chondrite normalized (after Boynton 1984) REE diagram of the volcanic rocks from Leivonmäki. 47

In the NMORB normalized multielement diagram an intermediate volcanic rock (EPHE-2013-348.1) from Korospohja shows the most spiky trend and Nb, Zr and Ti all plot below the typical NMORB values (Fig. 32). In the chondrite normalized REE diagram a felsic volcanic rock (PIM$-2013-24.1) differs from the other samples from Korospohja with lower HREE contents relative to chondritic values (Fig. 33).

Fig 32. NMORB normalized (after Sun & McDonough 1989) multielement diagram of the volcanic rocks from Korospohja.

Fig 33. Chondrite normalized (after Boynton 1984) REE diagram of the volcanic rocks from Korospohja. 48

7.2.3 Element mobility

To investigate the extent of element mobility more detailed, usually immobile Zr was plotted against selected trace elements (selected diagrams shown in Fig. 34). A linear trend should be formed if the element has been immobile. Certain LIL-elements (K, Ba and Rb) have a very scattered trend indicating that these elements are mobile and they have been affected by alteration (diagrams not shown). Th is usually considered immobile but generates scatter in the diagram (Fig. 34). Some of the volcanic rocks from the Makkola (Ukonsuo) and Korospohja belts have higher Th contents plotting differently compared to the rest of the samples. Also, one sample from the Halttula belt (ASM$-2013-167.1) and two samples from Kivisuo, the Leivonmäki belt (PIM$-2014- 60.1 and TOS$-2014-201.3) plot differently. Nb shows a positive trend except from a few altered samples from Kivisuo (91011001, PIM$-2014-60.1 and ASM$-2012-374.1), two samples from Makkola (N4342013R3 65.80-66.05 and N4342013R9 192.00- 193.00) and one sample from the Kauppila (SMHA-2012-37.2) that plot differently (Fig. 34). Ti shows also linear negative trend which is explained by Fe-Ti oxide fractionation. REE-elements have mainly broad linear trends indicating that they are immobile.

Fig 34. Th vs. Zr and Nb vs. Zr diagrams of the volcanic rocks. Symbols are same as in Figs 19–20.

49

8. Comparisons to volcanic belts in southern and central Svecofennia

Central and southern Svecofennia are characterized by several supracrustal and subvolcanic belts which contain mostly 1.90–1.88 Ga arc-type volcanic rocks (Kähkönen 2005). As the volcanic rocks from these belts are the same age with the studied rocks and some of the belts are located in the vicinity of the study area, it is possible that the studied volcanic rocks were formed in the same tectonic environment (Fig. 7). Therefore the geochemistry of the studied volcanic rocks is compared with the geochemistry of the volcanic rocks of the Häme and Tampere belts.

8.1 Source of the comparison data

The comparison has been made in that extent that is possible with the available data. The geochemical data from the Tampere belt consist of 6 samples from Lahtinen (1996), 12 samples from Kähkönen (1989) and 9 samples from Kähkönen (1994). The data from Lahtinen (1996) and Kähkönen (1989) are from different units of the Tampere belt and the samples are classified as basalts, andesites, trachytes and rhyolites. The data from Kähkönen (1994) consist of the high-K calc-alkaline and shoshonitic volcanic rocks of the Tampere belt.

The geochemical data from the Häme belt are from report by Sipilä & Kujala (2014) consisting of 24 analyzed samples from the Forssa group. The Häme belt is divided into the Forssa and Häme groups (Hakkarainen 1994), but only the Forssa group is chosen for comparison because of its similarity with the studied volcanic rocks. The Forssa group is dominated by calc-alkaline metavolcanics ranging from basaltic to rhyolitic in composition whereas the Häme group is dominated by MORB-type tholeiitic basaltic to andesitic lava flows and is therefore excluded (Hakkarainen 1994, Sipilä & Kujala 2014).

Because of the low number of the geochemical data and the scarcity of the analyzed elements, the multielement diagrams are only made from the Forssa data which contained the needed trace element data. Since the results are very similar with the studied volcanic rocks, only a part of the samples from the study area are included in the spider diagrams to better illustrate the similarities. Oxides vs. silica and trace elements 50 vs. silica diagrams are made from both the Tampere and Häme data in that extent that was possible. Zr values from a few samples from Kähkönen (1989) were not plotted, but they had similar values with the other comparison data.

8.2 Major element geochemistry

The comparison data have similar geochemical features with the data from the study area, and the volcanic rocks from the study area resemble in many ways the Tampere and Häme belts. When comparing to the Häme belt, the volcanic rocks from the present study show wider spectrum of volcanic rocks ranging from tholeitic to shoshonitic in composition. High-K calc-alkaline and shoshonitic series are more pronounced in the studied volcanic rocks than in the Forssa group where calc-alkaline series dominates. However, southern part of the Tampere belt is characterized by high-K calc-alkaline and shoshonitic rocks which are interpreted to indicate evolved volcanic arc setting (Kähkönen 1989, Kähkönen 1994). As in the Tampere belt, more mature and evolved setting in the study area is probable because of the higher abundance of high-K calc- alkaline and shoshonitic rocks and absence of tholeiitic rocks. The oldest unit in the Tampere belt, intermediate unit at Orivesi (1904 Ma) is characterized by high-K calc- alkaline pyroclastic rocks, and the youngest unit, upper volcanic unit at Ylöjärvi (1889 Ma) is characterized by tholeiitic and calc-alkaline rocks (Kähkönen 1989).

In the oxides vs. silica diagrams the major element geochemistry do not significantly differ, only contents of Na2O and K2O in this study vary more than in comparison data (Fig. 35). Some of the intermediate and acid samples from the Makkola belt have lower

Na2O contents than the comparison data. K2O contents in the present data are slightly higher in the acid rocks compared to the comparison data, except a few samples from the Tampere belt. Al2O3 contents are lower in some of the basic and intermediate samples in this study. MgO, CaO, Fe2O3, P2O5 show similar consentrations apart from a few samples from the present study with higher MgO contents. 51

Fig 35. Major elements vs. silica diagrams of the volcanic rocks and the comparison data. 52

8.3 Trace element geochemistry

Apart from a few samples from the Leivonmäki belt and one sample from the Makkola belt, Ni and Cr contents in the comparison data are similar (Fig. 36). Contents of the certain LIL-elements (Rb, Sr, Ba and Ce) are clearly higher in some of the samples from this study (Fig. 37). Zr content varies more in the studied rocks and it is lower in some of the studied intermediate rocks. The NMORRB normalized multielement diagram displays a clearly similar trend between this study and volcanic rocks from the Forssa group (Fig. 38). In the chondrite normalized REE diagram the volcanic rocks from the Forssa group have slightly flatter trend compared to the studied rocks (Fig. 39).

Fig 36. Selected trace elements vs silica diagrams of all the volcanic belts.

53

Fig 37. Selected trace elements vs silica diagrams of all the volcanic belts.

54

Fig 38. NMORB normalized (after Sun & McDonough 1989) multielement diagram of volcanic rocks from Forssa group and selected volcanic rocks from the study area.

Fig 39. Chondrite normalized (after Boynton 1984) REE diagram of the volcanic rocks of Forssa group and selected volcanic rocks of the study area.

55

9. Discussion

Geochemical compositions together with the field observations and the unpublished age determinations of the volcanic rocks show quite clear evidence that the studied volcanic belts originate from the same geological environment representing possibly a long- lasting and variable volcanism. Apart from a few exceptions (e.g. altered samples), all of the volcanic rocks have similar geochemical features and the belts are characterized by a wide range of volcanic rocks from basaltic to rhyolitic in composition. Any of the suspected separate belts do not differ significantly from the other by their geochemistry. On average, the volcanic rocks from the Makkola and Korospohja belts are slightly more evolved than the other belts as they are also characterized by higher amount of acid compositions. In contrast, the volcanic rocks from the Halttula, Kauppila and Leivonmäki belts may represent less evolved material because basic and intermediate compositions are more common there. There are also small differences in the lithology of the volcanic belts: some of the belts consist of recrystallized tuffaceous, occasionally pyroclastic rocks, which are crosscut by uralite and plagioclase porphyrites (e.g. Makkola) whereas some of the belts consist almost completely of deformed subvolcanic rocks (e.g. Kauppila). Nevertheless, the similar geochemistry of the volcanic rocks indicates a common origin, and the subvolcanic units only represent deeper sections than the supracrustal units.

Many lithological and petrographical features imply that the volcanic rocks have undergone alteration. The most distinguishably altered volcanic rocks are found from Kivisuo (Leivonmäki). The geochemical diagrams aimed for altered volcanic rocks revealed some small differences compared to the TAS-diagram and K2O – SiO2 - diagrams. The differences indicate that many of the volcanic rocks may have undergone some sort of alkali alteration where potassium has precitipated. In the K2O – SiO2 plot the volcanic rocks spread very widely varying from tholeiitic to shoshonitic, but the Co vs. Th plot revealed that most of the volcanic rocks are calc-alkaline and high-K calc- alkaline. The extent of element mobility was further investigated by plotting Zr against selected trace elements, which revealed that in addition to LIL-elements, normally immobile elements Th and Nb generated scatter in some of the samples. The most distinct groups of samples are from Ukonsuo (Makkola), Kivisuo (Leivonmäki) and Korospohja. The possible cause for the trend is that certain elements have been mobile and have been affected by alteration, or some of the studied volcanic rocks are derived from geochemically different sources. Most likely the trend refers to hydrothermal 56 alteration of these particular samples, which was already noticed especially in the samples of Kivisuo and Ukonsuo for their differing geochemistry.

Many of the samples have either a negative or a positive europium-anomaly which may be a result of plagioclase fractionation during magma ascent. In reducing magma Europium (Eu2+) enters to plagioclase where it substitutes calcium (Ca2+). Most of the Eu will enter plagioclase during magma crystallization causing enrichment of Eu relative to other REEs. When the Eu-depleted magma crystallizes, a negative Eu- anomaly will be displayed in the rock. Fluids can also modify the Eu anomalies of the rocks changing for example the oxidation states.

9.1 Tectonic setting

All the volcanic rocks exhibit volcanic arc-like geochemical characteristics, for example low contents of Ti and Nb and enrichment in LILEs and LREEs relative to HFSEs (Fig. 17). The major and trace element compositions support the volcanic arc setting.

Elevated Al2O3 contents are typical especially for continental arcs (e.g. Condie 1997) and in the studied volcanic rocks the contents vary from 16 % to 20 %. Quite high K2O contents are also typical for continental arcs as K2O is progressively enriched during magmatic fractionation. Abundance of high-K volcanic rocks and high amount of plutonic rocks also indicates more mature, the Andean-type volcanic arc setting. The wide range of volcanic rocks from basic to acid composition is specific to more evolved and mature volcanic arc settings (e.g. Sen 2014, Ducea et al. 2015). A large amount of rocks with intermediate composition also indicate contintental arc setting as andesites prefer presence of contintental crust to form (e.g. Tatsumi & Takahashi 2006). The studied volcanic rocks vary from calc-alkaline to shoshonitic which is also typical for the Andean-type magmatism: lavas start out in the calc-alkaline field but then become enriched in K2O. Late-stage volcanism is dominated by high-K calc-alkaline and shoshonitic type (e.g. Winter 2001, Sen 2014).

Three ages were obtained from the volcanic rocks; the Makkola belt represents the oldest belt with ages of 1894±4 Ma and 1891±4, and the Korospohja belt the youngest being 1889 Ma old. When the errors are taken into account, the rocks are the same age. The volcanic belts most likely represent the same geological unit as it is common for continental arc segments to be active for over 100 Ma (Ducea et al. 2015). The studied 57 volcanic belts possibly represent the same larger geological unit, but different volcanic rocks represent different stages of the volcanism.

The structural and textural features of the volcanic rocks can also be used for interpreting the tectonic setting. Porphyritic texture of the studied rocks is a specific feature of volcanic rocks from a volcanic arc setting. Pyroclastic rocks also indicate volcanic arc setting, because explosive volcanism is typical for stratovolcanoes in mature continental arcs (e.g. Sen 2014). For example, many of the Andean stratovolcanoes alternate rhyolite-dacite ash-flow tuffs with andesitic lava flows (Ducea et al. 2015).

9.1.1 Discrimination diagrams

In support of already noticed features, the tectonic setting of the volcanic rocks is interpreted with different discrimination diagrams that utilize immobile elements. An important consideration is that discrimination diagrams cannot give definite and true answers alone. Li et al. (2015) tested the accuracy of trace element discrimination diagrams for basalts and noticed that none of the diagrams using Zr, Ti, V, Y, Th, Hf, Nb, Ta, Sm, and Sc can discriminate between basalts from different tectonic settings when no other information is available. In the present study where a lot of geological and petrographic research is included, discrimination diagrams can be used to support the interpretations. The selected diagrams were chosen because of their suitability for metamorphosed rocks and common usage in scientific literature.

Ti-Zr diagram by Pearce (1982) is used to distinguish arc lavas from within plate lavas (WPL) and MORBs. The Zr/Ti ratio is not as strongly affected by alkalinity and calc- alkalinity than for example Nb and Th. Titanium is incompatible during basalt fractionation and therefore the ratio increases when fractionation increases. The studied volcanic rocks plot mainly in the arc lava field apart from some basic samples that plot also in MORB field and one felsic sample that plot in WPL field (Fig. 40). 58

Fig 40. Zr vs. Ti diagram (after Pearce 1982) of all the volcanic rocks of the study area and the comparison data.

Th-Zr/117-Nb/16 diagram of Wood (1980) uses HFSE-elements Th, Zr and Nb which are present in very low concentrations in volcanic rocks. According to the diagram, most of the studied volcanic rocks plot as volcanic arc basalts (Fig. 41). Two samples from Kivisuo (the Leivonmäki belt) and one sample from the Kauppila belt plot in EMORB, WPT or WPA field. The other sample (91011001) from Kivisuo is pronounced with high Nb content (24 ppm) whereas another sample from Kivisuo (ASM$-2012-391.2) is pronounced with very low Th content (0.69 ppm). These samples may be cumulates which have caused distortion in the element ratios. The sample from Kauppila (MAAH-2012-177.2) has low Th content (1 ppm) and also higher Nb content (8.2 ppm) than other samples with same Th contents.

59

Fig 41. Th-Zr/117-Nb/16 tectonic setting discrimination diagram of the volcanic rocks (after Wood 1980). IAT=Island-arc Tholeiites, CAB=Calc-alkaline Basalts, N-MORB=N-type Mid-ocean Ridge Basalts, E-MORB=E-type Mid-ocean Ridge Basalts, WPT=Within-plate Tholeiites, WPA=Alkaline Within-plate Basalts. Symbols are same as in Fig. 40.

The Th/Yb-Ta/Yb diagram by Pearce (1983) is used to identify the possible subduction component. The diagram is useful because the ratios are not strongly affected by partial melting and fractional crystallization. Th content is usually high in volcanic arcs and furthermore the contamination of the crust results in elevated Th/Yb ratios. The Ta/Yb ratio is a measure of the degree of mantle enrichment or depletion relative to N-MORB source mantle, and the ratio is usually lower in oceanic arcs. As seen from the diagram, all of the samples plot above the MORB-array indicating subduction enrichment, except one intermediate volcanic rock (MAAH-2012-177.2; Fig. 42). The rocks also plot on the continental arc side of the diagram. The Th/Yb ratio of the volcanic rocks increases linearly indicating either an increase in subduction component in the source region or a greater crustal assimilation. 60

Fig 42. Th/Yb vs Ta/Yb diagram of the volcanic rocks (after Pearce 1983). Symbols are same as in Fig. 40.

The discrimination diagrams support the theory of an evolved continental arc setting. Some of the mafic volcanic rocks from the Leivonmäki and Kauppila belts plot slightly differently representing more MORB-like setting. For those samples more primitive volcanic arc setting or back arc region could be possible origins, but because they are just few individual samples, definite conclusions are difficult to make.

61

9.2 Petrogenesis and evolution of magmas

9.2.1 Differentiation

The study area has a typical igneous rock series which refer to lavas from basaltic to rhyolitic composition from single volcano or from several volcanoes situated in a particular area (comagmatic). As discussed in the literature overview, generation of an igneous series can be a result from differentiation of common parent magma or more likely a result from partial melting and assimilation (contamination) of the crust. Fractional crystallization is conceivable because the studied rocks have major element abundances that vary along continuous trends of decreasing Al2O3, CaO, MgO, Fe2O3,

P2O5, and TiO2, and increasing K2O with increasing SiO2. In addition, fractionation of ferromagnesian minerals usually decreases the compatible element compositions (e.g., Ni, Cr) and increases the incompatible element compositions (e.g. Th, Hf) in the liquid. There is a decrease in compatible and an increase in incompatible element contents with a gradual increase in the SiO2 content in the studied rocks. These features suggest that the rocks are co-magmatic and genetically related to each other. Nonetheless, when interpreting the evolution of the magmas, the possibility of magma mixing or mingling also has to be taken into account along with contamination and fractionation. The mixing process occurs when the hot basaltic melt from the magma chambers below continental crust mixes with the evolved felsic magma above and the composition of the magma turns to more intermediate.

In general, it is certain that all of the studied rocks do not represent the primary magma and they have evolved through above-mentioned processes (fractional crystallization, crustal contamination and/or magma mixing). An abundance of intermediate and felsic volcanic rocks indicates strong role of continental crust which has induced assimilation and fractionation of the magmas resulting in the typical geochemical composition to continental arcs. The mafic rocks may represent more primitive material whereas the more evolved felsic rocks may represent a more mature setting. However, a majority of the mafic rocks have also evolved compositions as a sign of fractional crystallization and crustal contamination. It is also possible that several volcanoes have simultaneously erupted both basaltic and rhyolitic material. Nonetheless, a wide range of volcanic rocks suggests quite complex source areas for the magmas which could have also been spatially and temporally different.

62

9.2.2 Adakitic magmatism

The Sr/Y vs. Y diagram (Drummond and Defant 1990) and (La/Yb)N vs. (Yb)N diagram (Martin 1999) are used to distinguish adakites from normal volcanic arc magmas. Almost half of the studied volcanic rocks fall in the adakite-field in the Sr/Y vs. Y diagram (Fig. 43). In the (La/Yb)N vs. (Yb)N diagram many of the volcanic rocks also plot in the adakite-field showing that many of the volcanic rocks have adakite-like geochemical features (Fig. 44). Adakitic samples include intermediate and felsic rocks from all the volcanic belts. Apart from high Sr/Y and La/Yb ratios and high Al2O3 contents of these volcanic rocks, many other geochemical features typical for adakites, however, are missing. For example, many of the samples have higher MgO and K2O contents but lower Ni and Cr contents than typical slab-derived adakites which indicates that the volcanic rocks are not derived from melting of the subducting slab and they are not true adakites.

It is difficult to interpret the reasons for the adakitic compositions, especially when the adakitic rocks are present in each volcanic belt and there is a lot of variety in their geochemical features. They may be a part of a certain specific chemostratigraphic sequences; for example almost all the adakitic samples from the Makkola belt are from two drill cores. According to the arguments in the literature overview, it is probable that the studied volcanic rocks with the adakite-like geochemical features were formed either by fractionation of basaltic magma or by melting of a mafic lower crust rather than melting of a subducting plate. Crustal melting is a good alternative since it is suggested for certain rocks from southern Svecofennian (Väisänen et al. 2012). However, the studied volcanic rocks show a continuum from normal volcanic arc magmas to adakites which strongly refers to fractional crystallization. Similar continuous trend were noticed for example in volcanic rocks from the Philippines (Macpherson et al. 2006) and from south Tibet (Xu et al. 2015) where adakitic rocks are suggested to be formed from normal arc magmas by fractionation. After all, the adakitic rocks were formed quite deep in the mantle as the high Sr/Y and La/Yb ratios indicate a high pressure melting or fractionation of garnet-bearing mafic sources. 63

Fig 43. Sr/Y vs. Y diagram (after Drummond and Defant, 1990) to distinguish adakites from normal arc magmas. Symbols are same as in Fig. 40.

Fig 44. (La/Yb)N vs. (Yb)N (after Martin 1999) diagram to distinguish adakites from normal arc magmas. Normalized values after Boynton 1984. Symbols are same as in Fig. 40. 64

9.2.3 Source of magmas

Magmas of volcanic arcs are usually combination of mantle and crustal sources, and the source regions vary in time and composition. Discrimination diagrams were used to identify the magma source in the study area. Diagrams of Patino-Douce (1999) are based on ratios of the major element combinations and they distinguish felsic pelite derived melts from amphibolite derived melts. Almost all the volcanic rocks plot in the field of amphibolite derived melts and only one sample plot in the field of greywacke derived melts confirming the theory about fractional crystallization of a mafic source, or partial melting of a mafic source with contamination of an igneous continental crust (Figs 45–46).

Fig 45. Al2O3/(FeO+MgO+TiO2) vs. (Al2O3+FeO+MgO+TiO2) diagram of the volcanic rocks. Fields for the different melts are after Patino-Douce (1999). Symbols are same as in Fig. 40. 65

Fig 46. CaO/ (FeO+MgO+TiO2) vs. (CaO+FeO+MgO+TiO2) diagram of the volcanic rocks. Fields for the different melts are after Patino-Douce (1999). Symbols are same as in Fig. 40.

The role of subducted sediments is figured out by tracing the origin of the subduction component with Ba/Th vs. Th/Nb diagram. High contents of Th, Nb, Ta, Zr, Hf and LREE, low ratios of U/Th and Ba/Th in arc magmas are considered to be related to a contribution of partial melts of subducted sediments to the mantle source (e.g. Hawkesworth et al. 1997, Johnson and Plank 1999, Pearce et al. 2005). Both Ba and Th are mobilized in the melts but only Ba is mobilized in the fluids. The high Ba/Th ratio represents low temperature aqueous fluid derived from the dehydration of altered oceanic crust or dewatering of sediments (shallow subduction), whereas high Th/Nb component represents addition of partial melt of subducted sediments (deep subduction) (Pearce et al. 2005). A trend where both ratios are high shows that both fluid and partial melts of sediments have influenced to the mantle (Fig. 47).

66

Fig 47. Ba/Th vs. Th/Nb diagram of the volcanic rocks (after Pearce et al. 2005, Tian et al. 2008). The arrows indicate element enrichments produced by addition of aqueous fluid (increasing Ba/Th and low Th/Nb ratio) and produced by sediment addition from the subducting slab (increasing Th/Nb and low Ba/Th ratio). Symbols are same as in Fig. 40.

The discrimination diagrams suggest that the magmas derive from a mafic source which has been affected by a subduction component from the subducting crust and sediments. The possible source for the magmas can be a combination of melts from the igneous part of the subducting plate and melts from the mantle beneath the volcanic arc. Subsequently, the magmas have evolved in the presence of continental crust.

9.3 Relations to plutonic rocks

The study area is dominated by different plutonic rocks which vary from gabbros to granodiorites and granites. Most of the plutonic rocks in the vicinity of the volcanic rocks exhibit similar geochemical features as the volcanic rocks (diagrams not shown). As well as the major element geochemistry of the plutonic rocks, the trace element compositions are also similar to the volcanic rocks. Plutonic rocks are also enriched in 67

LIL-elements relative to HFSE-elements and they are characterized by low values of Ti and Nb.

The Y+Nb vs. Rb discrimination diagram of Pearce et al. (1984) is used to find out the tectonic setting of the plutonic rocks that situate in the vicinity of the volcanic rocks. Most of the rocks plot in the volcanic arc granite (VAG) field in the diagram and some of the rocks plot in syn-COLG ad WPG fields (Fig. 48). It can thus be noted that the majority of the rocks are plutonic equivalents to the volcanic rocks, and most of them were formed in a continental arc setting.

Fig 48. Y+Nb vs. Rb granite tectonic discrimination diagram of the plutonic rocks (after Pearce et al. 1984). syn-COLG = Syn-collision granite, WPG = Whithin-plate granite, VAG = Volcanic arc granite, ORG = Ocean ridge granite.

9.4 Regional interpretations

Because of the many noticed geochemical similarities with the Tampere and Häme belts, it is presumable that the studied volcanic rocks originate from similar tectonic setting. The studied volcanic rocks and the Tampere belt seem to have more mature characteristics compared to the Häme belt, but all the volcanic rocks derive from 68 volcanic arc environment. The tectonic history of the Fennoscandian shield for a period between 1.92 and 1.79 Ga is characterized by five different orogenies that included several older microcontinents (Keitele, Bergslagen, and Bothnia) that have been interpreted to underlie the CFGC on the basis of lithologic, geochemical, isotope, and geophysical data (Lahtinen et al. 2005, Lahtinen et al. 2009) (Fig. 49). The 1.905–1.88 Ga volcanic rocks of the Tampere belt and the CFGC are thought to represent volcanic arc environment which formed close to the western and southern margins of the mature Keitele microcontinent. Instead, the 1.89–1.88 Ga volcanic rocks of the Häme belt represent volcanic arc which formed as a result of south-directed subduction beneath the Bergslagen microcontinent and the hypotethical pre-1.92 Ga arc crust of the Häme belt (Kähkönen 2005, Lahtinen et al. 2005). The similar ages (1894±4 Ma, 1891±4 Ma and 1889 Ma) obtained from the studied volcanic rocks indicate that the rocks may have formed in one of these events.

The two subduction processes belong to the microcontinent accretion stage (1.92–1.87 Ga), the first stage of the evolution of Fennoscandia. The stage included collision of the Kola and Karelian (Lapland-Kola orogeny), collision of the Karelian with both the Norrbotten craton and the Keitele microcontinent, and attachment of the Bothnia microcontinent (Lapland-Savo orogeny) (Lahtinen et al. 2005). The Lapland- Savo orogeny can be further divided to the northern and southern segments from which the southern segment was formed during the collision of the Karelian craton with the Keitele microcontinent (Lahtinen et al. 2009). The Karelia–Keitele collision caused northward subduction at the southern edge of the Karelia–Keitele collision which gave rise to mature arc-type magmatism at 1.90–1.89 Ga in the Tampere belt and north of it. The subduction ceased when the Bergslagen microcontinent and the Häme belt collided with the Keitele-Karelia collage at 1.89–1.88 Ga resulting in the Fennian orogen. According to the more mature characteristics and more nearby location of the Tampere belt, the studied volcanic rocks may originate from the same setting as the Tampere belt. 69

Fig 49. Map of the pre-1.92 Ga major units in the Fennoscandian Shield (Lahtinen et al. 2005).

10. Conclusions

The conclusions of the study can be summarized by answering to the questions from the introduction:

1) Are the separate volcanic rock belts geochemically and mineralogically similar and do they represent one larger geological unit?

All the volcanic rocks in the study area are geochemically very similar and there are no significant differences between the separate belts. Similar geochemical features of the volcanic rocks suggest that they derive from the same tectonic setting. The volcanic rocks have originally formed one continuous belt which has broken into smaller fragments during later tectonic processes.

Both the major and trace element geochemistry are similar in each belt apart from a few single exceptions (e.g. strongly altered samples). All the five volcanic belts have a wide range of volcanic rocks varying from basaltic to rhyolitic in composition. The Makkola and Korospohja belts represent slightly more felsic and evolved belts whereas the Kauppila, Halttula and Leivonmäki belts have more mafic compositions. Intermediate rocks are the most common in every region. Despite some differences in the lithology of 70 the rocks, the main rock types are the same and they are found from several belts in the study area.

2) What the geochemistry of the volcanic rocks can tell about the tectonic environment where they have formed?

The geochemistry of the volcanic rocks is typical for a volcanic arc environment. All the rocks exhibit volcanic arc-like geochemical features including enrichment in LIL- elements (Rb, Ba, Th, K, Pb and Sr) relative to HFSE-elements (Nb, P, Zr and Ti and REE). The trace element and the major element geochemistry of the volcanic rocks support the volcanic arc setting. Many of the features are characteristic for especially continental, Andean-type arcs: elevated Al2O3 and K2O contents, large amount of intermediate rocks, abundance of high-K calc alkaline rocks, abundance of plutonic rocks, variety of calc-alkaline to shoshoniitic rocks and an igneous rock series from basaltic to rhyolitic compositions. Some of the rocks have also adakite-like geochemical features such as high Sr/Y and La/Yb ratios and high Al2O3 content, which are known to be specific to certain volcanic arcs.

3) Are the volcanic rocks similar to other volcanic rocks in the southern Finland?

The studied volcanic rocks resemble the volcanic rocks from the Tampere and Häme belts with volcanic arc setting. Both the major and trace element compositions of these belts are very similar to the studied volcanic rocks. Nevertheless, a few differences were found and the studied rocks seem to be more evolved than the rocks from the Häme belt. For example, K2O content is slightly higher in the acid rocks in the study area and

Al2O3 contents are lower in some of the basic and intermediate rocks in the study area. LIL-element contents (Rb, Sr, Ba and Ce) are also higher in some of the samples from the study area. Zr content varies more in the studied rocks and the content is lower in some of the studied intermediate rocks. The volcanic rocks from the Forssa group have slightly flatter REE-trend in the REE diagram compared to the studied rocks. Apart from the noticed differences the main features are generally similar. According to the more mature characteristics and more nearby location of the Tampere belt, the studied volcanic rocks may originate from the same setting as the volcanic rocks in the Tampere belt. 71

11. Acknowledgements

I would like to thank my supervisor Perttu Mikkola from Geological Survey of Finland, providing the opportunity to work in the central Finland mineral potential estimation project. I am also grateful to Markku Väisänen from the University of Turku for his constructive suggestions during the development of the Master’s thesis. My special thanks are extended to geologist Marjaana Ahven for her valuable information about the volcanic rocks. She introduced the volcanic rocks to me in the field and advised with the division of the study area and with the rock type descriptions. I am also grateful to rest of the project’s staff for doing the field work and providing the material to the study.

Finally, I wish to thank Aku and Saana for their support and encouragement throughout the making of the Master’s thesis.

72

12. References

Audétat, A. & Kepler, H. 2005. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth and Planetary Science Letters 232, 393– 402. Brenan, J.M., Shaw, H.F., Ryerson, F.J. & Phinney, D.L. 1995. Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta 59, 3331–3350. Boynton, W.V. 1984. Cosmochemistry of the rare earth elements; meteorite studies. In: Rare earth element geochemistry. Henderson, P. (Eds), Elsevier Sci. Publ. Co., Amsterdam, 63–114.

Cameron, W.E., McCulloch, M.T. & Walker, D.A. 1983. Boninite petrogenesis: Chemical and Nd-Sr isotopic constraints. Earth and Planetary Science Letters 65, 75– 89.

Castillo, P.R. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin 51, 257—268.

Coldwell, B., Clemens, J. & Petford, N. 2011. Deep crustal melting in the Peruvian Andes: Felsic magma generation during delamination and uplift. Lithos 125, 272–286. Condie, K.C. 1997. Tectonic settings. In: Plate tectonics and crustal evolution. 4th ed. Butterworth-Heinemann. 70–109. Cross, T.A. & Pilger Jr, R.H. 1982. Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions. Geological Society of American Bulletin 93, 545–562. Davidson, J.P, Hora, J.M, Garrison, J.M & Dungan, M.A. 2005. Crustal Forensics in Arc Magmas. Journal of Volcanology and Geothermal Research 140, 157–170. Defant, M.J. & Drummond, M.S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665.

Ducea, M.N., Saleeby, J.B. & Bergantz, G. 2015. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences 43, 299–331. Front, K. & Nurmi, P. 1987. Characteristics and Geological Setting of Synkinematic Svecokarelian Granitoids in Southern Finland. Precambrian Research 35, 207–224. Gill, J.B. 1981. Orogenic Andesites and Plate Tectonics. Minerals and rocks 16. Springer-Verlag, Berlin-Heidelberg-New York, 390 p. Hacker, B.R., Kelemen, P.B. & Behn, M.D. 2011. Differentiation of the continental crust by relamination. Earth and Planetary Science Letters 307, 501–516. Hacker B.R, Kelemen, P.B & Behn, M.D. 2015. Continental lower crust. Annual Review of Earth and Planetary Sciences 43, 167–205.

73

Hakkarainen, G. 1994. Geology and geochemistry of the Hämeenlinna-Somero Volcanic Belt, southwestern Finland: a Paleoproterozoic island arc. In: Nironen, M. & Kähkönen, Y. (Eds.), Geochemistry of Proterozoic supracrustal rocks in Finland. Geological Survey of Finland, Special Paper 19, 85–100. Hastie, A.R., Kerr, A. C., Pearce, J.A. & Mitchell, S.F. 2007. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram. Journal of Petrology 48, Number 12, 2341–2357. Hawkesworth, C.J., Gallaghera, K., Hergt, J.M. & McDermott, F. 1994. Destructive plate margin magmatism: Geochemistry and melt generation. Lithos 33, 169–188. Hawkesworth, C., Turner, S., Peate, D. McDermott, F. & Calsteren, P. 1997. Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chemical Geology 139, 207–221. Herzberg, C. T., Fyfe, W. S. & Carr, M. J. 1983. Density constraints on the formation of the continental Moho and crust. Contributions to Mineralogy and Petrology 84, 1–5. Hickey, R.L. & Frey, F.A. 1982 Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta 46, 2099– 2115. Hildreth W. & Moorbath S. 1988. Crustal contribution to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology 98, 455–489.

Ikävalko, O. 1981. Makkolan-Kokonkylän suprakrustinen vyöhyke. Unpublished M.Sc. thesis, University of Helsinki, Department of geology and mineralogy, 119 p. Janoušek, V., Farrow, C. M. & Erban, V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology 47, 1255–1259. Jarrard, R.D 1986. Relations Among Subduction Parameters. Reviews of geophysics 24, 217–284. Johnson, M.C. & Plank, T. 1999. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems 1, 1–26. Kay, R.W. 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research 4, 117–132. Kay, S.M. & Kay, R.W. 1994. Aleutian magmas in space and time. In: G. Plafker & H. C. Berg (Eds.), The Geology of Alaska, Geological Society of America, The Geology of North America series v. G-l, 687–722.

Kim, J. & Jacobi, R.D. 2002. Boninites: characteristics and tectonic constraints, northeastern Appalachians. Physics and Chemistry of the Earth 27, 109–147.

Kähkönen, Y. 1989. Geochemistry and petrology of the metavolcanic rocks of the early Proterozoic Tampere Schist Belt, southern Finland. Geological Survey of Finland, Bulletin 345, 1–104.

74

Kähkönen, Y. 1994. Shoshonitic and high-K metavolcanic rocks in the southern parts of the Paleoproterozoic Tampere Schist Belt, southern Finland: evidence for an evolved arc-type setting. In: Nironen, M. & Kähkönen, Y. (Eds.), Geochemistry of Proterozoic supracrustal rocks in Finland. Geological Survey of Finland, Special Paper 19, 101–115. Kähkönen, Y. 2005. Svecofennian supracrustal rocks. In: Lehtinen, M., Nurmi, P.A., Rämö, O.T. (Eds.), Precambrian Geology of Finland - Key to the Evolution of the Fennoscandian Shield. Elsevier B.V., Amsterdam, 343–406.

Laajoki, K. 1986. The Precambrian supracrustal rocks of Finland and their tectono- exogenic evolution. Precambrian Research 33, 67–85. Lahtinen, R. 1996. Geochemistry of Palaeoproterozoic supracrustal and plutonic rocks in the Tampere-Hämeenlinna area, southern Finland. Geological Survey of Finland, Bulletin 389, 1–113. Lahtinen, R., Korja, A. & Nironen, M. 2005. Paleoproterozoic tectonic evolution. In: Lehtinen, M., Nurmi, P.A., Rämö, O.T. (Eds.), Precambrian Geology of Finland - Key to the Evolution of the Fennoscandian Shield. Elsevier B.V., Amsterdam, 481–532.

Lahtinen, R., Huhma, H., Kähkönen, Y. & Mänttäri, I. 2009. Paleoproterozoic sediment recycling during multiphase orogenic evolution in Fennoscandia, the Tampere and Pirkanmaa belts, Finland. Precambrian Research 174, 310–336. Lee, C.A & Bachmann, O. 2014. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth and Planetary Science Letters 393, 266–274. Li, C., Arndt, N.T., Tang, Q. & Ripley, E.M. 2015. Trace element indiscrimination diagrams. Lithos 232, 76–83. Long, X., Wilde, S.A., Wang, Q., Yuan, C., Wang, X., Li, J., Jiang, Z. & Dan, W. 2015. Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth and Planetary Science Letters 414, 30–44. Macpherson, C.G., Dreher, S.T. & Thirlwall, M. F. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243, 581–593. Manning, C.E. 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters 223, 1–16. Martin, H. 1999. The adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411–429. Mikkola, P., Aatos, S., Ahven, M., Hartikainen, A., Heilimo, E., Luukas, J., Niemi, S. & Ruotsalainen, A. 2014. Keski-Suomen mineraalipotentiaalin arviointi -hankkeen väliraportti ja jatkotutkimustarpeet. Geological Survey of Finland, Archive report 89/2014, 1–6. Morris, J.D., Leeman, W.P., & Tera, F. 1990. The subducted component in island arc lavas: Constraints from Be isotopes and B-Be systematics. Nature 344, 31–36. 75

Nironen, M. 2005. Proterozoic orogenic granitoid rocks. In: Lehtinen, M., Nurmi, P.A., Rämö, O.T. (Eds.), Precambrian Geology of Finland - Key to the Evolution of the Fennoscandian Shield. Elsevier B.V., Amsterdam, 443–480. Ota, T. & Kaneko, Y. 2010. Blueschists, eclogites, and subduction zone tectonics: Insights from a review of Late Miocene blueschists and eclogites, and related young high-pressure metamorphic rocks. Gondwana Research 18, 167–188. Pearce, J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorp, R.S., ed., Andesites: Orogenic Andesites and Related Rocks, John Wiley and Sons, New York, 525–548. Pearce, J.A. 1983. Role of the sub-continental lithosphere in magma genesis at acrive continental margins. In: Hawkesworth, C.J. & Norry, M.J., eds., Continental Basalts and Mantle Xenoliths, Shiva Publishing Ltd., Cambridge, Mass., 230–249. Pearce, J. A., Harris, N. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956– 983. Pearce, J.A. & Peate, D.W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251–285. Pearce, J.A. 1996. A user’s guide to basalt discrimination diagrams. In: Wyman, D.A., ed., Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes 12, 79–113. Pearce, J.A., Stern, R.J., Bloomer, S.H. & Fryer, P. 2005. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems 6, 1–27. Perfit, M.R., Gust, D.A., Bence, A.E., Arculus, R.J. & Taylor, S.R. 1980. Chemical Characteristics of Island-Arc Basalts - Implications for Mantle Sources. Chemical Geology 30, 227–256. Plank, T. & Langmuir, C.H. 1988. An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters 90, 349–370. Rapp, R. P., Shimizu, N., Norman, M. D. & Applegate, G.S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa, Chemical Geology 160, 335–356. Rasilainen, K., Lahtinen, R. & Bornhorst, T. J. 2007. The Rock Geochemical Database of Finland Manual. Geological Survey of Finland, Report of Investigation 164, 1–38. Reubi, O. & Blundy, J. 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461, 1269–1273.

Sen, G. 2014. Subduction Zone Magmas. In: Petrology: Principles and Practice. Springer, 209–242. Shervais, J.W & Jean, M.M. 2012. Inside the subduction factory: Modeling fluid mobile element enrichment in the mantle wedge above a subduction zone. Geochimica et Cosmochimica Acta 95, 270–285. 76

Sipilä, P. & Kujala, H. 2014. Hämeen vyöhykkeen vulkaniittien geokemia. Geological survey of Finland. Archive report 119/2014, 1–23. Stern, C.R. 2011. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Research 20, 284–308. Stern, R.J. 2002. Subduction zones. Reviews of Geophysics 40, 1012, doi:10.1029/2001RG000108. Stern, R.J. 2010. The anatomy and ontogeny of modern intra-oceanic arc systems. Geological Society, London, Special Publications 338, 7–34. Stolper, E. & Newman, S. 1994. The role of water in the petrogenesis of Mariana trough magmas. Earth and Planetary Science Letters 121, 293–325. Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders, A.D. & Norry, M.J. (eds.) Magmatism in the Ocean Basins. Geological Society, London, Special Publication 42, 313–345. Tatsumi, Y., Hamilton, D.L. & Nesbitt R.W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research 29, 293–309. Tian, L, Castillo, P.R., Hawkins, J.W., Hilton, D.R., Hannan, B.B. & Pietruszka, A.J. 2008. Major and trace element and Sr-Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research, 178, 657– 670. Väisänen, M., Johansson, Å., Andersson, U.B., Eklund, O. & Hölttä, P. 2012. Palaeoproterozoic adakite- and TTG-like magmatism in the Svecofennian orogen, SW Finland. Geologica Acta 10, 351–371.

Wen, D., Chung, S., Song, B., Iizuka, Y., Yang, H., Ji, J., Liu, D. & Gallet, S. 2008. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos 105, 1–11. Winchester, J.A. & Floyd, P.A. 1977. Geochemical discrimination of different magma series and the differentiation products using immobile elements. Chemical Geology 20, 325—343.

Winter, J.D. 2001. Igneous and Metamorphic Petrology. Department of Geology, Whitman College. Prentice-Hall Inc. Upper Saddle River, New Jersey, 1–697. Wood, D.A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establish the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province, Earth and Planetary Science Letters 50, 11–30. Xu, W., Zhang, H., Luo, B., Guo, L. & Yang, H. 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet. Lithos 232, 197– 210.

Appendices

Appendix 1 – Whole rock analyses of the volcanic rocks (*sample analyzed with XRF)

Sample Location SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 Mg# S Cl Cr Ni Sc V % % % % % % % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg MAAH-2012-116.1 Makkola 52.40 0.83 17.70 8.89 9.88 0.19 4.65 7.71 3.47 0.94 0.48 28.87 <60 199 45 <20 22.80 200.00 PIM$-2011-220.1 Makkola 69.10 0.43 15.30 3.31 3.68 0.08 0.61 1.90 3.41 4.68 0.14 12.51 250. <60 <20 <20 8.12 27.50 PIM$-2011-221.1 Makkola 47.20 1.06 15.50 11.79 13.10 0.22 5.75 9.43 2.36 2.11 0.32 27.46 228 155 <20 <20 39.30 445.00 KK4$-2012-702.1 Makkola 69.50 0.27 16.40 2.87 3.19 0.07 0.87 2.94 2.62 3.66 0.09 19.04 <60 <60 <20 <20 4.74 9.15 KK4$-2012-703.1 Makkola 59.80 0.73 18.10 6.27 6.97 0.12 1.24 5.49 3.68 2.40 0.38 13.30 232 60 <20 <20 17.40 65.50 KK4$-2012-809.1 Makkola 51.00 0.95 18.80 9.90 11.00 0.15 3.46 8.98 3.85 0.98 0.47 21.34 <60 <60 <20 <20 27.50 284.00 KK4$-2012-810.1 Makkola 73.60 0.27 13.90 2.53 2.81 0.03 0.60 4.64 0.70 2.91 0.05 15.55 <60 <60 <20 <20 9.97 6.69 KK4$-2012-821.1 Makkola 63.60 0.63 16.90 5.53 6.15 0.11 1.31 3.02 4.57 3.00 0.31 15.52 63 68 <20 <20 14.70 82.40 KK4$-2012-829.1 Makkola 59.60 0.64 16.60 6.52 7.25 0.15 2.06 5.77 3.60 3.47 0.33 19.68 348 <60 <20 <20 16.20 98.30 MAAH-2012-3.2 Makkola 54.70 0.84 17.80 9.09 10.10 0.17 4.13 8.04 3.31 0.39 0.19 26.07 <60 <60 72 <20 35.00 272.00 MAAH-2012-15.1 Makkola 68.30 0.50 15.10 3.27 3.63 0.06 1.34 2.16 1.39 6.65 0.29 24.15 <60 78 <20 <20 11.90 56.70 MAAH-2012-32.1 Makkola 74.20 0.08 14.40 1.58 1.76 0.05 0.29 0.91 4.08 3.84 0.03 12.55 <60 <60 <20 <20 2.94 3.06 HEKI-2012-1.2 Makkola 46.60 1.07 20.10 10.44 11.60 0.15 3.24 10.74 3.36 1.03 0.50 19.41 167 177 <20 <20 34.00 n.a. MAAH-2012-53.1 Makkola 52.00 1.17 17.40 11.25 12.50 0.18 5.73 6.58 3.21 0.33 0.59 28.33 92 <60 <20 <20 37.20 n.a. AAH$-2012-66.1 Makkola 63.70 0.76 17.10 5.72 6.36 0.10 2.20 2.83 3.90 2.38 0.21 22.97 <60 <60 140 40 <20 108.00 JKL$-2012-36.1 Makkola 63.50 0.58 16.20 5.01 5.57 0.13 2.36 3.16 4.86 2.83 0.27 26.76 269 64 <20 <20 24.20 79.60 JKL$-2012-45.1 Makkola 49.70 1.00 17.50 11.16 12.40 0.21 4.20 9.26 3.41 0.73 0.37 22.60 100 91 <20 <20 45.20 263.00 JKL$-2012-68.1 Makkola 66.80 0.49 16.30 2.06 2.29 0.32 1.45 1.14 0.59 9.82 0.09 35.32 85 91 <20 <20 13.80 22.50 JKL$-2012-72.1 Makkola 70.30 0.45 14.90 3.46 3.84 0.10 0.59 1.25 4.43 3.52 0.10 11.70 <60 89 <20 <20 25.90 11.90 JKL$-2012-88.1 Makkola 55.40 0.91 18.60 8.48 9.42 0.12 2.69 8.49 2.62 1.12 0.25 19.76 75 <60 23 <20 34.50 220.00 KK4$-2012-719.2 Makkola 50.60 0.65 13.50 8.79 9.77 0.15 10.00 8.86 2.05 1.72 0.18 46.88 <60 149 626 173 44.20 223.00 KK4$-2012-820.1 Makkola 60.00 0.68 16.60 6.61 7.35 0.11 2.28 5.31 3.76 3.01 0.34 21.10 194 61 22 <20 33.80 143.00 KK4$-2012-903.1 Makkola 54.10 0.74 18.90 7.92 8.80 0.13 3.50 9.78 3.29 0.28 0.18 25.54 88 <60 71 23 44.30 232.00 KK4$-2012-903.2 Makkola 56.00 0.75 18.20 8.05 8.95 0.13 2.62 11.21 1.26 0.22 0.20 20.15 2031 79 57 29 43.20 243.00 KK4$-2012-903.4 Makkola 56.10 0.69 16.00 8.76 9.74 0.22 4.16 11.14 1.11 0.21 0.15 26.92 110 85 42 <20 36.70 182.00 KK4$-2012-908.1 Makkola 56.30 0.70 17.40 8.81 9.79 0.16 4.21 6.91 3.12 0.79 0.15 27.05 69 <60 25 <20 41.70 222.00 KK4$-2012-911.1 * Makkola 54.70 0.69 16.90 9.99 11.10 0.06 3.57 3.22 3.82 2.11 0.27 21.71 7702 121 <20 <20 20.00 142.00 KK4$-2012-911.2 * Makkola 47.10 0.90 19.60 11.25 12.50 0.07 4.17 4.23 4.03 2.83 0.31 22.34 4984 127 <20 <20 24.00 215.00

Sample Location Co Cu Zn Ga Rb Ba Sr Ta Nb Hf Zr Y Th La Ce Nd mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg MAAH-2012-116.1 Makkola 22.90 115 108 27 14.4 902 1192 0.41 6.31 1.74 68.60 17.70 2.95 48.90 99.00 48.20 PIM$-2011-220.1 Makkola 4.95 <20 82 <20 97.9 1399 300 2.21 22.10 5.68 233 18.50 13.40 44.10 87.60 37.00 PIM$-2011-221.1 Makkola 34.20 171 120 <20 37.6 1094 1064 0.26 3.13 0.95 34.30 12.80 0.79 13.50 30.80 18.60 KK4$-2012-702.1 Makkola 2.95 <20 41 <20 64.6 1427 435 1.43 12.70 4.20 141 16.10 7.42 55.60 97.60 40.00 KK4$-2012-703.1 Makkola 9.90 70 96 29 56.2 1107 1113 0.64 9.40 3.01 94.30 23.00 4.65 31.60 64.60 33.80 KK4$-2012-809.1 Makkola 27.70 <20 118 22 21.1 839 1131 <0.2 5.64 1.56 49.80 16.20 1.37 23.30 50.80 29.00 KK4$-2012-810.1 Makkola 1.98 <20 52 <20 102 1150 566 2.00 14.10 5.68 186 22.40 9.71 39.50 80.00 34.90 KK4$-2012-821.1 Makkola 9.48 20 92 23 127 949 365 2.66 15.90 4.35 137 20.40 9.97 10.40 24.40 13.00 KK4$-2012-829.1 Makkola 14.30 89 110 <20 63.5 1698 725 1.53 13.20 3.77 124 19.80 8.70 33.90 72.10 33.60 MAAH-2012-3.2 Makkola 28.90 86 103 27 10.3 214 185 <0.2 3.90 2.23 66.10 20.80 1.37 5.10 14.50 9.13 MAAH-2012-15.1 Makkola 7.37 <20 58 <20 94.5 2932 674 1.18 12.70 3.80 115 16.40 6.96 48.50 105.00 45.10 MAAH-2012-32.1 Makkola 0.90 <20 40 <20 56.6 1413 340 1.23 11.00 4.14 127 15.00 6.75 10.70 25.30 9.39 HEKI-2012-1.2 Makkola 21.60 125 144 34 21.3 442 1147 0.23 5.03 1.60 53.40 19.40 1.05 19.10 44.50 27.70 MAAH-2012-53.1 Makkola 20.80 199 140 24 5.25 276 881 0.29 5.40 1.91 69.10 20.70 1.80 19.70 47.00 27.20 AAH$-2012-66.1 Makkola n.a. <20 90 21 104 598 414 n.a. <7 n.a. 167 29.00 11 <30 98.00 n.a. JKL$-2012-36.1 Makkola 11.30 25 68 22 65.2 1139 357 1.06 18.70 5.23 184 26.10 10.80 47.90 96.90 43.40 JKL$-2012-45.1 Makkola 32.10 76 138 27 14.2 801 1099 0.36 7.32 2.40 88.80 21.50 2.45 28.40 62.60 35.10 JKL$-2012-68.1 Makkola 1.68 <20 56 23 188 1846 290 0.94 19.00 4.89 179 23.60 8.67 30.20 79.90 42.60 JKL$-2012-72.1 Makkola 3.89 <20 136 <20 132 1440 332 2.15 36.80 10.30 367 36.10 21.70 73.60 145.00 61.30 JKL$-2012-88.1 Makkola 19.70 178 98 24 19.6 446 551 0.28 4.92 2.01 68.20 21.30 1.54 12.30 26.30 15.30 KK4$-2012-719.2 Makkola 46.40 72 86 <20 64.5 400 380 0.32 5.41 1.88 62.80 14.70 2.44 13.70 29.50 15.20 KK4$-2012-820.1 Makkola 19.80 30 92 22 104 1142 751 1.12 19.50 5.11 180 25.20 10.60 51.00 104.00 48.10 KK4$-2012-903.1 Makkola 27.00 108 80 28 3.17 176 469 0.29 4.71 2.71 94.30 27.70 2.72 9.62 50.20 12.40 KK4$-2012-903.2 Makkola 27.90 185 105 22 1.81 133 404 0.26 3.89 1.94 62.10 21.10 1.05 6.60 17.00 10.20 KK4$-2012-903.4 Makkola 26.00 56 93 21 2.41 45 315 0.28 4.45 2.28 73.40 20.20 1.46 9.62 19.80 11.50 KK4$-2012-908.1 Makkola 28.80 101 104 <20 17.7 360 341 0.23 3.54 1.89 60.90 21.10 0.99 4.96 12.10 7.55 KK4$-2012-911.1 * Makkola n.a. 587 83 23 73 829 584 n.a. <7 n.a. 134 15 10 <30 90 n.a. KK4$-2012-911.2 * Makkola n.a. 305 80 20 89 991 651 n.a. <7 n.a. 139 18 15 <30 70 n.a.

Sample Location Sm Eu Tb Yb Lu Tm Gd Dy Ho Er Pr U Mo Cd Sn Sb mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg MAAH-2012-116.1 Makkola 8.24 2.12 0.77 1.56 0.24 0.24 6.66 3.95 0.67 1.84 12.30 0.86 <10 n.a <20 <100 PIM$-2011-220.1 Makkola 6.41 1.24 0.68 1.88 0.28 0.28 5.32 3.88 0.67 1.98 10.00 3.58 <10 n.a <20 <100 PIM$-2011-221.1 Makkola 4.06 1.27 0.50 1.17 0.18 0.18 3.90 2.77 0.50 1.36 4.17 0.34 <10 n.a <20 <100 KK4$-2012-702.1 Makkola 6.28 1.27 0.62 1.81 0.29 0.25 4.79 3.27 0.58 1.72 11.20 2.39 <10 n.a. <20 <100 KK4$-2012-703.1 Makkola 7.07 1.87 0.87 2.36 0.36 0.37 6.32 4.82 0.92 2.58 8.04 1.79 <10 n.a. <20 <100 KK4$-2012-809.1 Makkola 6.20 1.83 0.68 1.42 0.20 0.23 5.22 3.52 0.61 1.60 6.56 0.56 <10 n.a. <20 <100 KK4$-2012-810.1 Makkola 6.77 0.77 0.84 2.71 0.44 0.40 5.86 4.78 0.89 2.67 9.03 2.54 <10 n.a. <20 <100 KK4$-2012-821.1 Makkola 3.53 1.00 0.66 2.12 0.30 0.31 4.06 3.94 0.79 2.24 3.08 3.62 <10 n.a. <20 <100 KK4$-2012-829.1 Makkola 6.59 1.59 0.76 1.99 0.30 0.31 5.66 4.27 0.76 2.12 8.46 3.09 <10 n.a. <20 <100 MAAH-2012-3.2 Makkola 2.94 1.01 0.61 2.35 0.36 0.36 3.73 4.00 0.83 2.52 1.84 0.69 <10 n.a. <20 <100 MAAH-2012-15.1 Makkola 8.06 1.86 0.80 1.57 0.24 0.25 6.22 3.96 0.68 1.84 11.70 1.65 <10 n.a. <20 <100 MAAH-2012-32.1 Makkola 2.41 0.47 0.43 1.90 0.31 0.27 2.57 2.72 0.56 1.69 2.49 2.69 <10 n.a. 26. <100 HEKI-2012-1.2 Makkola 5.90 1.85 0.72 1.72 0.26 0.27 5.60 3.93 0.75 2.03 6.13 0.49 <10 n.a. 20 n.a. MAAH-2012-53.1 Makkola 5.90 1.85 0.75 1.97 0.28 0.30 5.75 4.20 0.80 2.19 6.14 0.63 <10 n.a. <20 n.a. AAH$-2012-66.1 Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 n.a. <20 <100 JKL$-2012-36.1 Makkola 7.85 1.80 0.90 2.57 0.39 0.38 6.80 4.68 0.90 2.60 11.20 2.29 <10 n.a. 20 <100 JKL$-2012-45.1 Makkola 7.08 1.98 0.86 1.99 0.28 0.31 6.70 4.41 0.79 2.11 8.12 0.72 <10 n.a. 22 <100 JKL$-2012-68.1 Makkola 7.87 1.49 0.91 2.54 0.38 0.35 6.93 4.71 0.84 2.38 10.90 2.39 <10 n.a. <20 <100 JKL$-2012-72.1 Makkola 10.80 1.96 1.33 3.54 0.53 0.52 9.63 6.90 1.33 3.62 16.90 5.76 <10 n.a. 20 <100 JKL$-2012-88.1 Makkola 3.50 1.04 0.62 2.30 0.33 0.35 4.05 3.68 0.78 2.33 3.51 0.51 <10 n.a. <20 <100 KK4$-2012-719.2 Makkola 3.16 0.89 0.47 1.56 0.22 0.22 3.30 2.68 0.54 1.57 3.69 1.07 <10 n.a. <20 <100 KK4$-2012-820.1 Makkola 8.61 2.10 0.97 2.57 0.36 0.38 7.61 5.11 0.94 2.60 12.30 3.13 <10 n.a. <20 <100 KK4$-2012-903.1 Makkola 3.22 1.14 0.69 2.95 0.45 0.44 4.17 4.51 0.98 2.95 2.69 0.71 <10 n.a. <20 <100 KK4$-2012-903.2 Makkola 2.83 0.87 0.60 2.47 0.37 0.36 3.47 3.75 0.80 2.40 2.25 0.50 <10 n.a. <20 <100 KK4$-2012-903.4 Makkola 2.96 0.93 0.58 2.13 0.31 0.30 3.53 3.54 0.72 2.21 2.53 0.89 <10 n.a. <20 <100 KK4$-2012-908.1 Makkola 2.32 0.83 0.54 2.47 0.36 0.36 3.07 3.49 0.79 2.42 1.64 0.46 <10 n.a. <20 <100 KK4$-2012-911.1 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 24 <100 KK4$-2012-911.2 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100

Sample Location Pb Bi LaN YbN mg/kg mg/kg MAAH-2012-116.1 Makkola <20 <30 157.74 7.46 PIM$-2011-220.1 Makkola <20 <10 142.26 9.00 PIM$-2011-221.1 Makkola <20 <10 43.55 5.60 KK4$-2012-702.1 Makkola <20 <30 179.35 8.66 KK4$-2012-703.1 Makkola <20 <30 101.94 11.29 KK4$-2012-809.1 Makkola <20 <30 75.16 6.79 KK4$-2012-810.1 Makkola <20 <30 127.42 12.97 KK4$-2012-821.1 Makkola <20 <30 33.55 10.14 KK4$-2012-829.1 Makkola <20 <30 109.35 9.52 MAAH-2012-3.2 Makkola <20 <30 16.45 11.24 MAAH-2012-15.1 Makkola <20 <30 156.45 7.51 MAAH-2012-32.1 Makkola <20 <30 34.52 9.09 HEKI-2012-1.2 Makkola <20 <30 61.61 8.23 MAAH-2012-53.1 Makkola <20 <30 63.55 9.43 AAH$-2012-66.1 Makkola <20 <30 n.a n.a JKL$-2012-36.1 Makkola <20 <30 154.52 12.30 JKL$-2012-45.1 Makkola <20 <30 91.61 9.52 JKL$-2012-68.1 Makkola 32 <30 97.42 12.15 JKL$-2012-72.1 Makkola <20 <30 237.42 16.94 JKL$-2012-88.1 Makkola <20 <30 39.68 11.00 KK4$-2012-719.2 Makkola <20 <30 44.19 7.46 KK4$-2012-820.1 Makkola <20 <30 164.52 12.30 KK4$-2012-903.1 Makkola <20 <30 31.03 14.11 KK4$-2012-903.2 Makkola <20 <30 21.29 11.82 KK4$-2012-903.4 Makkola <20 <30 31.03 10.19 KK4$-2012-908.1 Makkola <20 <30 16.00 11.82 KK4$-2012-911.1 * Makkola <20 <30 n.a n.a KK4$-2012-911.2 * Makkola <20 <30 n.a n.a

Sample Location SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 Mg# S Cl Cr Ni Sc V % % % % % % % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg KK4$-2012-911.3 * Makkola 62.00 0.81 13.80 8.73 9.70 0.05 2.63 2.98 3.02 1.87 0.28 18.95 1275 67 <20 <20 <20 148.00 N4342013R1 32.00-32.80 Makkola 59.50 0.62 18.80 5.95 6.61 0.13 1.65 3.71 5.44 2.82 0.23 17.71 944 167 5.25 <5 12.90 68.80 N4342013R1 70.00-71.00 Makkola 66.70 0.33 15.80 3.80 4.22 0.09 1.03 3.23 2.93 4.92 0.12 17.39 445 70 6.73 <5 5.70 32.40 N4342013R1 74.00-75.00 Makkola 65.20 0.40 16.30 4.42 4.91 0.11 1.18 4.41 3.23 3.45 0.15 17.17 398. 95 6.18 <5 7.21 39.90 N4342013R1 83.80-84.10 Makkola 67.20 0.30 15.60 3.63 4.03 0.07 1.44 2.11 3.50 4.92 0.11 23.55 1600 86 <5 <5 4.72 28.30 N4342013R1 98.00-99.00 Makkola 62.80 0.52 18.10 4.95 5.50 0.11 1.35 3.24 4.89 2.54 0.19 17.47 962 144 <5 <5 8.28 50.00 N4342013R1 103.00-104.00 Makkola 69.50 0.26 15.30 2.91 3.23 0.06 0.83 4.79 1.53 3.60 0.10 18.14 492 85 <5 <5 4.36 23.40 N4342013R1 118.00-119.00 Makkola 59.70 0.58 18.90 5.59 6.21 0.11 1.54 3.78 5.14 2.65 0.21 17.62 1190 159 5.29 6.12 10.90 57.30 N4342013R2 18.00-19.00 Makkola 63.90 0.43 17.30 4.17 4.63 0.09 0.90 3.40 4.45 3.57 0.11 14.36 1760 139 6.35 <5 9.66 18.20 N4342013R2 36.00-37.00 * Makkola 63.10 0.46 18.00 4.27 4.74 0.08 0.93 2.23 5.32 3.71 0.10 14.47 2004 103 <20 <20 <20 <30 N4342013R2 110.00-111.00 Makkola 58.90 0.50 18.40 5.55 6.17 0.10 1.90 4.16 3.32 4.50 0.20 20.98 12600 <60 11.3 7.81 13.40 60.00 N4342013R2 125.00-126.00 Makkola 58.90 0.50 18.70 5.26 5.85 0.07 1.16 5.67 2.95 3.85 0.20 14.60 10800 <60 7.2 16.5 12.30 56.00 N4342013R2 136.65-137.10 Makkola 69.40 0.21 15.50 2.57 2.86 0.05 1.09 3.07 2.56 4.24 0.09 24.73 2760 87 <5 <5 3.59 18.00 N4342013R3 30.00-31.00 Makkola 57.30 0.77 15.50 8.16 9.07 0.14 2.24 6.80 1.67 1.91 0.37 17.56 409 0.01 7.3 128 29.40 127.00 N4342013R3 42.00-42.55 Makkola 51.70 0.93 18.60 9.81 10.90 0.17 2.21 6.70 3.07 1.98 0.41 14.88 599 0.01 <5 <5 11.70 35.30 N4342013R3 49.00-50.00 * Makkola 57.50 0.67 17.10 6.90 7.67 0.12 1.54 7.93 2.17 1.55 0.38 14.76 587 0.02 <20 <20 20.00 85.00 N4342013R3 65.80-66.05 Makkola 70.50 0.33 14.60 3.01 3.35 0.05 0.58 5.14 1.27 2.46 0.08 12.99 156 0.01 <5 <5 11.50 15.00 N4342013R3 85.00-86.00 Makkola 53.00 0.59 19.80 7.98 8.87 0.14 2.31 8.35 3.28 1.03 0.20 18.34 684 0.02 19.9 7.86 27.20 188.00 N4342013R3 110.00-111.00 * Makkola 48.10 0.59 19.60 6.38 7.09 0.13 1.52 11.55 2.55 1.33 0.19 15.60 408 0.02 <20 <20 25.00 133.00 N4342013R7 19.00-20.00 Makkola 53.80 0.76 19.40 7.97 8.86 0.19 6.02 5.71 3.54 0.79 0.50 36.94 1660 0.02 17.1 10.4 20.00 170.00 N4342013R7 44.00-45.00 Makkola 53.90 0.78 19.90 8.14 9.05 0.25 4.43 7.66 2.62 0.54 0.55 29.68 191 0.02 10.7 7.94 19.40 185.00 N4342013R7 75.00-76.00 Makkola 52.80 0.78 19.70 9.09 10.10 0.14 4.32 6.25 2.91 1.52 0.53 26.94 18200 0.02 11.5 7.65 19.40 167.00 N4342013R7 79.00-80.00 * Makkola 53.10 0.79 20.00 7.79 8.66 0.27 3.98 9.10 2.69 0.50 0.54 28.38 1536 0.02 <20 <20 <20 155.00 N4342013R8 12.00-13.00 * Makkola 52.20 0.86 17.90 9.90 11.00 0.19 4.55 5.65 2.70 1.66 0.41 26.29 32840 0.02 29 <20 <20 205.00 N4342013R8 29.50-30.00 * Makkola 51.10 0.80 17.70 9.54 10.60 0.21 4.60 8.63 3.73 1.23 0.46 27.23 12760 0.02 21 <20 22.00 185.00 N4342013R8 40.00-41.00 * Makkola 52.10 0.86 18.70 8.11 9.01 0.23 4.82 7.84 3.73 0.87 0.53 31.57 2311 0.02 24 <20 <20 194.00 N4342013R8 54.00-55.00 Makkola 59.00 0.62 17.60 6.58 7.31 0.18 2.76 6.07 3.11 2.26 0.38 24.56 1230 0.03 7.53 5.38 18.30 125.00 N4342013R8 59.00-60.00 Makkola 62.30 0.45 19.10 3.73 4.15 0.13 1.40 4.65 3.40 3.27 0.21 22.53 4090 0.01 5.78 9.54 8.79 46.20

Sample Location Co Cu Zn Ga Rb Ba Sr Ta Nb Hf Zr Y Th La Ce Nd mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg KK4$-2012-911.3 * Makkola n.a. 177 55 21 59 720 495 n.a. <7 n.a. 102 16.00 <10 <30 46.00 n.a. N4342013R1 32.00-32.80 Makkola 10.8 23.9 190 24 60.5 1490 625 0.40 11.80 3.54 174 19.40 4.14 38.90 69.50 34.30 N4342013R1 70.00-71.00 Makkola 6.47 23.6 95.3 <20 124 2400 744 0.53 10.50 3.25 141 13.70 8.71 40.70 66.90 25.90 N4342013R1 74.00-75.00 Makkola 8.75 21.6 94.4 22 110 1720 1020 0.50 11.00 3.60 165 15.40 7.57 42.50 68.80 28.00 N4342013R1 83.80-84.10 Makkola 6.38 29.4 207 21 145 2000 693 0.33 9.74 3.09 141 13.00 9.62 40.20 64.40 24.10 N4342013R1 98.00-99.00 Makkola 9.35 19.5 139 22 68 1360 862 0.28 11.90 3.27 159 15.00 5.92 36.10 61.20 26.80 N4342013R1 103.00-104.00 Makkola 5.73 15.3 247 21 139 1300 610 0.28 10.30 3.32 144 12.50 10.10 41.20 65.50 23.50 N4342013R1 118.00-119.00 Makkola 14.5 22.8 175 <20 73.6 1670 863 0.39 11.50 3.60 169 16.70 4.82 39.80 67.20 31.30 N4342013R2 18.00-19.00 Makkola 8.28 26.2 174 <20 102 4490 503 0.31 11.30 3.41 152 15.70 6.96 39.80 68.10 29.30 N4342013R2 36.00-37.00 * Makkola n.a. <20 88 <20 90 5286 538 n.a. 12.00 n.a. 167 19.00 <10 <30 30.00 n.a. N4342013R2 110.00-111.00 Makkola 11.3 61.7 149 20 144 946 233 0.55 12.20 4.21 188 21.20 6.34 42.80 75.00 35.90 N4342013R2 125.00-126.00 Makkola 11.1 71.7 138 20 122 802 304 0.46 11.80 3.48 161 19.00 4.81 40.40 70.00 34.30 N4342013R2 136.65-137.10 Makkola 4.87 37.2 90.8 20 135. 858 244 0.54 9.67 3.70 164 13.10 11.20 46.20 71.90 24.60 N4342013R3 30.00-31.00 Makkola 17.3 155 141 0.00 48.8 869 314 <0.2 3.22 2.06 87.30 25.80 2.66 16.00 30.80 18.10 N4342013R3 42.00-42.55 Makkola 17 28.3 205 0.00 62.5 583 621 <0.2 6.78 3.04 122 27.20 4.79 25.90 48.40 25.60 N4342013R3 49.00-50.00 * Makkola n.a. 113 97 0.00 38.0 659 473 n.a. <7 n.a. 110 24.00 11.00 <30 44.00 n.a. N4342013R3 65.80-66.05 Makkola 3.2 34.7 86.8 <20 74.7 619 235 <0.2 9.87 5.01 217 28.70 8.39 38.70 70.20 32.90 N4342013R3 85.00-86.00 Makkola 19.2 103 138 <20 26.5 489 591 <0.2 1.99 1.69 57.90 16.00 1.75 9.05 16.50 10.00 N4342013R3 110.00-111.00 * Makkola n.a. 90 81 <20 41.0 667 562 n.a. <7 n.a. 95 14.00 <10 <30 <30 n.a. N4342013R7 19.00-20.00 Makkola 20.9 31.5 89.5 0.00 15.8 584 1220 <0.2 3.62 1.85 62.30 16.60 2.53 24.20 45.40 25.20 N4342013R7 44.00-45.00 Makkola 18.2 12.2 124 0.00 14.4 684 1280 <0.2 5.14 1.95 75 18.60 2.12 25.80 47.90 27.00 N4342013R7 75.00-76.00 Makkola 27.7 43.2 117 0.00 38.5 1120 1190 <0.2 3.99 1.74 73.80 17.50 1.94 26.20 48.30 27.20 N4342013R7 79.00-80.00 * Makkola n.a. <20 81 <20 21 419 1271 n.a. <7 n.a. 129 27.00 10.00 <30 61.00 n.a. N4342013R8 12.00-13.00 * Makkola n.a. 171 133 0.00 46 852 532 n.a. <7 n.a. 93 20.00 <10 <30 47.00 n.a. N4342013R8 29.50-30.00 * Makkola n.a. 62 91 0.00 46 567 1302 n.a. <7 n.a. 117 16.00 <10 <30 62.00 n.a. N4342013R8 40.00-41.00 * Makkola n.a. 141 114 0.00 31 713 1553 n.a. <7 n.a. 130 17.00 <10 <30 61.00 n.a. N4342013R8 54.00-55.00 Makkola 10.6 59.7 114 0.00 56.9 3100 1140 <0.2 7.08 2.87 116 19.40 5.47 38.40 69.20 34.40 N4342013R8 59.00-60.00 Makkola 7.65 39.9 140 <20 72.8 1570 799 0.30 13.20 4.29 168 17.60 10.50 48.30 86.50 37.70

Sample Location Sm Eu Tb Yb Lu Tm Gd Dy Ho Er Pr U Mo Cd Sn Sb mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg KK4$-2012-911.3 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 N4342013R1 32.00-32.80 Makkola 6.22 1.93 0.68 2.11 0.29 0.29 5.36 n.a. 0.73 2.09 8.44 1.72 <5 <5 <20 <50 N4342013R1 70.00-71.00 Makkola 4.12 1.23 0.45 1.69 0.24 0.22 3.50 n.a. 0.49 1.46 7.18 3.30 <5 <5 25 <50 N4342013R1 74.00-75.00 Makkola 4.64 1.37 0.47 1.77 0.26 0.24 3.86 n.a. 0.53 1.62 7.59 2.88 17.20 <5 <20 <50 N4342013R1 83.80-84.10 Makkola 3.72 1.17 0.40 1.59 0.24 0.20 3.22 n.a. 0.44 1.33 6.83 3.64 23.30 <5 23 <50 N4342013R1 98.00-99.00 Makkola 4.47 1.46 0.49 1.74 0.25 0.24 3.93 n.a. 0.55 1.59 6.99 2.31 <5 <5 <20 <50 N4342013R1 103.00-104.00 Makkola 3.52 0.95 0.38 1.68 0.25 0.22 3.05 n.a. 0.44 1.36 6.78 3.83 9.27 <5 <20 <50 N4342013R1 118.00-119.00 Makkola 5.40 1.86 0.60 1.74 0.25 0.23 4.74 n.a. 0.61 1.74 7.95 1.88 7.52 <5 <20 <50 N4342013R2 18.00-19.00 Makkola 5.00 2.29 0.55 1.76 0.25 0.24 4.30 n.a. 0.57 1.72 7.73 2.68 <5 <5 <20 <50 N4342013R2 36.00-37.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 N4342013R2 110.00-111.00 Makkola 6.43 1.80 0.73 2.21 0.30 0.30 5.58 n.a. 0.76 2.18 9.04 2.41 <5 <5 22 <50 N4342013R2 125.00-126.00 Makkola 6.19 1.61 0.68 1.99 0.28 0.29 5.31 n.a. 0.72 2.03 8.54 1.92 <5 <5 23 <50 N4342013R2 136.65-137.10 Makkola 3.62 0.80 0.38 1.66 0.26 0.20 3.11 n.a. 0.42 1.33 7.33 4.19 <5 <5 31 <50 N4342013R3 30.00-31.00 Makkola 3.88 0.84 0.49 2.46 0.26 0.19 3.90 3.89 0.71 2.40 3.95 1.05 <5 <5 20 <50 N4342013R3 42.00-42.55 Makkola 4.66 1.12 0.57 2.45 0.26 0.18 4.64 4.28 0.76 2.42 6.04 1.79 7.50 <5 <20 <50 N4342013R3 49.00-50.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 N4342013R3 65.80-66.05 Makkola 5.91 0.61 0.64 2.72 0.30 0.22 5.21 4.51 0.81 2.63 8.40 3.39 <5 <5 <20 <50 N4342013R3 85.00-86.00 Makkola 2.00 0.50 0.23 1.49 0.13 <0.1 2.25 2.40 0.41 1.48 2.06 0.53 <5 <5 <20 <50 N4342013R3 110.00-111.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 N4342013R7 19.00-20.00 Makkola 4.48 1.30 0.37 1.45 0.11 <0.1 3.76 2.88 0.46 1.49 5.79 0.72 <5 <5 <20 <50 N4342013R7 44.00-45.00 Makkola 4.77 1.48 0.46 1.56 0.13 <0.1 4.19 3.22 0.52 1.64 6.18 0.78 <5 <5 <20 <50 N4342013R7 75.00-76.00 Makkola 4.87 1.45 0.43 1.39 <0.1 <0.1 4.08 2.97 0.47 1.49 6.20 0.67 <5 <5 <20 <50 N4342013R7 79.00-80.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 N4342013R8 12.00-13.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 N4342013R8 29.50-30.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 N4342013R8 40.00-41.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 N4342013R8 54.00-55.00 Makkola 5.78 1.44 0.50 1.64 0.15 <0.1 4.68 3.37 0.53 1.70 8.51 1.61 <5 <5 <20 <50 N4342013R8 59.00-60.00 Makkola 5.92 1.55 0.45 1.62 0.14 <0.1 4.61 3.00 0.48 1.60 9.99 3.84 <5 <5 <20 <50

Sample Location Pb Bi LaN YbN mg/kg mg/kg KK4$-2012-911.3 * Makkola <20 <30 n.a n.a N4342013R1 32.00-32.80 Makkola <20 <30 125.48 10.10 N4342013R1 70.00-71.00 Makkola 22 <30 131.29 8.09 N4342013R1 74.00-75.00 Makkola 26.5 <30 137.10 8.47 N4342013R1 83.80-84.10 Makkola 26.1 <30 129.68 7.61 N4342013R1 98.00-99.00 Makkola 22.7 <30 116.45 8.33 N4342013R1 103.00-104.00 Makkola 32.2 <30 132.90 8.04 N4342013R1 118.00-119.00 Makkola 21.2 <30 128.39 8.33 N4342013R2 18.00-19.00 Makkola 26.8 <30 128.39 8.42 N4342013R2 36.00-37.00 * Makkola 21 <30 n.a n.a N4342013R2 110.00-111.00 Makkola <20 <30 138.06 10.57 N4342013R2 125.00-126.00 Makkola 23.4 <30 130.32 9.52 N4342013R2 136.65-137.10 Makkola <20 <30 149.03 7.94 N4342013R3 30.00-31.00 Makkola <20 n.a. 51.61 11.77 N4342013R3 42.00-42.55 Makkola <20 n.a. 83.55 11.72 N4342013R3 49.00-50.00 * Makkola <20 n.a. n.a n.a N4342013R3 65.80-66.05 Makkola 28.7 n.a. 124.84 13.01 N4342013R3 85.00-86.00 Makkola 20.2 n.a. 29.19 7.13 N4342013R3 110.00-111.00 * Makkola <20 n.a. n.a n.a N4342013R7 19.00-20.00 Makkola <20 n.a. 78.06 6.94 N4342013R7 44.00-45.00 Makkola <20 n.a. 83.23 7.46 N4342013R7 75.00-76.00 Makkola <20 n.a. 84.52 6.65 N4342013R7 79.00-80.00 * Makkola <20 n.a. n.a n.a N4342013R8 12.00-13.00 * Makkola <20 n.a. n.a n.a N4342013R8 29.50-30.00 * Makkola <20 n.a. n.a n.a N4342013R8 40.00-41.00 * Makkola 20 n.a. n.a n.a N4342013R8 54.00-55.00 Makkola <20 n.a. 123.87 7.85 N4342013R8 59.00-60.00 Makkola 33.4 n.a. 155.81 7.75

Sample Location SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 Mg# S Cl Cr Ni Sc V % % % % % % % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg N4342013R8 72.00-73.00 * Makkola 52.60 0.84 18.50 7.40 8.22 0.32 5.68 5.46 3.71 1.95 0.53 37.34 14870 0.02 40 <20 23 186 N4342013R8 97.00-98.00 Makkola 62.00 0.46 18.60 3.91 4.35 0.09 1.65 4.47 3.53 3.36 0.23 24.65 3610 0.02 6.19 5.12 9.69 53.30 N4342013R9 10.00-11.00 Makkola 65.40 0.51 15.60 4.34 4.82 0.10 3.66 3.24 2.97 3.12 0.22 39.57 1840 264 10.6 9.29 13 87 N4342013R9 16.00-17.00 Makkola 67.10 0.32 16.00 3.54 3.93 0.06 1.56 2.86 2.70 4.63 0.12 25.50 7190 201 7.29 6.25 7.81 38.50 N4342013R9 44.00-45.00 * Makkola 65.50 0.48 17.40 3.80 4.22 0.12 0.93 3.42 3.61 3.58 0.14 15.97 3818 171 <20 <20 <20 <30 N4342013R9 75.30-76.00 * Makkola 72.10 0.43 12.30 4.04 4.49 0.04 1.25 2.58 2.63 2.60 0.15 19.36 22170 119 27 <20 <20 75 N4342013R9 80.00-81.00 * Makkola 57.90 0.51 15.90 8.90 9.89 0.11 3.14 4.42 2.69 2.89 0.24 21.49 37600 161 23 <20 <20 96 N4342013R9 125.00-126.00 * Makkola 61.10 0.57 16.40 6.21 6.90 0.06 3.21 4.01 2.85 2.36 0.23 28.63 38430 107 53 <20 <20 106 N4342013R9 145.00-146.00 Makkola 60.60 0.54 17.20 6.17 6.86 0.04 2.33 3.42 3.67 2.88 0.24 22.65 47300 119 11.8 6.18 16.40 104 N4342013R9 165.00-166.00 Makkola 63.60 0.44 17.60 4.27 4.74 0.11 1.61 2.78 3.63 4.72 0.18 22.65 4060 283 7.86 <5 8.11 47.60 N4342013R9 171.25-171.75 Makkola 54.10 0.72 16.40 9.99 11.10 0.37 4.40 7.53 2.75 1.91 0.33 25.47 255 949 38.9 11.6 31.30 224 N4342013R9 192.00-193.00 Makkola 55.20 0.52 18.10 8.68 9.65 0.09 4.30 3.45 2.75 4.15 0.21 27.76 22750 265 <20 <20 <20 83 N4342013R10 31.00-32.00 Makkola 62.30 0.47 18.20 4.49 4.99 0.10 1.67 3.56 4.28 3.82 0.18 22.40 1640 184 7.77 <5 9.99 53.90 N4342013R10 48.00-49.00 Makkola 61.60 0.51 18.30 4.77 5.30 0.11 1.72 5.00 3.56 3.29 0.21 21.87 1630 431 8.68 <5 11.60 68.10 N4342013R10 51.00-52.00 * Makkola 61.30 0.60 17.70 5.91 6.57 0.12 2.03 4.53 3.77 2.31 0.22 21.04 10470 322 <20 <20 <20 99 N4342013R10 72.00-73.00 * Makkola 59.40 0.60 17.90 6.94 7.71 0.11 2.84 5.58 2.78 2.09 0.24 24.11 6416 474 <20 <20 <20 100 N4342013R10 96.00-97.00 Makkola 66.80 0.36 17.10 3.07 3.41 0.07 1.23 2.96 4.91 2.63 0.12 23.72 3450 220 <5 <5 7.42 31.50 M321481R304 117.65-118.65 Makkola 54.00 0.58 15.80 9.18 10.20 0.16 6.45 5.75 3.04 0.84 0.18 35.29 44840 98 216 32 24 209 KK4$-2012-802.1 Makkola 69.10 0.31 15.80 3.46 3.84 0.07 0.93 3.06 4.18 2.19 0.11 17.28 61 90 <20 <20 5.72 24.90 ASM$-2014-347.1 Makkola 57.80 0.55 18.50 5.50 6.11 0.13 1.66 5.28 5.56 2.19 0.29 18.98 139 128 <20 <20 17.30 75.90 ASM$-2014-345.1 Makkola 50.10 1.07 15.70 11.07 12.30 0.18 6.07 8.35 2.71 1.06 0.22 29.85 405 104 57 29 30.70 264 KK4$-2012-823.2 Makkola 48.50 0.77 14.40 11.79 13.10 0.28 6.90 10.23 2.74 0.94 0.39 31.23 <60 512 206 35 37.40 261 N4342013R9 27.50-27.75 Makkola 52.80 0.91 18.80 9.27 10.30 0.20 4.48 6.62 1.89 2.99 0.44 27.28 3250 677 <5 8.13 31.20 230 N4342013R9 40.45-40.65 Makkola 51.60 0.85 17.90 8.36 9.29 0.28 4.59 7.55 2.35 2.74 0.36 29.88 13900 2084 13.2 12.7 35.40 267 N4342013R9 64.35-65.50 Makkola 50.50 1.25 16.10 8.78 9.76 0.51 7.27 9.07 2.46 1.71 0.31 39.11 2956 887 230 47 28 197 N4342013R10 47.00-47.20 Makkola 48.50 0.99 17.80 10.89 12.10 0.36 4.76 9.35 3.47 1.60 0.47 25.33 3370 938 5.50 12.1 35.20 320 ASM$-2013-259.1 Makkola 71.40 0.22 15.10 2.29 2.54 0.05 0.49 2.63 3.63 3.37 0.05 14.36 245 156 <20 <20 1.87 14.90 N4332013R2 44.30-44.55 Makkola 50.70 1.14 15.00 10.08 11.20 0.17 7.09 7.90 1.48 2.23 0.20 35.31 3300 230 193 36.2 35.90 247 N4332013R2 70.40-70.55 Makkola 55.20 1.10 18.20 9.45 10.50 0.14 3.30 5.97 1.65 2.96 0.35 21.32 748 332 18.3 12.2 15.80 140 N4332013R2 116.10-117.05 Makkola 57.00 0.96 16.70 7.81 8.68 0.13 4.17 6.11 3.25 2.30 0.28 29.29 707 341 114 33 21.10 155 N4332013R6 75.90-76.05 Makkola 51.50 1.21 16.10 7.85 8.72 0.13 7.41 8.20 2.28 2.27 0.46 42.29 1620 257 362 108 27.20 173 N4332013R6 78.80-78.95 Makkola 52.00 0.45 10.50 7.14 7.93 0.14 16.00 4.78 0.47 3.74 0.19 63.50 377 112 1040 587 16.30 108 N4332013R6 99.95-100.15 Makkola 50.00 1.01 15.20 9.45 10.50 0.18 7.41 8.92 2.43 1.80 0.16 37.83 972 137 424 68 35.10 254

Sample Location Co Cu Zn Ga Rb Ba Sr Ta Nb Hf Zr Y Th La Ce Nd mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg N4342013R8 72.00-73.00 * Makkola n.a. 66 167 <20 60 739 765 n.a. <7 n.a. 104 15.00 <10 32.00 81.00 n.a. N4342013R8 97.00-98.00 Makkola 8.36 98.8 460 <20 90.9 1260 624 0.36 12.50 4.31 175 18.30 10.60 48.20 87.60 38.60 N4342013R9 10.00-11.00 Makkola 11.70 58.9 150 <20 109 833 545 0.66 15.70 5.36 172 16.70 11.30 41.40 73.00 31.50 N4342013R9 16.00-17.00 Makkola 7.81 48.9 61.2 <20 113 1850 479 0.60 18.70 6.32 210 19.30 12.90 51.10 89.10 36.90 N4342013R9 44.00-45.00 * Makkola n.a. 29 48 <20 70 2040 726 n.a. <7 n.a. 201 29.00 22.00 33.00 84.00 n.a. N4342013R9 75.30-76.00 * Makkola n.a. 28 32 <20 53 708 472 n.a. <7 n.a. 124 13.00 23.00 <30 69.00 n.a. N4342013R9 80.00-81.00 * Makkola n.a. 84 60 20 74 1338 653 n.a. <7 n.a. 148 20.00 26.00 <30 71.00 n.a. N4342013R9 125.00-126.00 * Makkola n.a. <20 60 <20 62 897 724 n.a. <7 n.a. 154 22.00 25.00 <30 90.00 n.a. N4342013R9 145.00-146.00 Makkola 13.40 14.2 45.6 <20 75.6 1230 743 0.45 9.54 4.44 135 16.10 6.50 37.90 64.00 29.00 N4342013R9 165.00-166.00 Makkola 6.84 30.7 99.8 27 109 1960 670 0.89 21.50 6.93 255 22.30 12.20 81.90 130.00 49.90 N4342013R9 171.25-171.75 Makkola 23.20 14.7 214 <20 66.9 754 832 0.32 5.84 2.89 64.70 16.30 2.94 25.10 46.30 24.80 N4342013R9 192.00-193.00 Makkola n.a. 304 105 23 112 1456 552 n.a. 8.00 n.a. 238 24.00 31.00 30.00 87.00 n.a. N4342013R10 31.00-32.00 Makkola 4.72 39.7 149 <20 103 1350 755 0.69 18.30 6.37 224 18.90 11.80 52.40 90.60 38.70 N4342013R10 48.00-49.00 Makkola 7.89 32.6 143 20 87.2 1370 1100 0.45 15.80 5.04 166 17.90 10.10 49.90 86.10 37.10 N4342013R10 51.00-52.00 * Makkola n.a. 52 139 25 63 1094 581 n.a. <7 n.a. 167 19.00 22.00 31.00 76.00 n.a. N4342013R10 72.00-73.00 * Makkola n.a. 83 85 21 53 1744 695 n.a. <7 n.a. 171 18.00 22.00 <30 69.00 n.a. N4342013R10 96.00-97.00 Makkola 6.09 47.9 68.9 <20 63.6 1070 578 0.74 25.20 7.78 290 22.20 15.20 39.20 81.90 42.90 M321481R304 117.65-118.65 Makkola n.a. 115 112 23 40 310 247 n.a. <7 n.a. 64 12.00 <10 <30 <30 n.a. KK4$-2012-802.1 Makkola 4.31 <20 50 22 38.1 1011 384 0.45 10.30 4.42 164 16.90 7.20 43.60 85.00 34.80 ASM$-2014-347.1 Makkola 9.00 <20 91 22 40.6 1201 1118 0.53 14.70 4.58 167 24.20 3.73 33.40 73.90 39.70 ASM$-2014-345.1 Makkola 40.70 <20 109 21 33.6 451 322 0.23 4.27 2.21 70.90 17.50 1.75 10.50 23.20 13.10 KK4$-2012-823.2 Makkola 31.80 29 157 <20 7.56 303 883 <0.2 3.19 0.85 25.30 12.40 0.90 12.30 29.10 17.00 N4342013R9 27.50-27.75 Makkola 16.30 47.7 136 20 121 991 857 0.26 5.11 2.75 55.60 19.00 2.02 26.00 49.90 29.00 N4342013R9 40.45-40.65 Makkola 15.10 51.6 539 <20 88.7 934 755 0.54 5.83 3.59 50.3 20.40 3.25 20.70 38.40 22.10 N4342013R9 64.35-65.50 Makkola n.a. 25 214 <20 53 361 556 n.a. <7 n.a. 134 19.00 16.00 <30 61.00 n.a. N4342013R10 47.00-47.20 Makkola 27.50 94.9 256 <20 33.5 658 1100 0.24 6.04 2.44 42.40 17.10 2.18 26.50 51.60 30.40 ASM$-2013-259.1 Makkola 2.90 53 39 <20 58.9 2254 792 0.46 6.29 3.10 128 6.67 10.20 35.50 57.90 18.30 N4332013R2 44.30-44.55 Makkola 37.80 52.2 223 23 92.3 385 372 0.40 5.11 1.64 65.30 22.00 1.53 20.10 23.00 13.80 N4332013R2 70.40-70.55 Makkola 27.40 28 182 26 116 813 531 1.42 11.00 4.85 148 24.40 6.92 42.90 67.50 32.70 N4332013R2 116.10-117.05 Makkola 24.20 38.8 147 24 117 530 392 0.68 7.51 2.65 110 20.90 2.16 22.90 35.00 18.80 N4332013R6 75.90-76.05 Makkola 36 13.9 126 24 87.9 1150 965 0.43 7.56 3.50 154 22.10 3.67 46.20 78.70 38.30 N4332013R6 78.80-78.95 Makkola 49.30 10.5 145 <20 190 345 121 0.21 4.50 1.56 84.10 13.00 4.11 15.80 24.80 12.60 N4332013R6 99.95-100.15 Makkola 38.10 28.5 143 21 112 304 281 0.38 4.62 1.60 68 20.50 1.16 15.20 20.90 13.30

Sample Location Sm Eu Tb Yb Lu Tm Gd Dy Ho Er Pr U Mo Cd Sn Sb mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg N4342013R8 72.00-73.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 24 <0.01 N4342013R8 97.00-98.00 Makkola 6.13 1.68 0.47 1.58 0.15 <0.1 4.81 3.17 0.49 1.62 10.10 3.64 <5 <5 <20 <50 N4342013R9 10.00-11.00 Makkola 5.41 1.16 0.58 1.73 0.24 0.23 4.48 3.05 0.56 1.66 8.49 3.41 6.63 <5 <20 <50 N4342013R9 16.00-17.00 Makkola 6.21 1.30 0.64 2.11 0.30 0.28 4.95 3.34 0.66 1.94 10.30 4.06 <5 <5 <20 <50 N4342013R9 44.00-45.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 N4342013R9 75.30-76.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 13 n.a. 26 <100 N4342013R9 80.00-81.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 27 <100 N4342013R9 125.00-126.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 20 <100 N4342013R9 145.00-146.00 Makkola 5.08 1.54 0.56 1.63 0.24 0.23 4.27 2.93 0.55 1.57 7.59 1.86 <5 <5 <20 <50 N4342013R9 165.00-166.00 Makkola 8.05 1.80 0.78 2.23 0.31 0.29 6.35 4.01 0.74 2.16 14.20 5.65 <5 <5 <20 <50 N4342013R9 171.25-171.75 Makkola 5.02 1.59 0.56 1.56 0.21 0.22 4.27 3.02 0.57 1.57 5.97 0.94 <5 <5 <20 <50 N4342013R9 192.00-193.00 Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 N4342013R10 31.00-32.00 Makkola 6.37 1.62 0.64 1.82 0.27 0.26 5.23 3.36 0.62 1.89 10.50 4.05 <5 <5 <20 <50 N4342013R10 48.00-49.00 Makkola 6.21 1.75 0.61 1.79 0.25 0.24 4.98 3.19 0.60 1.75 10.00 3.16 6.05 <5 <20 <50 N4342013R10 51.00-52.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 N4342013R10 72.00-73.00 * Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 N4342013R10 96.00-97.00 Makkola 7.78 1.39 0.78 2.40 0.34 0.32 5.95 4.09 0.75 2.27 10.90 3.99 <5 <5 <20 <50 M321481R304 117.65-118.65 Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 KK4$-2012-802.1 Makkola 5.71 1.41 0.58 1.90 0.31 0.28 4.55 3.33 0.63 1.90 9.33 2.01 <10 n.a. <20 <100 ASM$-2014-347.1 Makkola 7.91 2.21 0.92 2.49 0.37 0.38 6.62 5.06 0.98 2.82 9.60 0.96 <10 n.a. 20 <100 ASM$-2014-345.1 Makkola 3.11 1.22 0.56 2.00 0.31 0.31 3.44 3.49 0.74 2.18 3.05 0.37 <10 n.a. 32 <100 KK4$-2012-823.2 Makkola 3.96 1.35 0.50 1.13 0.18 0.19 3.69 2.73 0.49 1.34 3.71 0.43 <10 n.a. <20 <100 N4342013R9 27.50-27.75 Makkola 5.72 1.78 0.62 1.88 0.25 0.26 4.86 3.43 0.66 1.88 6.62 0.69 <5 <5 20 <50 N4342013R9 40.45-40.65 Makkola 4.61 1.66 0.57 2.25 0.31 0.31 4.05 3.46 0.69 2.06 5.07 1.38 <5 <5 <20 <50 N4342013R9 64.35-65.50 Makkola n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 29 <100 N4342013R10 47.00-47.20 Makkola 5.80 1.85 0.62 1.51 0.21 0.22 4.88 3.36 0.61 1.68 7.00 0.63 <5 <5 28 <50 ASM$-2013-259.1 Makkola 2.26 0.95 0.21 0.95 0.15 0.12 1.68 1.11 0.22 0.76 5.73 3.28 <10 n.a. <20 <100 N4332013R2 44.30-44.55 Makkola 3.33 1.12 0.55 2.01 0.26 0.27 3.50 n.a. 0.66 1.93 3.07 1.27 <5 <5 <20 <50 N4332013R2 70.40-70.55 Makkola 6.11 1.68 0.79 2.50 0.33 0.33 5.81 n.a. 0.85 2.44 8.13 2.41 <5 <5 21 <50 N4332013R2 116.10-117.05 Makkola 4.04 1.17 0.65 2.16 0.28 0.31 4.10 n.a. 0.77 2.19 4.45 1.75 <5 <5 <20 <50 N4332013R6 75.90-76.05 Makkola 6.23 1.79 0.75 2.45 0.32 0.32 5.43 n.a. 0.84 2.36 9.77 1.26 5.34 <5 <20 <50 N4332013R6 78.80-78.95 Makkola 2.77 0.73 0.40 1.21 0.18 0.17 2.78 n.a. 0.44 1.26 3.05 1.86 <5 <5 <20 <50 N4332013R6 99.95-100.15 Makkola 3.55 1.09 0.63 2.23 0.29 0.32 4.01 n.a. 0.75 2.19 2.92 2.63 <5 <5 27 <50

Sample Location Pb Bi LaN YbN mg/kg mg/kg N4342013R8 72.00-73.00 * Makkola <20 n.a. 103.23 n.a N4342013R8 97.00-98.00 Makkola 32.80 n.a. 155.48 7.56 N4342013R9 10.00-11.00 Makkola n.a. <30 133.55 8.28 N4342013R9 16.00-17.00 Makkola n.a. <30 164.84 10.10 N4342013R9 44.00-45.00 * Makkola n.a. <30 106.45 n.a N4342013R9 75.30-76.00 * Makkola n.a. <30 n.a n.a N4342013R9 80.00-81.00 * Makkola n.a. <30 n.a n.a N4342013R9 125.00-126.00 * Makkola n.a. <30 n.a n.a N4342013R9 145.00-146.00 Makkola n.a. <30 122.26 7.80 N4342013R9 165.00-166.00 Makkola n.a. <30 264.19 10.67 N4342013R9 171.25-171.75 Makkola n.a. <30 80.97 7.46 N4342013R9 192.00-193.00 Makkola n.a. <30 96.77 n.a N4342013R10 31.00-32.00 Makkola 2.79 <30 169.03 8.71 N4342013R10 48.00-49.00 Makkola 3.88 <30 160.97 8.56 N4342013R10 51.00-52.00 * Makkola 2.17 <30 100.00 n.a N4342013R10 72.00-73.00 * Makkola 2.2 <30 n.a n.a N4342013R10 96.00-97.00 Makkola n.a. <30 126.45 11.48 M321481R304 117.65-118.65 Makkola <20 <30 n.a n.a KK4$-2012-802.1 Makkola <20 <30 140.65 9.09 ASM$-2014-347.1 Makkola <20 <30 107.74 11.91 ASM$-2014-345.1 Makkola <20 <30 33.87 9.57 KK4$-2012-823.2 Makkola <20 <30 39.68 5.41 N4342013R9 27.50-27.75 Makkola n.a. <30 83.87 9.00 N4342013R9 40.45-40.65 Makkola n.a. <30 66.77 10.77 N4342013R9 64.35-65.50 Makkola n.a. <30 n.a n.a N4342013R10 47.00-47.20 Makkola 1.15 <30 85.48 7.22 ASM$-2013-259.1 Makkola <20 <30 114.52 4.54 N4332013R2 44.30-44.55 Makkola <20 <30 64.84 9.62 N4332013R2 70.40-70.55 Makkola 22.4 <30 138.39 11.96 N4332013R2 116.10-117.05 Makkola <20 <30 73.87 10.33 N4332013R6 75.90-76.05 Makkola <20 <30 149.03 11.72 N4332013R6 78.80-78.95 Makkola <20 <30 50.97 5.79 N4332013R6 99.95-100.15 Makkola <20 <30 49.03 10.67

Sample Location SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 Mg# S Cl Cr Ni Sc V % % % % % % % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg HEKI-2012-14.1 Kauppila 64.70 0.44 16.90 3.44 3.82 0.05 2.26 4.46 4.44 2.36 0.16 33.78 119 294 55 36 9.82 82.5 HEKI-2012-26.1 Kauppila 57.80 0.77 15.30 6.81 7.57 0.09 4.68 6.39 3.42 2.14 0.23 34.77 <60 205 103 42 18.20 174 HEKI-2012-40.1 Kauppila 55.00 0.95 17.00 7.25 8.06 0.13 4.28 7.72 4.17 1.57 0.19 31.41 <60 248 <20 <20 22.40 193

91010985 Kauppila 45.60 1.37 17.00 11.34 12.60 0.14 6.18 10.60 2.16 0.75 0.11 29.72 5190 459 9.15 20.8 36.10 597 HEKI-2012-16.3 Kauppila 66.20 0.40 16.70 3.20 3.56 0.06 1.85 3.91 4.83 1.29 0.14 30.94 79 71 34 21 10.50 n.a. HEKI-2012-102.1 Kauppila 54.10 0.76 19.30 6.67 7.41 0.11 2.34 6.74 4.45 3.57 0.57 21.40 <60 173 <20 <20 16.10 n.a. MAAH-2012-70.1 Kauppila 49.60 1.01 13.50 11.25 12.50 0.38 6.52 7.76 1.54 4.31 0.23 31.02 88 738 246 48 37.90 n.a. MAAH-2012-70.2 Kauppila 50.00 1.08 13.80 10.89 12.10 0.26 6.66 8.25 2.26 2.61 0.24 32.19 1847 635 197 30 38.30 n.a. MAAH-2012-73.2 Kauppila 70.60 0.28 15.00 2.41 2.68 0.06 0.61 1.54 3.25 5.41 0.08 16.41 402 112 <20 <20 9.45 n.a. MAAH-2012-160.1 Kauppila 63.90 0.91 16.20 5.18 5.76 0.09 1.34 3.51 4.46 3.11 0.31 16.71 103 344 <20 <20 15.20 n.a. MAAH-2012-177.1 Kauppila 43.60 1.24 16.30 12.78 14.20 0.25 6.78 10.14 2.48 0.56 0.36 29.16 570 398 52 <20 39.70 n.a. MAAH-2012-177.2 Kauppila 53.10 0.91 18.90 7.64 8.49 0.12 3.74 6.55 4.33 1.64 0.41 27.53 219 215 71 29 17.10 n.a. SMHA-2012-21.2 Kauppila 48.60 0.91 12.20 10.62 11.80 0.22 9.28 10.28 1.94 1.63 0.18 40.41 <60 158 639 77 43.80 n.a. SMHA-2012-21.3 Kauppila 58.90 0.94 17.30 7.11 7.90 0.11 2.20 5.67 3.24 2.64 0.25 19.36 1090 160 <20 <20 21.90 n.a. HEKI-2012-115.1 Kauppila 58.80 1.07 17.70 6.86 7.62 0.09 2.44 5.32 4.37 1.86 0.33 21.64 386 274 <20 <20 13.80 n.a. HEKI-2012-115.3 Kauppila 66.50 0.61 16.40 3.83 4.26 0.06 1.47 3.68 4.03 2.50 0.14 22.93 402 131 <20 <20 8.15 n.a. HEKI-2012-115.5 Kauppila 48.80 0.54 12.00 10.53 11.70 0.24 9.27 9.84 2.34 1.30 0.21 40.59 756 249 392 60 45.50 n.a. MAAH-2012-73.3 Kauppila 48.10 0.40 10.80 9.81 10.90 0.39 12.10 10.21 2.10 1.31 0.25 48.91 <60 171 754 110 36.00 n.a. MAAH-2012-96.1 Kauppila 54.70 1.39 17.30 8.62 9.58 0.13 2.45 6.46 3.98 2.45 0.28 18.07 <60 244 38 <20 25.70 n.a. MAAH-2012-156.1 Kauppila 50.50 0.84 12.10 9.72 10.80 0.19 9.89 8.91 2.24 1.58 0.19 44.12 208 408 687 103 34.00 n.a. MAAH-2012-174.2 Kauppila 59.50 0.66 17.60 5.86 6.51 0.10 2.51 5.23 3.34 3.66 0.29 24.95 468 162 64 <20 16.80 n.a. SMHA-2012-37.2 Kauppila 70.60 0.22 15.50 2.19 2.43 0.02 0.26 1.29 3.86 5.29 0.05 8.42 <60 132 <20 <20 6.15 n.a. HEKI-2012-203.1 Halttula 53.50 0.91 13.90 10.62 11.80 0.20 6.25 9.41 1.69 1.04 0.24 31.35 <60 113 174 31 39.20 295

91010991 Halttula 49.50 0.83 11.40 10.62 11.80 0.19 8.97 10.90 1.80 1.72 0.21 39.59 39.8 73.3 84.30 13.1 43.20 256 HEKI-2012-204.1 Halttula 51.80 0.99 15.00 9.36 10.40 0.14 5.26 10.29 3.12 1.02 0.31 30.37 <60 <60 128 38 34.30 n.a. HEKI-2012-271.2 Halttula 50.80 0.82 14.00 10.44 11.60 0.19 7.27 8.57 2.63 2.17 0.25 35.08 <60 <60 289 52 31.80 n.a. HEKI-2012-271.3 Halttula 57.40 1.40 16.40 8.33 9.26 0.10 3.13 5.49 3.75 2.11 0.60 22.57 66 <60 <20 <20 21.10 n.a. MAAH-2012-196.1 Halttula 55.10 0.78 15.70 7.33 8.15 0.11 4.89 6.16 2.79 3.26 0.35 34.10 106 198 222 56 23.50 n.a. MAAH-2012-205.1 Halttula 49.30 0.81 12.30 10.17 11.30 0.16 9.72 8.03 1.76 1.88 0.22 42.59 73 130 565 144 34.40 n.a. MAAH-2012-207.1 Halttula 52.10 1.04 16.60 10.62 11.80 0.13 3.82 6.35 2.69 2.76 0.32 21.82 <60 141 <20 <20 29.90 n.a. MAAH-2012-207.2 Halttula 54.20 0.94 18.30 7.34 8.16 0.09 3.05 7.38 2.75 2.27 0.28 24.37 92 146 35 <20 22.80 n.a. MAAH-2012-213.1 Halttula 48.40 0.57 13.80 8.42 9.36 0.17 8.29 10.06 1.58 2.71 0.16 43.30 <60 73 414 82 38.00 n.a. MAAH-2012-214.1 Halttula 62.10 0.66 18.40 3.90 4.33 0.03 1.66 5.26 3.35 2.81 0.43 24.84 1174 155 <20 <20 11.50 n.a.

Sample Location Co Cu Zn Ga Rb Ba Sr Ta Nb Hf Zr Y Th La Ce Nd mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg HEKI-2012-14.1 Kauppila 11.70 <20 40 <20 67.50 972 844 1.28 13.40 3.69 117.00 9.19 4.67 17.30 34.90 14.20 HEKI-2012-26.1 Kauppila 18.60 <20 71 25 43.20 1412 891 0.47 7.66 2.29 74.10 10.80 2.55 14.90 31.40 15.60 HEKI-2012-40.1 Kauppila 23.20 26 64 24 33.80 409 469 0.56 7.47 2.45 84.60 17.10 3.38 14.30 31.00 15.80

91010985 Kauppila 49.50 175 14.6 20.4 23.90 184 634 0.19 4.22 1.10 41.60 13.90 1.11 8.83 19.60 10.50 HEKI-2012-16.3 Kauppila 8.70 <20 48 26 103.00 661 702 0.48 6.43 2.42 91.10 11.70 3.95 17.00 30.70 12.80 HEKI-2012-102.1 Kauppila 15.30 <20 69 25 57.20 2180 1957 0.35 6.98 1.61 54.10 20.10 2.84 42.00 88.10 44.80 MAAH-2012-70.1 Kauppila 26.10 <20 287 26 104.00 984 363 0.40 6.66 1.62 60.70 22.70 2.02 13.10 28.00 14.60 MAAH-2012-70.2 Kauppila 31.40 48 184 21 52.00 485 424 0.41 6.64 1.93 68.40 23.80 2.09 13.50 29.90 16.30 MAAH-2012-73.2 Kauppila 3.13 25 36 <20 80.80 1979 380 0.82 14.10 3.87 151.00 20.30 7.19 41.60 81.30 32.40 MAAH-2012-160.1 Kauppila 6.66 <20 55 <20 80.70 958 418 1.03 15.70 4.47 179.00 25.30 6.67 16.90 40.20 19.30 MAAH-2012-177.1 Kauppila 29.10 50 147 21 7.04 237 676 0.34 8.35 1.76 55.20 26.50 <0.5 17.80 46.10 27.80 MAAH-2012-177.2 Kauppila 17.80 34 102 <20 42.00 890 1163 0.41 8.18 1.35 59.40 13.20 0.62 20.90 41.50 19.80 SMHA-2012-21.2 Kauppila 41.70 30 138 22 30.40 405 489 0.29 4.78 1.30 49.70 17.90 1.13 11.30 23.70 13.70 SMHA-2012-21.3 Kauppila 15.10 68 90 23 90.90 803 578 0.71 10.00 2.29 90.20 22.20 6.71 26.40 52.90 23.10 HEKI-2012-115.1 Kauppila 15.20 30 85 25 64.60 485 668 1.01 14.50 3.37 140.00 18.10 4.08 27.70 56.20 24.30 HEKI-2012-115.3 Kauppila 7.50 33 60 21 72.50 679 455 1.34 11.70 2.63 100.00 13.80 5.77 20.90 41.80 18.00 HEKI-2012-115.5 Kauppila 28.00 55 120 <20 20.50 219 400 0.20 3.05 1.46 49.40 11.10 1.92 13.10 23.90 12.00 MAAH-2012-73.3 Kauppila 38.70 <20 324 <20 67.50 149 329 0.22 5.18 1.62 64.70 9.83 1.90 16.40 30.40 15.40 MAAH-2012-96.1 Kauppila 17.40 41 106 27 70.20 646 338 0.69 10.50 3.49 134.00 31.30 4.42 21.20 45.70 22.60 MAAH-2012-156.1 Kauppila 36.00 70 106 <20 64.30 223 457 0.30 4.72 1.37 51.60 13.70 1.49 8.17 18.80 10.10 MAAH-2012-174.2 Kauppila 14.80 55 83 <20 117.00 898 682 0.81 11.60 3.34 132.00 19.80 7.77 32.30 62.40 25.40 SMHA-2012-37.2 Kauppila 2.13 <20 29 21 78.30 1658 123 0.77 11.20 5.40 243.00 18.00 8.89 41.60 69.60 22.60 HEKI-2012-203.1 Halttula 37.80 207 106 22 24.10 260 470 0.43 6.26 1.88 62.10 19.00 2.51 15.60 33.70 17.70

91010991 Halttula 42.00 185 14 21.4 42.60 636 431 0.36 3.47 1.10 40.90 15.30 1.85 9.71 20.60 12.10 HEKI-2012-204.1 Halttula 25.60 4 95 20 13.80 441 663 0.40 5.89 1.54 66.60 16.40 3.87 19.30 40.20 19.50 HEKI-2012-271.2 Halttula 31.40 267 106 <20 41.90 864 561 0.33 4.70 1.64 60.40 13.50 2.90 14.20 29.40 14.70 HEKI-2012-271.3 Halttula 19.60 383 91 21 69.40 686 589 0.77 11.10 2.60 96.20 21.10 6.83 32.60 67.00 31.40 MAAH-2012-196.1 Halttula 20.60 68 100 <20 90.00 860 824 0.57 8.62 2.63 100.00 17.30 5.67 26.10 52.60 23.20 MAAH-2012-205.1 Halttula 42.10 80 101 <20 68.00 589 342 0.43 6.58 1.77 66.80 16.60 3.22 15.10 31.50 15.80 MAAH-2012-207.1 Halttula 24.30 27 118 20 84.30 917 540 0.44 6.43 3.97 166.00 20.50 4.47 21.50 44.40 22.10 MAAH-2012-207.2 Halttula 19.40 132 88 26 64.10 965 625. 0.60 8.44 2.35 87.10 17.30 5.88 23.90 47.90 21.50 MAAH-2012-213.1 Halttula 33.80 21 114 <20 73.90 544 443 0.27 4.29 1.25 49.30 12.30 2.34 14.40 27.40 13.30 MAAH-2012-214.1 Halttula 6.05 141 26 22 78.40 928 530 0.46 7.87 1.95 75.70 12.60 4.65 33.30 64.40 26.80

Sample Location Sm Eu Tb Yb Lu Tm Gd Dy Ho Er Pr U Mo Cd Sn Sb mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg HEKI-2012-14.1 Kauppila 2.62 0.75 0.33 1.04 0.16 0.15 2.31 1.83 0.36 1.06 3.75 2.24 <10 n.a <20 <100 HEKI-2012-26.1 Kauppila 3.00 0.92 0.40 1.08 0.17 0.17 2.85 2.22 0.42 1.18 3.76 1.37 <10 n.a <20 <100 HEKI-2012-40.1 Kauppila 3.57 1.11 0.57 1.78 0.26 0.27 3.73 3.34 0.67 1.87 3.75 1.44 <10 n.a <20 <100

91010985 Kauppila 2.45 0.78 0.37 0.93 0.17 0.17 2.55 2.19 0.42 1.24 2.52 0.33 <2.6 n.a n.a. n.a. HEKI-2012-16.3 Kauppila 2.32 0.62 0.33 1.09 0.16 0.16 2.25 1.83 0.37 1.08 3.43 2.82 <10 n.a. <20 n.a. HEKI-2012-102.1 Kauppila 8.29 2.46 0.88 1.74 0.25 0.26 7.13 4.35 0.76 1.99 11.10 1.10 <10 n.a. <20 n.a. MAAH-2012-70.1 Kauppila 3.38 1.00 0.65 2.40 0.37 0.36 4.06 4.10 0.84 2.43 3.52 0.69 <10 n.a. 26 n.a. MAAH-2012-70.2 Kauppila 3.83 1.17 0.71 2.60 0.38 0.39 4.68 4.42 0.92 2.60 3.80 0.77 <10 n.a. <20 n.a. MAAH-2012-73.2 Kauppila 5.70 0.91 0.70 2.17 0.33 0.33 5.01 3.76 0.74 2.11 9.06 2.22 <10 n.a. <20 n.a. MAAH-2012-160.1 Kauppila 4.70 1.31 0.76 2.54 0.38 0.37 5.10 4.60 0.91 2.62 4.69 2.41 <10 n.a. <20 n.a. MAAH-2012-177.1 Kauppila 5.74 1.71 0.86 2.54 0.37 0.40 5.90 5.06 1.01 2.72 6.45 <0.2 <10 n.a. <20 n.a. MAAH-2012-177.2 Kauppila 3.52 1.42 0.48 1.23 0.17 0.18 3.57 2.62 0.49 1.32 4.99 0.46 <10 n.a. <20 n.a. SMHA-2012-21.2 Kauppila 3.18 0.97 0.55 1.68 0.26 0.28 3.58 3.36 0.69 1.88 3.14 0.58 <10 n.a. <20 n.a. SMHA-2012-21.3 Kauppila 4.54 1.16 0.70 2.16 0.32 0.33 4.94 4.14 0.82 2.37 6.08 2.28 <10 n.a. <20 n.a. HEKI-2012-115.1 Kauppila 4.57 1.36 0.62 1.70 0.26 0.26 4.46 3.55 0.68 1.84 6.49 1.74 <10 n.a. <20 n.a. HEKI-2012-115.3 Kauppila 3.35 0.85 0.46 1.37 0.19 0.20 3.29 2.61 0.51 1.45 4.79 2.04 <10 n.a. <20 n.a. HEKI-2012-115.5 Kauppila 2.42 0.66 0.36 1.16 0.17 0.17 2.54 2.10 0.42 1.22 3.00 1.20 72 n.a. <20 n.a. MAAH-2012-73.3 Kauppila 2.77 0.75 0.36 0.85 0.13 0.14 2.77 1.93 0.36 0.97 3.92 0.80 <10 n.a. <20 n.a. MAAH-2012-96.1 Kauppila 5.22 1.38 0.94 3.22 0.48 0.49 6.10 5.82 1.19 3.49 5.52 1.67 <10 n.a. <20 n.a. MAAH-2012-156.1 Kauppila 2.32 0.73 0.43 1.45 0.20 0.21 2.79 2.59 0.53 1.51 2.33 0.75 <10 n.a. 27 n.a. MAAH-2012-174.2 Kauppila 4.62 1.16 0.64 2.05 0.30 0.30 4.57 3.62 0.72 2.00 7.05 3.27 <10 n.a. 21 n.a. SMHA-2012-37.2 Kauppila 3.62 0.66 0.53 1.92 0.31 0.28 3.59 3.14 0.61 1.84 7.01 2.70 <10 n.a. <20 n.a. HEKI-2012-203.1 Halttula 3.90 1.05 0.62 2.11 0.30 0.32 4.14 3.81 0.75 2.17 4.19 1.01 <10 n.a 23 <100

91010991 Halttula 2.69 0.64 0.42 1.08 0.15 0.15 3.03 2.24 0.50 1.34 2.72 0.59 <2.6 n.a n.a. n.a. HEKI-2012-204.1 Halttula 3.90 1.08 0.56 1.65 0.24 0.25 4.11 3.30 0.62 1.73 4.86 1.40 <10 n.a. <20 n.a. HEKI-2012-271.2 Halttula 3.12 0.88 0.45 1.35 0.19 0.20 3.24 2.60 0.50 1.40 3.65 1.06 <10 n.a. <20 n.a. HEKI-2012-271.3 Halttula 5.81 1.43 0.74 2.15 0.29 0.32 5.46 4.22 0.80 2.16 7.99 2.34 <10 n.a. <20 n.a. MAAH-2012-196.1 Halttula 4.32 1.11 0.59 1.65 0.25 0.26 4.34 3.37 0.64 1.79 6.10 2.44 <10 n.a. <20 n.a. MAAH-2012-205.1 Halttula 3.40 0.92 0.56 1.67 0.24 0.26 3.70 3.21 0.64 1.79 3.91 1.07 <10 n.a. <20 n.a. MAAH-2012-207.1 Halttula 4.74 1.22 0.68 1.88 0.29 0.29 4.88 3.98 0.76 2.15 5.45 1.58 <10 n.a. 21 n.a. MAAH-2012-207.2 Halttula 4.11 1.12 0.58 1.69 0.25 0.26 4.15 3.32 0.65 1.75 5.52 2.09 <10 n.a. <20 n.a. MAAH-2012-213.1 Halttula 2.77 0.78 0.41 1.15 0.17 0.18 2.89 2.34 0.45 1.29 3.30 0.68 <10 n.a. <20 n.a. MAAH-2012-214.1 Halttula 4.62 1.31 0.51 1.26 0.19 0.19 3.95 2.51 0.45 1.24 7.26 1.54 <10 n.a. <20 n.a.

Sample Location Pb Bi LaN YbN mg/kg mg/kg HEKI-2012-14.1 Kauppila <20 <30 55.81 4.98 HEKI-2012-26.1 Kauppila <20 <30 48.06 5.17 HEKI-2012-40.1 Kauppila <20 <30 46.13 8.52

91010985 Kauppila <8.7 0.06 28.48 4.46 HEKI-2012-16.3 Kauppila <20 <30 54.84 5.22 HEKI-2012-102.1 Kauppila <20 <30 135.48 8.33 MAAH-2012-70.1 Kauppila <20 <30 42.26 11.48 MAAH-2012-70.2 Kauppila <20 <30 43.55 12.44 MAAH-2012-73.2 Kauppila <20 <30 134.19 10.38 MAAH-2012-160.1 Kauppila <20 <30 54.52 12.15 MAAH-2012-177.1 Kauppila <20 <30 57.42 12.15 MAAH-2012-177.2 Kauppila <20 <30 67.42 5.89 SMHA-2012-21.2 Kauppila <20 <30 36.45 8.04 SMHA-2012-21.3 Kauppila <20 <30 85.16 10.33 HEKI-2012-115.1 Kauppila <20 <30 89.35 8.13 HEKI-2012-115.3 Kauppila <20 <30 67.42 6.56 HEKI-2012-115.5 Kauppila <20 <30 42.26 5.55 MAAH-2012-73.3 Kauppila <20 <30 52.90 4.07 MAAH-2012-96.1 Kauppila <20 <30 68.39 15.41 MAAH-2012-156.1 Kauppila <20 <30 26.35 6.94 MAAH-2012-174.2 Kauppila <20 <30 104.19 9.81 SMHA-2012-37.2 Kauppila <20 <30 134.19 9.19 HEKI-2012-203.1 Halttula <20 <30 50.32 10.10

91010991 Halttula <8.7 0.08 31.32 5.17 HEKI-2012-204.1 Halttula <20 <30 62.26 7.89 HEKI-2012-271.2 Halttula <20 <30 45.81 6.46 HEKI-2012-271.3 Halttula <20 <30 105.16 10.29 MAAH-2012-196.1 Halttula <20 <30 84.19 7.89 MAAH-2012-205.1 Halttula <20 <30 48.71 7.99 MAAH-2012-207.1 Halttula <20 <30 69.35 9.00 MAAH-2012-207.2 Halttula <20 <30 77.10 8.09 MAAH-2012-213.1 Halttula <20 <30 46.45 5.50 MAAH-2012-214.1 Halttula <20 <30 107.42 6.03

Sample Location SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 Mg# S Cl Cr Ni Sc V % % % % % % % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg MAAH-2012-255.1 Halttula 57.40 0.82 14.70 8.33 9.26 0.13 5.25 6.79 2.85 1.46 0.21 32.84 145 158 106 33 26.40 n.a. MAAH-2012-257.1 Halttula 49.20 0.94 13.80 10.44 11.60 0.17 6.00 8.41 1.26 4.32 0.30 30.84 <60 149 156 42 39.40 n.a. MAAH-2012-266.1 Halttula 57.70 1.04 18.90 5.83 6.48 0.08 2.11 5.78 4.00 2.89 0.35 21.92 67 76 36 22 14.40 n.a. HEKI-2013-166.1 Halttula 70.70 0.48 14.50 3.38 3.76 0.04 1.59 1.82 3.20 3.38 0.14 26.72 102 <0.006 42.9 31.3 8.48 54.70 HEKI-2013-5.1 Halttula 50.70 0.38 16.10 7.94 8.82 0.19 8.02 10.17 2.44 1.75 0.15 43.95 146 174 323 83.7 34 156.00 HEKI-2013-8.1 Halttula 59.10 0.71 19.30 5.16 5.74 0.07 2.35 4.31 3.84 3.68 0.40 26.09 243 134 43 26.3 12.70 137.00 MAAH-2013-251.3 Halttula 49.80 0.55 15.30 7.90 8.78 0.14 6.64 9.64 2.28 3.23 0.41 39.47 254 95 140 50.7 28.90 148.00 MAAH-2012-254.1 Halttula 71.90 0.27 14.00 2.72 3.02 0.02 0.23 1.04 3.70 5.39 0.04 6.06 <60 424 <20 <20 5.25 5.25 ASM$-2013-167.1 Halttula 54.70 0.36 20.00 6.19 6.88 0.14 3.93 5.47 2.94 2.68 0.21 33.00 <60 79 <20 <20 <20 56.00 N4342014R13 165.80-166.30 Halttula 58.20 0.67 17.00 6.84 7.60 0.10 2.54 5.14 3.11 4.53 0.43 22.37 263 164 170 27 24.10 124.00 N4342014R13 177.05-177.75 Halttula 50.10 0.50 14.50 8.62 9.58 0.15 7.12 10.81 1.91 1.29 0.23 39.06 127 233 444 57 37.70 197.00 N4342014R14 84.35-85.30 Halttula 61.80 0.51 16.10 4.92 5.47 0.06 3.37 3.85 2.82 4.02 0.25 34.69 1603 195 133 26 14.30 88.50 N4342014R15 103.00-103.50 Halttula 49.80 0.50 18.60 7.65 8.50 0.12 6.08 8.99 1.87 2.06 0.20 38.15 177 152 99 <20 29.60 172.00 N4342014R15 125.75-126.35 Halttula 64.30 0.64 17.10 4.63 5.15 0.04 0.85 2.46 3.79 5.10 0.29 12.46 100 142 <20 <20 19.30 28.50 HEKI-2012-240.2 Halttula 48.80 0.45 12.10 8.24 9.16 0.15 11.40 9.97 1.81 1.23 0.13 51.76 <60 171 792 120 32.70 n.a. MAAH-2012-227.1 Halttula 61.50 0.98 15.80 6.57 7.30 0.09 2.49 5.11 3.04 2.98 0.22 22.73 109 294 27 <20 19.90 n.a.

91011032 Korospohja 56.10 0.79 14.10 7.75 8.61 0.13 6.88 7.03 2.38 2.40 0.24 40.79 15 128 169 73.2 26.80 179.00

91011034 Korospohja 64.40 0.33 18.00 2.97 3.30 0.08 0.75 3.19 3.89 5.05 0.13 16.37 18.5 120 8.77 4.05 7.59 24.80 PIM$-2013-20.1 Korospohja 62.90 0.53 18.40 4.75 5.28 0.07 1.29 4.26 4.29 2.38 0.42 17.40 135 0.02 8.82 <5 6.34 25.90 PIM$-2013-21.1 Korospohja 54.20 0.93 16.70 7.75 8.61 0.12 4.44 6.93 3.08 2.09 0.31 30.78 134 0.02 74.1 22.9 24.30 201.00 PIM$-2013-24.1 Korospohja 65.20 0.27 17.90 2.72 3.02 0.06 1.13 2.35 4.93 4.06 0.15 24.39 120 0.02 12.6 11.8 4.38 36.90 PIM$-2013-101.1 * Korospohja 54.30 0.90 17.70 7.06 7.85 0.21 4.77 5.07 3.04 2.73 0.27 34.38 86 0.02 123 29 <20 143.00 PIM$-2013-118.1 * Korospohja 50.10 0.99 19.90 8.21 9.12 0.11 4.88 4.64 2.27 4.35 0.41 31.57 75 0.01 33 <20 <20 171.00 PIM$-2013-145.1 * Korospohja 63.40 0.69 15.20 6.02 6.69 0.15 2.52 5.92 0.98 3.85 0.36 24.52 378 0.03 171 37 <20 120.00 PIM$-2013-179.1 * Korospohja 55.70 0.71 17.60 6.14 6.82 0.11 3.49 5.84 2.84 4.30 0.43 30.62 69 0.05 138 52 <20 124.00 PIM$-2013-237.1 Korospohja 62.50 0.57 17.30 4.31 4.79 0.08 1.79 3.39 3.80 3.06 0.22 24.37 391 0.02 11.6 5.93 11.90 55.60 PIM$-2013-239.1 * Korospohja 65.60 0.40 16.60 3.32 3.69 0.07 0.82 1.61 2.42 7.02 0.10 16.08 1431 0.01 <20 <20 <20 <30 KOROSPOHJA-SK-007 39.00-40.00 Korospohja 58.20 0.57 17.40 5.56 6.18 0.18 3.15 4.58 2.93 4.37 0.32 30.53 1890 307 60.2 27 17.10 94.50 KOROSPOHJA-SK-008 17.65-18.65 Korospohja 55.70 0.62 17.10 6.33 7.03 0.11 3.88 6.03 3.37 3.84 0.43 32.25 268 406 86.3 28.6 22.30 139.00 KOROSPOHJA-SK-009 38.45-39.45 Korospohja 47.70 0.65 14.10 9.18 10.20 0.22 9.56 8.36 2.17 2.15 0.40 44.70 282 519 314 112 34.90 188.00 KOROSPOHJA-SK-013 34.00-34.90 * Korospohja 60.00 0.48 17.70 5.05 5.61 0.09 3.13 3.82 4.60 3.91 0.29 32.48 <60 158 81 <20 <20 86.00 EPHE-2013-348.1 Korospohja 47.40 0.59 22.10 9.90 11.00 0.18 4.01 9.76 2.76 1.57 0.26 23.92 159 772 19.7 17.3 24 199.00 PIM$-2014-42.1 Korospohja 63.00 0.46 16.10 4.63 5.14 0.11 2.38 4.39 4.07 3.52 0.21 28.53 79 126 81 20 10.10 80.70

Sample Location Co Cu Zn Ga Rb Ba Sr Ta Nb Hf Zr Y Th La Ce Nd mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg MAAH-2012-255.1 Halttula 21.80 140 100 <20 28.7 549 419 0.38 5.78 1.58 62.20 14.10 2.90 15.70 34.10 14.00 MAAH-2012-257.1 Halttula 32.50 <20 92 <20 146 749 415 0.32 4.55 1.16 39.40 17.50 2.86 15.60 31.20 17.20 MAAH-2012-266.1 Halttula 12.80 77 81 25 76.4 873 674 0.70 10.10 2.96 115.00 17.80 6.44 28.30 53.90 23.90 HEKI-2013-166.1 Halttula 8.88 36.7 112 21 100. 716 321 0.61 8.42 6.67 171.00 15.40 10.70 23.40 47.30 17.00 HEKI-2013-5.1 Halttula 41.50 89.7 101 <20 55.6 558 536 0.35 3.48 2.75 46.00 10.70 2.76 10.70 17.40 8.78 HEKI-2013-8.1 Halttula 14.80 108 66 <20 103 1560 1050 0.60 12.60 4.80 158.00 17.70 7.54 53.90 76.90 36.70 MAAH-2013-251.3 Halttula 36.00 91.8 107 <20 88.5 1210 859 <0.2 6.16 0.86 59.20 11.00 2.66 25.80 43.60 22.30 MAAH-2012-254.1 Halttula 1.96 <20 24 <20 177 966 130 <0.2 10.40 8.25 282.00 28.50 15.10 31.50 67.00 26.20 ASM$-2013-167.1 Halttula n.a. 55 86 24 109 824 495 n.a. <7 n.a. 82.00 17.00 18.00 <30 33.00 n.a. N4342014R13 165.80-166.30 Halttula 16.10 72 56 20 110 835 434 <0.2 12.00 3.63 141.00 21.10 8.75 36.60 64.60 25.70 N4342014R13 177.05-177.75 Halttula 39.70 59 107 <20 38.7 395 551 <0.2 5.16 1.04 50.30 12.80 2.16 15.60 25.10 11.30 N4342014R14 84.35-85.30 Halttula 12.40 53 83 20 184 531 352 <0.2 10.80 3.36 130.00 15.90 12.60 33.50 55.00 18.80 N4342014R15 103.00-103.50 Halttula 29.90 50 75 <20 72.8 431 388 <0.2 4.24 1.62 59.20 13.30 2.19 14.10 22.30 9.62 N4342014R15 125.75-126.35 Halttula <5 <20 84 25 159 1166 454 0.29 15.90 4.32 178.00 24.40 9.34 45.10 77.20 31.40 HEKI-2012-240.2 Halttula 35.60 <20 76 <20 31.6 345 368 <0.2 2.45 1.13 37.60 8.60 1.65 7.42 15.70 8.21 MAAH-2012-227.1 Halttula 12.90 <20 65 22 77.9 847 302 0.72 9.94 3.79 148.00 23.40 8.03 20.80 48.20 19.00

91011032 Korospohja 36.20 143 42.8 18.4 63.5 675 518 0.55 8.07 2.89 103.00 19.90 4.53 22.30 44.00 20.40

91011034 Korospohja 5.27 19.9 50.8 26.2 144 1630 797 0.86 17.80 4.68 187.00 17.50 9.19 36.70 69.60 29.90 PIM$-2013-20.1 Korospohja 6.77 12.7 70.2 0.00 46.9 961 650 <0.2 7.27 3.18 133.00 19.00 6.16 29.10 54.40 25.30 PIM$-2013-21.1 Korospohja 27.40 59.6 103 0.00 101 736 576 0.31 7.74 2.72 102.00 21.20 4.86 24.10 43.00 21.00 PIM$-2013-24.1 Korospohja 6.64 15.9 87 <20 107 1530 980 <0.2 5.08 2.19 103.00 9.30 5.22 24.00 37.20 13.60 PIM$-2013-101.1 * Korospohja n.a. <20 192 0.00 67 1334 437 n.a. <7 n.a. 187.00 26.00 <10 <30 50.00 n.a. PIM$-2013-118.1 * Korospohja n.a. 38 109 0.00 313 973 380 n.a. <7 n.a. 135.00 40.00 17.00 <30 54.00 n.a. PIM$-2013-145.1 * Korospohja n.a. 59 94 <20 146 453 192 n.a. <7 n.a. 126.00 31.00 14.00 <30 57.00 n.a. PIM$-2013-179.1 * Korospohja n.a. 139 86 0.00 121 1210 655 n.a. <7 n.a. 182.00 23.00 15.00 37.00 68.00 n.a. PIM$-2013-237.1 Korospohja 8.70 14.3 104 <20 92.8 1140 380 0.21 10.00 4.51 181.00 20.00 9.58 27.20 51.00 22.00 PIM$-2013-239.1 * Korospohja n.a. 28 58 0.00 157 1648 273 n.a. <7 n.a. 275.00 36.00 15.00 55.00 105.00 n.a. KOROSPOHJA-SK-007 39.00-40.00 Korospohja 15.60 78.9 219 22 178 1160 716 <0.2 8.94 3.15 133.00 14.40 6.47 32.40 54.60 24.30 KOROSPOHJA-SK-008 17.65-18.65 Korospohja 18.80 32.4 103 23 81.7 1360 1000 <0.2 8.09 2.83 126.00 17.50 5.69 33.70 60.40 29.10 KOROSPOHJA-SK-009 38.45-39.45 Korospohja 41.30 8.24 168 20 88.8 353 838 <0.2 2.98 0.52 55.30 12.50 1.08 19.70 33.90 18.60 KOROSPOHJA-SK-013 34.00-34.90 * Korospohja n.a. <20 69 21 138 900 793 n.a. <7 n.a. 160.00 18.00 <10 <30 51.00 n.a. EPHE-2013-348.1 Korospohja 34.30 80.6 143 28 40.4 395 774 <0.2 1.16 <0.5 21.80 10.20 <0.5 12.10 16.10 9.29 PIM$-2014-42.1 Korospohja 11.70 26 167 20 86.7 1035 860 0.57 9.57 3.73 128.00 13.30 7.37 27.60 53.10 21.90

Sample Location Sm Eu Tb Yb Lu Tm Gd Dy Ho Er Pr U Mo Cd Sn Sb mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg MAAH-2012-255.1 Halttula 2.77 0.82 0.46 1.38 0.21 0.23 3.06 2.73 0.54 1.50 3.56 1.02 <10 n.a. <20 n.a. MAAH-2012-257.1 Halttula 3.77 1.04 0.59 1.62 0.24 0.26 4.21 3.31 0.65 1.78 4.10 1.01 <10 n.a. <20 n.a. MAAH-2012-266.1 Halttula 4.34 1.15 0.57 1.68 0.25 0.26 4.28 3.45 0.66 1.82 6.39 1.68 <10 n.a. <20 n.a. HEKI-2013-166.1 Halttula 3.21 0.93 0.45 1.71 0.24 0.25 2.92 2.80 0.56 1.66 4.71 2.02 <5 <5 20 <50 HEKI-2013-5.1 Halttula 1.94 0.62 0.29 1.12 0.16 0.16 1.89 1.75 0.37 1.12 2.14 0.77 <5 <5 <20 <50 HEKI-2013-8.1 Halttula 5.84 1.52 0.60 1.65 0.23 0.24 4.78 3.12 0.59 1.66 9.73 3.69 <5 <5 <20 <50 MAAH-2013-251.3 Halttula 3.91 1.09 0.46 1.24 0.16 0.19 3.39 2.54 0.48 1.30 5.55 1.98 <5 <5 <20 <50 MAAH-2012-254.1 Halttula 5.87 0.74 0.90 3.32 0.49 0.51 5.75 5.67 1.15 3.45 7.19 4.14 <10 n.a. <20 <100 ASM$-2013-167.1 Halttula n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 N4342014R13 165.80-166.30 Halttula 4.99 1.24 0.64 2.13 0.31 0.34 4.43 3.60 0.74 2.12 7.66 2.38 <10 n.a. 26 <100 N4342014R13 177.05-177.75 Halttula 2.46 0.78 0.39 1.36 0.19 0.21 2.51 2.29 0.46 1.35 3.13 0.82 <10 n.a. <20 <100 N4342014R14 84.35-85.30 Halttula 3.55 0.80 0.48 1.75 0.26 0.28 3.29 2.69 0.55 1.69 6.06 4.41 <10 n.a. 36 <100 N4342014R15 103.00-103.50 Halttula 2.24 0.73 0.37 1.47 0.19 0.24 2.31 2.22 0.49 1.42 2.72 0.92 <10 n.a. 21 <100 N4342014R15 125.75-126.35 Halttula 6.25 1.56 0.77 2.47 0.35 0.41 5.49 4.37 0.88 2.49 9.20 3.13 <10 n.a. <20 <100 HEKI-2012-240.2 Halttula 1.81 0.54 0.28 0.93 0.13 0.13 1.91 1.64 0.33 0.94 1.97 0.50 <10 n.a. <20 n.a. MAAH-2012-227.1 Halttula 4.15 0.94 0.71 2.30 0.34 0.36 4.75 4.39 0.87 2.51 4.98 2.23 <10 n.a. 21 n.a.

91011032 Korospohja 3.98 0.97 0.54 1.57 0.25 0.22 3.73 2.55 0.60 1.68 5.56 1.54 <2.6 n.a n.a. n.a.

91011034 Korospohja 4.55 1.09 0.53 1.69 0.21 0.25 3.72 2.45 0.49 1.48 7.87 3.90 <2.6 n.a n.a. n.a. PIM$-2013-20.1 Korospohja 4.03 0.87 0.35 1.75 0.15 <0.1 3.55 2.84 0.44 1.61 6.30 1.27 <5 <5 <20 <50 PIM$-2013-21.1 Korospohja 3.76 0.80 0.38 1.78 0.14 <0.1 3.57 3.05 0.50 1.72 5.09 1.66 <5 <5 <20 <50 PIM$-2013-24.1 Korospohja 1.77 0.34 <0.1 0.72 <0.1 <0.1 1.52 1.13 <0.1 0.56 3.79 1.67 <5 <5 <20 <50 PIM$-2013-101.1 * Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 PIM$-2013-118.1 * Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 26.00 n.a. <20 <0.01 PIM$-2013-145.1 * Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 PIM$-2013-179.1 * Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 32 <0.01 PIM$-2013-237.1 Korospohja 3.77 0.67 0.39 2.05 0.21 0.14 3.35 3.18 0.53 1.88 5.68 2.38 <5 <5 23 <50 PIM$-2013-239.1 * Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 KOROSPOHJA-SK-007 39.00-40.00 Korospohja 4.22 1.09 0.51 1.68 0.23 0.23 3.56 2.87 0.57 1.70 6.37 3.18 <5 <5 <20 <50 KOROSPOHJA-SK-008 17.65-18.65 Korospohja 5.36 1.48 0.65 1.96 0.27 0.28 4.61 3.55 0.70 2.03 7.36 3.07 <5 <5 <20 <50 KOROSPOHJA-SK-009 38.45-39.45 Korospohja 3.75 1.13 0.48 1.24 0.18 0.19 3.38 2.66 0.50 1.42 4.42 1.22 <5 <5 20 <50 KOROSPOHJA-SK-013 34.00-34.90 * Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 20 <100 EPHE-2013-348.1 Korospohja 2.18 0.79 0.33 1.13 0.15 0.16 2.19 1.98 0.41 1.18 2.13 0.24 <5 <5 34 <50 PIM$-2014-42.1 Korospohja 3.80 1.00 0.44 1.43 0.22 0.21 3.19 2.57 0.49 1.51 5.94 2.08 <10 n.a. <20 <100

Sample Location Pb Bi LaN YbN mg/kg mg/kg MAAH-2012-255.1 Halttula <20 <30 50.65 6.60 MAAH-2012-257.1 Halttula <20 <30 50.32 7.75 MAAH-2012-266.1 Halttula <20 <30 91.29 8.04 HEKI-2013-166.1 Halttula 34.7 <30 75.48 8.18 HEKI-2013-5.1 Halttula <20 <30 34.52 5.36 HEKI-2013-8.1 Halttula <20 <30 173.87 7.89 MAAH-2013-251.3 Halttula 51 <30 83.23 5.93 MAAH-2012-254.1 Halttula <20 <30 101.61 15.89 ASM$-2013-167.1 Halttula 23 <30 n.a n.a N4342014R13 165.80-166.30 Halttula <20 <30 118.06 10.19 N4342014R13 177.05-177.75 Halttula <20 <30 50.32 6.51 N4342014R14 84.35-85.30 Halttula 30 <30 108.06 8.37 N4342014R15 103.00-103.50 Halttula <20 <30 45.48 7.03 N4342014R15 125.75-126.35 Halttula 26 <30 145.48 11.82 HEKI-2012-240.2 Halttula <20 <30 23.94 4.45 MAAH-2012-227.1 Halttula <20 <30 67.10 11.00

91011032 Korospohja 9.77 0.08 71.94 7.51

91011034 Korospohja 9.37 0.09 118.39 8.09 PIM$-2013-20.1 Korospohja 28.4 n.a. 93.87 8.37 PIM$-2013-21.1 Korospohja <20 n.a. 77.74 8.52 PIM$-2013-24.1 Korospohja 32.3 n.a. 77.42 3.45 PIM$-2013-101.1 * Korospohja 27 n.a. n.a n.a PIM$-2013-118.1 * Korospohja <20 n.a. n.a n.a PIM$-2013-145.1 * Korospohja <20 n.a. n.a n.a PIM$-2013-179.1 * Korospohja 26 n.a. 119.35 n.a PIM$-2013-237.1 Korospohja 29.4 n.a. 87.74 9.81 PIM$-2013-239.1 * Korospohja 38 n.a. 177.42 n.a KOROSPOHJA-SK-007 39.00-40.00 Korospohja 65.8 <30 104.52 8.04 KOROSPOHJA-SK-008 17.65-18.65 Korospohja <20 <30 108.71 9.38 KOROSPOHJA-SK-009 38.45-39.45 Korospohja <20 <30 63.55 5.93 KOROSPOHJA-SK-013 34.00-34.90 * Korospohja <20 <30 n.a n.a EPHE-2013-348.1 Korospohja <20 <30 39.03 5.41 PIM$-2014-42.1 Korospohja <20 <30 89.03 6.84

Sample Location SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 Mg# S Cl Cr Ni Sc V % % % % % % % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ASM$-2014-90.1 Korospohja 63.80 0.42 16.60 4.34 4.82 0.10 2.01 3.90 4.18 3.55 0.18 26.45 79 115 45 <20 10.30 77.10 KAKA-2014-67.2 Korospohja 64.20 0.35 16.80 3.55 3.94 0.08 1.63 3.53 4.39 4.44 0.24 26.29 <60 232 46 <20 <20 72.00 KAKA-2014-97.1 Korospohja 46.30 1.33 17.90 10.44 11.60 0.15 4.89 8.95 3.19 2.03 0.47 26.66 1133 803 <20 <20 20.00 295.00 KAKA-2014-97.2 Korospohja 46.80 1.28 18.20 10.08 11.20 0.15 4.60 8.96 3.14 1.99 0.50 26.15 495 820 <20 <20 <20 282.00 KAKA-2014-155.1 Korospohja 62.90 0.62 16.30 5.43 6.03 0.09 2.82 4.07 3.76 2.75 0.31 28.74 74 285 66 25 <20 108.00 KAKA-2014-168.1 Korospohja 63.30 0.44 16.50 4.51 5.01 0.10 2.16 3.97 4.35 3.63 0.26 27.10 134 208 45 <20 <20 82.00 KAKA-2014-176.1 Korospohja 55.50 0.83 15.00 8.24 9.16 0.14 5.83 8.37 2.63 1.82 0.30 35.43 <60 239 216 48 23.00 218.00 KAKA-2014-176.1 Korospohja 52.20 1.29 17.50 8.08 8.98 0.12 5.02 8.83 3.04 1.90 0.58 32.53 213 432 128 59 22.00 191.00 ASM$-2014-477.1 Korospohja 63.70 0.43 16.40 4.36 4.84 0.09 1.96 4.42 3.83 3.77 0.25 25.88 102 206 62 27 9.81 82.50 TOS$-2014-119.1 Korospohja 59.50 0.83 16.80 6.46 7.18 0.17 3.07 6.67 3.99 1.15 0.36 26.94 122 272 52 <20 19.40 168.00 TOS$-2014-162.1 Korospohja 62.80 0.45 16.90 4.04 4.49 0.09 1.57 4.55 3.83 4.59 0.26 23.17 176 361 54 <20 <20 92.00

91011001 Leivonmäki 51.70 0.86 12.30 9.36 10.40 0.17 8.81 9.73 2.68 1.06 0.19 42.21 69.1 <45 280 24.4 37.80 220.00

91011002 Leivonmäki 63.00 0.37 18.70 4.21 4.68 0.06 0.45 3.70 5.21 2.98 0.25 7.70 16.4 144 23.9 14 8.27 53.60 ASM$-2012-369.1 Leivonmäki 62.70 0.60 17.10 5.26 5.85 0.08 1.72 6.67 2.87 1.69 0.33 20.23 480 169 27 <20 24.00 127.00 ASM$-2012-391.1 Leivonmäki 47.70 0.97 14.10 10.71 11.90 0.18 11.20 8.35 1.68 0.95 0.26 44.80 2829 <60 799 263 44.50 328.00 ASM$-2012-391.2 Leivonmäki 47.90 0.98 14.20 10.53 11.70 0.18 11.10 8.08 1.72 1.06 0.26 45.00 2611 <60 829 261 43.80 328.00 PIM$-2013-9.1 Leivonmäki 56.90 0.73 17.00 6.88 7.65 0.12 3.53 5.58 3.10 3.01 0.21 28.46 129 0.02 43.7 16.6 18.70 137.00 PIM$-2013-299.1 Leivonmäki 49.90 1.14 16.90 9.72 10.80 0.18 5.62 9.03 2.00 1.23 0.24 30.97 147 0.01 135 26.9 32.90 267.00 PIM$-2014-49.1 Leivonmäki 61.30 0.55 17.80 5.23 5.81 0.11 2.22 5.06 3.17 3.38 0.22 24.78 <60 130 33 <20 13.10 96.40 PIM$-2014-51.1 Leivonmäki 57.90 0.90 17.40 7.23 8.04 0.12 3.21 6.35 3.38 2.14 0.18 25.61 <60 330 58 <20 20.40 153.00 PIM$-2014-60.1 Leivonmäki 72.50 0.36 13.70 3.05 3.39 0.03 0.74 2.17 2.99 3.62 0.07 15.84 <60 91 <20 <20 <20 38.00 TOS$-2014-201.3 Leivonmäki 52.80 0.69 12.50 8.44 9.38 0.16 11.40 8.27 0.46 2.85 0.19 51.17 282 328 1206 266 26.00 168.00 ASM$-2012-374.1 Leivonmäki 66.80 0.29 17.40 2.68 2.98 0.04 0.81 2.61 8.74 0.07 0.12 18.99 <60 113 <20 <20 <20 31.00 PIM$-2013-300.1 Leivonmäki 62.90 0.81 16.40 6.24 6.94 0.08 2.40 3.96 2.94 2.95 0.33 22.97 69 295 158 31 <20 116.00 JKL$-2013-31.1 Leivonmäki 42.50 1.64 19.50 12.87 14.30 0.21 4.85 9.50 1.95 0.92 1.94 22.63 1022 164 <20 <20 14.40 159.00 JKL$-2013-35.1 Leivonmäki 45.70 0.79 15.40 9.90 11.00 0.18 3.32 16.45 2.15 0.32 0.20 20.56 664 141 313 75 35.00 259.00 TOS$-2014-73.1 Leivonmäki 47.60 0.61 9.29 9.00 10.00 0.15 14.90 9.47 1.45 0.69 0.17 56.23 395 62 1712 365 26.00 163.00 TOS$-2014-80.1 Leivonmäki 47.30 1.25 16.00 10.26 11.40 0.17 5.59 10.74 2.45 0.42 0.21 29.72 347 62 219 41 34.00 270.00 N4312014R2 97.40-97.70 Leivonmäki 73.00 0.25 13.50 2.74 3.05 0.01 0.93 1.23 5.32 1.35 0.12 20.82 299 108 25 <20 <20 <30

Sample Location Co Cu Zn Ga Rb Ba Sr Ta Nb Hf Zr Y Th La Ce Nd mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ASM$-2014-90.1 Korospohja 10.20 69 78 <20 100 1179 980 0.56 9.23 3.53 130.00 12.60 7.24 25.70 48.40 19.60 KAKA-2014-67.2 Korospohja n.a. <20 61 <20 99 1409 1190 n.a. <7 n.a. 147.00 13.00 15.00 <30 57.00 n.a. KAKA-2014-97.1 Korospohja n.a. 54 125 23 115. 417 718 n.a. <7 n.a. 62.00 26.00 <10 <30 71.00 n.a. KAKA-2014-97.2 Korospohja n.a. 40 122 21 106 449 758 n.a. <7 n.a. 113.00 19.00 <10 <30 66.00 n.a. KAKA-2014-155.1 Korospohja n.a. 98 88 22 103 655 722 n.a. <7 n.a. 171.00 22.00 21.00 <30 72.00 n.a. KAKA-2014-168.1 Korospohja n.a. 59 76 <20 127 1083 913 n.a. <7 n.a. 151.00 18.00 19.00 <30 73.00 n.a. KAKA-2014-176.1 Korospohja n.a. 76 85 <20 83 560 618 n.a. <7 n.a. 100.00 20.00 14.00 <30 58.00 n.a. KAKA-2014-176.1 Korospohja n.a. 22 102 22 72 772 887 n.a. <7 n.a. 151.00 24.00 21.00 <30 88.00 n.a. ASM$-2014-477.1 Korospohja 10.50 64 69 20 115 1092 906 0.40 11.40 3.73 139.00 14.10 7.76 30.30 57.10 23.20 TOS$-2014-119.1 Korospohja 17.40 126 149 <20 28.5 665 751 0.31 9.00 2.71 104.00 15.90 3.54 21.10 43.80 20.40 TOS$-2014-162.1 Korospohja n.a. 84 69 21 89 1641 994 n.a. <7 n.a. 162.00 20.00 <30 <30 45.00 n.a.

91011001 Leivonmäki 41.50 52.3 25.2 21.4 26.8 313 408 1.34 24.00 3.27 122.00 32.40 3.02 22.00 48.70 26.90

91011002 Leivonmäki 10.60 20.1 60.7 23.4 81.8 679 928 0.52 7.54 2.63 107.00 12.60 4.71 24.20 44.20 18.10 ASM$-2012-369.1 Leivonmäki 17.20 293 93 25 77.8 n.a. 603 0.58 11.90 2.65 131.00 16.50 3.38 33.40 64.50 29.20 ASM$-2012-391.1 Leivonmäki 60.40 84 149 22 31.4 n.a. 402 0.34 7.72 1.76 88.00 20.10 <0.5 14.20 32.50 18.80 ASM$-2012-391.2 Leivonmäki 60.60 69 152 <20 31.2 n.a. 400 0.31 7.37 1.50 74.70 18.90 0.69 13.70 34.20 17.80 PIM$-2013-9.1 Leivonmäki 21.10 28.4 110 <20 101 771 339 0.41 14.90 4.58 166.00 23.20 7.32 27.40 49.20 22.60 PIM$-2013-299.1 Leivonmäki 32.50 28.2 175 0.00 43.2 510 550 <0.2 6.48 2.48 96.70 19.10 3.33 17.20 33.50 18.90 PIM$-2014-49.1 Leivonmäki 13.30 63 77 25. 92.8 1232 904 0.54 10.70 3.64 148.00 14.70 8.55 30.20 63.30 27.00 PIM$-2014-51.1 Leivonmäki 17.90 <20 80 23 63.6 773 385 0.60 9.43 3.56 144.00 22.30 7.32 24.90 50.30 23.50 PIM$-2014-60.1 Leivonmäki n.a. <20 62 <20 115 1085 228 n.a. 7.00 n.a. 242.00 42.00 22.00 <30 59.00 n.a. TOS$-2014-201.3 Leivonmäki n.a. <20 155 <20 137 432 270 n.a. <7 n.a. 99.00 22.00 17.00 <30 55.00 n.a. ASM$-2012-374.1 Leivonmäki n.a. <20 33 <20 <10 <30 453 n.a. 13.00 n.a. 236.00 22.00 n.a. <30 81.00 n.a. PIM$-2013-300.1 Leivonmäki n.a. 33 89 20 117 995 431 n.a. <7 n.a. 180.00 29.00 n.a. <30 56.00 n.a. JKL$-2013-31.1 Leivonmäki 17.60 35 148 29 34.8 404 1135 0.45 4.31 1.42 43.90 21.70 1.56 25.90 62.10 37.30 JKL$-2013-35.1 Leivonmäki 37.90 52 232 <20 5.81 274 359 <0.2 5.45 2.21 80.60 16.80 2.74 13.00 27.50 14.20 TOS$-2014-73.1 Leivonmäki n.a. 32 198 <20 29 282 145 n.a. <7 n.a. 79.00 19.00 <10 <30 <30 n.a. TOS$-2014-80.1 Leivonmäki 34.50 57 124 <20 6.99 254 369 0.36 9.59 2.93 110.00 20.50 2.21 11.10 26.40 15.40 N4312014R2 97.40-97.70 Leivonmäki n.a. <20 47 <20 60 281 176 n.a. <7 n.a. 166.00 40.00 <30 33.00 68.00 n.a.

Sample Location Sm Eu Tb Yb Lu Tm Gd Dy Ho Er Pr U Mo Cd Sn Sb mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ASM$-2014-90.1 Korospohja 3.47 0.98 0.39 1.29 0.20 0.19 2.89 2.26 0.43 1.31 5.45 2.30 <10 n.a. <20 <100 KAKA-2014-67.2 Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 KAKA-2014-97.1 Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 27 <0.01 KAKA-2014-97.2 Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 11.00 <10 n.a. <20 <0.01 KAKA-2014-155.1 Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 10.00 <10 n.a. <20 <0.01 KAKA-2014-168.1 Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 20 <0.01 KAKA-2014-176.1 Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 10.00 <10 n.a. <20 <0.01 KAKA-2014-176.1 Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. 20 <0.01 ASM$-2014-477.1 Korospohja 4.13 1.08 0.48 1.53 0.24 0.22 3.48 2.64 0.53 1.56 6.40 2.44 <10 n.a. 20 <100 TOS$-2014-119.1 Korospohja 4.00 1.17 0.50 n.a. 0.22 0.23 3.47 2.95 0.57 1.65 5.12 1.04 <10 n.a. <20 <100 TOS$-2014-162.1 Korospohja n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100

91011001 Leivonmäki 5.03 1.25 0.84 2.38 0.33 0.35 5.21 4.53 0.93 2.66 6.19 0.81 <2.6 n.a n.a. n.a.

91011002 Leivonmäki 3.01 0.78 0.37 1.05 0.15 0.14 2.63 1.63 0.36 1.05 4.91 1.25 <2.6 n.a n.a. n.a. ASM$-2012-369.1 Leivonmäki 5.07 1.40 0.58 1.33 0.20 0.21 4.44 2.88 0.52 1.47 7.65 1.18 n.a. n.a. <20 <100 ASM$-2012-391.1 Leivonmäki 4.00 1.13 0.58 1.82 0.25 0.27 4.04 3.41 0.65 1.88 4.47 0.30 n.a. n.a. <20 <100 ASM$-2012-391.2 Leivonmäki 3.78 1.08 0.55 1.66 0.24 0.25 3.78 3.21 0.65 1.77 4.26 0.35 n.a. n.a. <20 <100 PIM$-2013-9.1 Leivonmäki 4.08 0.78 0.46 2.04 0.21 0.14 4.04 3.67 0.60 2.07 5.67 2.46 <5 <5 <20 <50 PIM$-2013-299.1 Leivonmäki 3.45 0.89 0.38 1.59 0.12 <0.1 3.39 3.06 0.50 1.63 4.28 0.98 <5 <5 20 <50 PIM$-2014-49.1 Leivonmäki 4.99 1.30 0.55 1.74 0.26 0.26 4.32 3.19 0.62 1.82 7.39 3.45 <10 66. 20 <100 PIM$-2014-51.1 Leivonmäki 4.86 1.32 0.73 2.70 0.40 0.39 4.95 4.60 0.93 2.75 6.05 2.22 <10 47 26 <100 PIM$-2014-60.1 Leivonmäki n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 TOS$-2014-201.3 Leivonmäki n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <0.01 ASM$-2012-374.1 Leivonmäki n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 PIM$-2013-300.1 Leivonmäki n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 JKL$-2013-31.1 Leivonmäki 7.39 2.23 0.86 1.44 0.20 0.25 6.80 4.54 0.83 2.10 8.27 0.66 <10 n.a. 27 <100 JKL$-2013-35.1 Leivonmäki 3.16 0.96 0.49 n.a. 0.23 0.24 3.23 3.13 0.60 1.77 3.32 0.88 <10 n.a. <20 <100 TOS$-2014-73.1 Leivonmäki n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100 TOS$-2014-80.1 Leivonmäki 3.88 1.21 0.62 n.a. 0.27 0.29 4.09 3.82 0.75 2.11 3.48 0.72 <10 n.a. <20 <100 N4312014R2 97.40-97.70 Leivonmäki n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. <10 <10 n.a. <20 <100

Sample Location Pb Bi LaN YbN mg/kg mg/kg ASM$-2014-90.1 Korospohja 26. <30 82.90 6.17 KAKA-2014-67.2 Korospohja <20 <30 n.a n.a KAKA-2014-97.1 Korospohja <20 <30 n.a n.a KAKA-2014-97.2 Korospohja <20 <30 n.a n.a KAKA-2014-155.1 Korospohja <20 <30 n.a n.a KAKA-2014-168.1 Korospohja 20 <30 n.a n.a KAKA-2014-176.1 Korospohja <20 <30 n.a n.a KAKA-2014-176.1 Korospohja <20 <30 n.a n.a ASM$-2014-477.1 Korospohja 21 <30 97.74 7.32 TOS$-2014-119.1 Korospohja <20 <30 68.06 n.a TOS$-2014-162.1 Korospohja 35 <30 n.a n.a

91011001 Leivonmäki <8.7 <0.04 70.97 11.39

91011002 Leivonmäki <8.7 0.04 78.06 5.02 ASM$-2012-369.1 Leivonmäki <20 n.a. 107.74 6.36 ASM$-2012-391.1 Leivonmäki <20 n.a. 45.81 8.71 ASM$-2012-391.2 Leivonmäki <20 n.a. 44.19 7.94 PIM$-2013-9.1 Leivonmäki <20 n.a. 88.39 9.76 PIM$-2013-299.1 Leivonmäki <20 n.a. 55.48 7.61 PIM$-2014-49.1 Leivonmäki <20 <30 97.42 8.33 PIM$-2014-51.1 Leivonmäki <20 <30 80.32 12.92 PIM$-2014-60.1 Leivonmäki 24 <30 n.a n.a TOS$-2014-201.3 Leivonmäki <20 <30 n.a n.a ASM$-2012-374.1 Leivonmäki <20 <30 n.a n.a PIM$-2013-300.1 Leivonmäki <20 <30 n.a n.a JKL$-2013-31.1 Leivonmäki <20 <30 83.55 6.89 JKL$-2013-35.1 Leivonmäki 93 <30 41.94 n.a TOS$-2014-73.1 Leivonmäki 59 <30 n.a n.a TOS$-2014-80.1 Leivonmäki <20 <30 35.81 n.a N4312014R2 97.40-97.70 Leivonmäki 40 <30 106.45 n.a