Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Artxar, Ml 48106-1346 USA 800-521-0600 UMI' SOME EXAMPLES OF LIFTINGS FOR FINITE GROUPS OF LIE TYPE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Savva 0. Pavlov ***** The Ohio State University 2000 Dissertation Committee: Stephen Rallis, Advisor Approved by Cary Rader Robert Stanton Advisor Bruce Walsh Department Of Mathematics UMI Number; 9994920 UMI UMI Microform 9994920 Copyright 2001 by Beil & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and beaming Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Weyl’s Unitarian trick is one of the cornerstones of the classical representation the­ ory of reductive Lie groups. Using a natural bijective correspondence between real compact groups and complex reductive groups, Weyl was able to prove a number of important properties of representations of reductive complex and real groups. For instance, he proved the complete reducibility of linear representations of complex reductive groups using the analogous fact for real compact groups and the correspon­ dence between the irreducible modules. In this paper we study minimal representations of finite groups of Lie type. We are concerned with restricting such representations to large subgroups in order to find nontrivial occurences of irreducible modules. Specifically, for such large subgroups of non-split type we develop an analogoue of Weyl’s Unitarian trick to handle these cases. Our methodology originates in Shintani lifting theory. Shintani proved in [Sh] th at if G = GLji, the general linear group, and a is a Frobenius isomorphism, there is a canonical bijection ^ between the Galois-stable irreducible representations of G*^”* and all irreducible representations of G“^, satisfying a fixed trace identity. His results were later extended by Kawanaka to include most classical groups ([Kwl], [Kw2]). In our constructions lifting theory serves as the analogue of complexification in classical u theory; it allows us to deduce results about minimal representations in non-split cases from easily obtainable results in split cases. The examples we consider are the liftings of linear Weil representations (4.2), non-traditional dual pairs in Sp^ (chapter 5) and the ^-correspondence for a D;] type group (chapter 6). In chapter 7 we introduce a more general notion of lifting. We construct an analogue of Shintani theory for an isomorphism a which is not of Galois type. We examine the limits of lifting theory techniques by studying the case G = GL 2n+i(Fç) and the automorphism <t of G defined by a{g) = Jg~^^J where J is the unit anti­ diagonal. In Chapter 8 we present a new method for constructing a specific lifting from PGL2 SOz to SLz- 111 ACKNOWLEDGMENTS I thank Karl Rummeihart, Moshe Baruch, Pham. Huu Tiep, and Zhengyu Mao for many valuable recommendations and references. 1 thank Ju-Lee Kim for suggesting the proof of theorem 4.7. I am grateful to Cary Rader for the meticulous care with which he examined the dissertation. His numerous remarks allowed me to greatly improve the text. I consider all the remaining mistakes as my own. .A.bove all I thank Stephen Rallis, my advisor, for introducing me to the subject and for his infinite patience during our numerous conversations. IV VITA 1972 ............................................................. Born in Chernovtsy, USSR 1992 ............................................................. Diploma in Mathematics. Moscow State University. Moscow 1992 - present ........................................... Reseach in mathematics. FIELDS OF STUDY M ajor field: Mathematics Specialization: Representation theory TABLE OF CONTENTS A b stra c t ................................................................................................................................ ii Acknowledgments ............................................................................................................... iv V i t a ...................................................................................................................................... V CHAPTER PAGE 1 Introduction ............................................................................................................ I 2 Preliminaries ......................................................................................................... 5 3 Technical lemmas ..................................................................................................... 13 4 The base change of Weil representations ........................................................... 21 5 The Weil representation of Spi{Fq) ................................................................. 35 6 The c a s e ............................................................................................................ 54 7 Symmetric liftings .................................................................................................. 62 8 The symplectic correspondence ............................................................................ 76 Bibliography ...................................................................................................................... 85 VI CHAPTER 1 INTRODUCTION Let p > 3 be a prime number, F, a finite field of characteristic p, and F, its algebraic closure. Let G be an algebraic group over F,. We will denote by Fr the geometric Frobenius endomorphism (raising the coordinates to the g-th power). Let a be a (twisted) Frobenius map that is a composition cr = F ro e of the geometric Frobenius and a finite order automorphism of G. commuting with Fr. Let m be an odd positive integer. Define the norm map N : 0'^"' C " . S{g) = This map induces a surjective map between the conjugacy classes of G‘^"' and the conjugacy classes in containing elements of G^- For an irreducible representation (0, V) of G‘^"' define —another irreducible representation acting on the same space by formula (0a-p)u = {Qg‘^)v. 0 is called Galois-stable if it is equivalent to Bq., i.e. there exists an intertwining operator : V —)■ V such that: o (0 ,9 ) = Q{g) o Aa- Lifting theory was originated by Shintani who proved in [Sh) that if G = GL^ is the general linear group there is a bijection k between the Galois-stable irreducible representations of G®^’" and all irreducible representations of G ,. This correspondence satisfies a twisted character formula (for a certain .4,): 1 tr(0(.V'(^))) = tr(bçiô)(g) o .4,), where N'(g) is possibly on an element of conjugate to jV(g) in Kawanaka extended this result to the case 6' = Un in [Kwl] and to the cases G = S 0 „, G = Spn, m odd in [Kw2|. In this paper we study the application of liftings to non-split groups. We develop a method to overcome the technical difficulties in these cases that is in a way analogous to Weyl’s unitary trick. The minimal representations of non-split groups will be lifted (via Shintani lifting) to a split situation and then the results will be deduced from well-known facts about standard cases and Shintani liftings. A typical situation which we will encounter will involve algebraic groups G D H m and L defined over a finite field F, such that H(F<,) is isomorphic to fj L(F,). Suppose 1=1 L is split over F, and H is obtained by twisting with the automorphism e of G of order m, commuting with the Fr action on L and cyclicly permuting the L s, e(ÿi, g2 , • ■ •. ffm) = (5 2 , • • • T ffm, ffi)- In 3.2 we establish a lifting theory in this general setting, which we then use to study the liftings of linear Weil representations (4.2), the exceptional case of the ^-correspondence for Sp^ (chapter 5) and the ^-correspondence for a type group (chapter 6). In Chapter 2 we introduce Shintani liftings and Weil representations, and some important notations. In Chapter 3 we prove several technical lemmas that will be central to our constructions. The first part of chapter 3 establishes the connection between the restriction of the Weil representation of Sp„ to the dual pair SL2 x 5 0 j, and the restriction of the minimal representation
Recommended publications
  • On the Left Ideal in the Universal Enveloping
    proceedings of the american mathematical society Volume 121, Number 4, August 1994 ON THE LEFT IDEAL IN THE UNIVERSALENVELOPING ALGEBRA OF A LIE GROUP GENERATED BY A COMPLEX LIE SUBALGEBRA JUAN TIRAO (Communicated by Roe W. Goodman) Abstract. Let Go be a connected Lie group with Lie algebra go and 'et n be a Lie subalgebra of the complexification g of go . Let C°°(Go)* be the annihilator of h in C°°(Go) and let s/ =^{Ccc(G0)h) be the annihilator of C00(Go)A in the universal enveloping algebra %(g) of g. If h is the complexification of the Lie algebra ho of a Lie subgroup Ho of Go then sf = %({g)h whenever Ho is closed, is a known result, and the point of this paper is to prove the converse assertion. The paper has two distinct parts, one for C°° , the other for holomorphic functions. In the first part the Lie algebra ho of the closure of Ha is characterized as the annihilator in go of C°°(Go)h , and it is proved that ho is an ideal in /i0 and that ho = ho © v where v is an abelian subalgebra of Ao . In the second part we consider a complexification G of Go and assume that h is the Lie algebra of a closed connected subgroup H of G. Then we establish that s/{cf(G)h) = %?(g)h if and only if G/H has many holomorphic functions. This is the case if G/H is a quasi-affine variety. From this we get that if H is a unipotent subgroup of G or if G and H are reductive groups then s/(C°°(G0)A) = iY(g)h .
    [Show full text]
  • Lie Groups and Lie Algebras
    2 LIE GROUPS AND LIE ALGEBRAS 2.1 Lie groups The most general definition of a Lie group G is, that it is a differentiable manifold with group structure, such that the multiplication map G G G, (g,h) gh, and the inversion map G G, g g−1, are differentiable.× → But we shall7→ not need this concept in full generality.→ 7→ In order to avoid more elaborate differential geometry, we will restrict attention to matrix groups. Consider the set of all invertible n n matrices with entries in F, where F stands either for the real (R) or complex× (C) numbers. It is easily verified to form a group which we denote by GL(n, F), called the general linear group in n dimensions over the number field F. The space of all n n matrices, including non- invertible ones, with entries in F is denoted by M(n,×F). It is an n2-dimensional 2 vector space over F, isomorphic to Fn . The determinant is a continuous function det : M(n, F) F and GL(n, F) = det−1(F 0 ), since a matrix is invertible → −{ } 2 iff its determinant is non zero. Hence GL(n, F) is an open subset of Fn . Group multiplication and inversion are just given by the corresponding familiar matrix 2 2 2 2 2 operations, which are differentiable functions Fn Fn Fn and Fn Fn respectively. × → → 2.1.1 Examples of Lie groups GL(n, F) is our main example of a (matrix) Lie group. Any Lie group that we encounter will be a subgroups of some GL(n, F).
    [Show full text]
  • Introduction to Representations Theory of Lie Groups
    Introduction to Representations Theory of Lie Groups Raul Gomez October 14, 2009 Introduction The purpose of this notes is twofold. The first goal is to give a quick answer to the question \What is representation theory about?" To answer this, we will show by examples what are the most important results of this theory, and the problems that it is trying to solve. To make the answer short we will not develop all the formal details of the theory and we will give preference to examples over proofs. Few results will be proved, and in the ones were a proof is given, we will skip the technical details. We hope that the examples and arguments presented here will be enough to give the reader and intuitive but concise idea of the covered material. The second goal of the notes is to be a guide to the reader interested in starting a serious study of representation theory. Sometimes, when starting the study of a new subject, it's hard to understand the underlying motivation of all the abstract definitions and technical lemmas. It's also hard to know what is the ultimate goal of the subject and to identify the important results in the sea of technical lemmas. We hope that after reading this notes, the interested reader could start a serious study of representation theory with a clear idea of its goals and philosophy. Lets talk now about the material covered on this notes. In the first section we will state the celebrated Peter-Weyl theorem, which can be considered as a generalization of the theory of Fourier analysis on the circle S1.
    [Show full text]
  • Kac-Moody Algebras and Applications
    Kac-Moody Algebras and Applications Owen Barrett December 24, 2014 Abstract This article is an introduction to the theory of Kac-Moody algebras: their genesis, their con- struction, basic theorems concerning them, and some of their applications. We first record some of the classical theory, since the Kac-Moody construction generalizes the theory of simple finite-dimensional Lie algebras in a closely analogous way. We then introduce the construction and properties of Kac-Moody algebras with an eye to drawing natural connec- tions to the classical theory. Last, we discuss some physical applications of Kac-Moody alge- bras,includingtheSugawaraandVirosorocosetconstructions,whicharebasictoconformal field theory. Contents 1 Introduction2 2 Finite-dimensional Lie algebras3 2.1 Nilpotency.....................................3 2.2 Solvability.....................................4 2.3 Semisimplicity...................................4 2.4 Root systems....................................5 2.4.1 Symmetries................................5 2.4.2 The Weyl group..............................6 2.4.3 Bases...................................6 2.4.4 The Cartan matrix.............................7 2.4.5 Irreducibility...............................7 2.4.6 Complex root systems...........................7 2.5 The structure of semisimple Lie algebras.....................7 2.5.1 Cartan subalgebras............................8 2.5.2 Decomposition of g ............................8 2.5.3 Existence and uniqueness.........................8 2.6 Linear representations of complex semisimple Lie algebras...........9 2.6.1 Weights and primitive elements.....................9 2.7 Irreducible modules with a highest weight....................9 2.8 Finite-dimensional modules............................ 10 3 Kac-Moody algebras 10 3.1 Basic definitions.................................. 10 3.1.1 Construction of the auxiliary Lie algebra................. 11 3.1.2 Construction of the Kac-Moody algebra................. 12 3.1.3 Root space of the Kac-Moody algebra g(A) ..............
    [Show full text]
  • Lie Groups and Lie Algebras
    Lie groups and Lie algebras Jonny Evans March 10, 2016 1 Lecture 1: Introduction To the students, past, present and future, who have/are/will taken/taking/take this course and to those interested parties who just read the notes and gave me feedback: thank you for providing the background level of enthusiasm, pedantry and general con- fusion needed to force me to improve these notes. All comments and corrections are very welcome. 1.1 What is a representation? Definition 1.1. A representation ρ of a group G on an n-dimensional vector space V over a field k is an assignment of a k-linear map ρ(g): V ! V to each group element g such that • ρ(gh) = ρ(g)ρ(h) • ρ(1G) = 1V . Here are some equivalent definitions. A representation is... 1. ...an assignment of an n-by-n matrix ρ(g) to each group element g such that ρ(gh) = ρ(g)ρ(h) (i.e. the matrices multiply together like the group elements they represent). This is clearly the same as the previous definition once you have picked a basis of V to identify linear maps with matrices; 2. ...a homomorphism ρ: G ! GL(V ). The multiplicativity condition is now hiding in the definition of homomorphism, which requires ρ(gh) = ρ(g)ρ(h); 3. ...an action of G on V by linear maps. In other words an action ρ~: G × V ! V such that, for each g 2 G, the map ρ(g): V ! V defined by ρ(g)(v) =ρ ~(g; v) is linear.
    [Show full text]
  • Effective Sato-Tate Conjecture for Abelian Varieties and Applications
    EFFECTIVE SATO–TATE CONJECTURE FOR ABELIAN VARIETIES AND APPLICATIONS ALINA BUCUR, FRANCESC FITE,´ AND KIRAN S. KEDLAYA Abstract. From the generalized Riemann hypothesis for motivic L-functions, we derive an effective version of the Sato–Tate conjecture for an abelian variety A defined over a number field k with connected Sato–Tate group. By effective we mean that we give an upper bound on the error term in the count predicted by the Sato–Tate measure that only depends on certain invariants of A. We discuss three applications of this conditional result. First, for an abelian variety defined over k, we consider a variant of Linnik’s problem for abelian varieties that asks for an upper bound on the least norm of a prime whose normalized Frobenius trace lies in a given interval. Second, for an elliptic curve defined over k with complex multiplication, we determine (up to multiplication by a nonzero constant) the asymptotic number of primes whose Frobenius trace attain the integral part of the Hasse–Weil bound. Third, for a pair of abelian varieties A and A′ defined over k with no common factors up to k-isogeny, we find an upper bound on the least norm of a prime at which the respective Frobenius traces of A and A′ have opposite sign. Contents 1. Introduction 1 Notations and terminology. 4 Acknowledgements 4 2. Conjectural framework 5 2.1. Sato–Tate groups 5 2.2. Motivic L-functions 5 3. Effective Sato–Tate Conjecture 7 3.1. Lie group theory background 8 3.2. A multivariate Vinogradov function 9 3.3.
    [Show full text]
  • 22 Representations of SL2
    22 Representations of SL2 Finite dimensional complex representations of the following are much the same: SL2(R), sl2R, sl2C (as a complex Lie algebra), su2R, and SU2. This is because finite dimensional representations of a simply connected Lie group are in bi- jection with representations of the Lie algebra. Complex representations of a REAL Lie algebra L correspond to complex representations of its complexifica- tion L ⊗ C considered as a COMPLEX Lie algebra. Note that complex representations of a COMPLEX Lie algebra L⊗C are not the same as complex representations of the REAL Lie algebra L⊗C =∼ L+L. The representations of the real Lie algebra correspond roughly to (reps of L)⊗(reps of L). Strictly speaking, SL2(R) is not simply connected, which is not important for finite dimensional representations. 2 Set Ω = 2EF + 2F E + H ∈ U(sl2R). The main point is that Ω commutes with sl2R. You can check this by brute force: [H, Ω] = 2 ([H, E]F + E[H, F ]) + ··· | {z } 0 [E, Ω] = 2[E, E]F + 2E[F, E] + 2[E, F ]E + 2F [E, E] + [E, H]H + H[E, H] = 0 [F, Ω] = Similar Thus, Ω is in the center of U(sl2R). In fact, it generates the center. This does not really explain where Ω comes from. Why does Ω exist? The answer is that it comes from a symmetric invariant bilinear form on the Lie algebra sl2R given by (E, F ) = 1, (E, E) = (F, F ) = (F, H) = (E, H) = 0, (H, H) = 2. This bilinear form is an invariant map L ⊗ L → C, where L = sl2R, which by duality gives an invariant element in L ⊗ L, which turns out to be 2E ⊗ F + 2F ⊗ E + H ⊗ H.
    [Show full text]
  • 2018-06-108.Pdf
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Feature S E European Tensor Product and Semi-Stability M M Mathematical Interviews E S Society Peter Sarnak Gigliola Staffilani June 2018 Obituary Robert A. Minlos Issue 108 ISSN 1027-488X Prague, venue of the EMS Council Meeting, 23–24 June 2018 New books published by the Individual members of the EMS, member S societies or societies with a reciprocity agree- E European ment (such as the American, Australian and M M Mathematical Canadian Mathematical Societies) are entitled to a discount of 20% on any book purchases, if E S Society ordered directly at the EMS Publishing House. Bogdan Nica (McGill University, Montreal, Canada) A Brief Introduction to Spectral Graph Theory (EMS Textbooks in Mathematics) ISBN 978-3-03719-188-0. 2018. 168 pages. Hardcover. 16.5 x 23.5 cm. 38.00 Euro Spectral graph theory starts by associating matrices to graphs – notably, the adjacency matrix and the Laplacian matrix. The general theme is then, firstly, to compute or estimate the eigenvalues of such matrices, and secondly, to relate the eigenvalues to structural properties of graphs. As it turns out, the spectral perspective is a powerful tool. Some of its loveliest applications concern facts that are, in principle, purely graph theoretic or combinatorial. This text is an introduction to spectral graph theory, but it could also be seen as an invitation to algebraic graph theory. The first half is devoted to graphs, finite fields, and how they come together. This part provides an appealing motivation and context of the second, spectral, half. The text is enriched by many exercises and their solutions.
    [Show full text]
  • Math 210C. Representations of Sl2 1. Introduction in This Handout, We
    Math 210C. Representations of sl2 1. Introduction In this handout, we work out the finite-dimensional k-linear representation theory of sl2(k) for any field k of characteristic 0. (There are also infinite-dimensional irreducible k-linear representations, but here we focus on the finite-dimensional case.) This is an introduction to ideas that are relevant in the general classification of finite-dimensional representations of \semisimple" Lie algebras over fields of characteristic 0, and is a crucial technical tool for our later work on the structure of general connected compact Lie groups (especially to explain the ubiquitous role of SU(2) in the general structure theory). When k is fixed during a discussion, we write sl2 to denote the Lie algebra sl2(k) of traceless 2×2 matrices over k (equipped with its usual Lie algebra structure via the commutator inside − + the associative k-algebra Mat2(k)). Recall the standard k-basis fX ; H; X g of sl2 given by 0 0 1 0 0 1 X− = ;H = ;X+ = ; 1 0 0 −1 0 0 satisfying the commutation relations [H; X±] = ±2X±; [X+;X−] = H: For an sl2-module V over k (i.e., k-vector space V equipped with a map of Lie algebras sl2 ! Endk(V )), we say it is irreducible if V 6= 0 and there is no nonzero proper sl2- submodule. We say that V is absolutely irreducible (over k) if for any extension field K=k the scalar extension VK is irreducible as a K-linear representation of the Lie algebra sl2(K) = K ⊗k sl2 over K.
    [Show full text]
  • Unité, Généralité Et Méthode Axiomatique Dans L’Article De Weyl De 1925-1926 Sur Les Groupes De Lie
    introduction first part second part third part / conclusion Unité, généralité et méthode axiomatique dans l’article de Weyl de 1925-1926 sur les groupes de Lie Christophe Eckes Université Paris VII 12 mars introduction first part second part third part / conclusion introduction - We should not reduce Weyl’s paper to this result. - how to describe the interplay between different mathematical domains (algebra, analysis situs) and different methods (Cartan’s, Hurwitz’s and Frobenius’s methods) ? - which relation can we find between the study of special cases (SL(n,C), O(n), Sp(2n,C)) and the general theory of semi-simple complex Lie groups ? introduction first part second part third part / conclusion General remarks Weyl’s article on the representation of semisimple groups is well known, because of one result in particular: The complete reducibility theorem for semisimple complex Lie groups. - how to describe the interplay between different mathematical domains (algebra, analysis situs) and different methods (Cartan’s, Hurwitz’s and Frobenius’s methods) ? - which relation can we find between the study of special cases (SL(n,C), O(n), Sp(2n,C)) and the general theory of semi-simple complex Lie groups ? introduction first part second part third part / conclusion General remarks Weyl’s article on the representation of semisimple groups is well known, because of one result in particular: The complete reducibility theorem for semisimple complex Lie groups. - We should not reduce Weyl’s paper to this result. introduction first part second part third part / conclusion General remarks Weyl’s article on the representation of semisimple groups is well known, because of one result in particular: The complete reducibility theorem for semisimple complex Lie groups.
    [Show full text]
  • Arxiv:1503.03840V1 [Math.SG] 12 Mar 2015 T21-82-0-1Fdradb H Uoensinefo Science European the by CAST
    A NOTE ON SYMPLECTIC AND POISSON LINEARIZATION OF SEMISIMPLE LIE ALGEBRA ACTIONS EVA MIRANDA Abstract. In this note we prove that an analytic symplectic action of a semisimple Lie algebra can be locally linearized in Darboux coordinates. This result yields simultaneous analytic linearization for Hamiltonian vector fields in a neighbourhood of a common zero. We also provide an example of smooth non-linearizable Hamiltonian action with semisim- ple linear part. The smooth analogue only holds if the semisimple Lie algebra is of compact type. An analytic equivariant b-Darboux theorem for b-Poisson manifolds and an analytic equivariant Weinstein splitting theorem for general Poisson manifolds are also obtained in the Poisson setting. 1. Introduction A classical result due to Bochner [1] establishes that a compact Lie group action on a smooth manifold is locally equivalent, in the neighbourhood of a fixed point, to the linear action. This result holds in the k category. It is interesting to comprehend to which extent we can expect a simC ilar behaviour for non-compact groups. As observed in [9] if the Lie group is connected the linearization problem can be formulated in the following terms: find a linear system of coordinates for the vector fields corresponding to the one parameter subgroups of G or, more generally, consider the representation of a Lie algebra and find coordinates on the manifold that simultaneously linearize the vector fields arXiv:1503.03840v1 [math.SG] 12 Mar 2015 in the image of the representation that vanish at a point. This is the point of view that we adopt in this note when we refer to linearization.
    [Show full text]
  • Notices of the American Mathematical Society ABCD Springer.Com
    ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook Collection of the American Mathematical Society September 2009 Volume 56, Number 8 Bôcher, Osgood, ND and the Ascendance NEW NEW 2 EDITION EDITION of American Mathematics forms bridges between From the reviews of the first edition The theory of elliptic curves is Mathematics at knowledge, tradition, and contemporary 7 Chorin and Hald provide excellent distinguished by the diversity of the Harvard life. The continuous development and explanations with considerable insight methods used in its study. This book growth of its many branches permeates and deep mathematical understanding. treats the arithmetic theory of elliptic page 916 all aspects of applied science and 7 SIAM Review curves in its modern formulation, technology, and so has a vital impact on through the use of basic algebraic our society. The book will focus on these 2nd ed. 2009. X, 162 p. 7 illus. number theory and algebraic geometry. aspects and will benefit from the (Surveys and Tutorials in the Applied contribution of world-famous scientists. Mathematical Sciences) Softcover 2nd ed. 2009. XVIII, 514 p. 14 illus. Invariant Theory ISBN 978-1-4419-1001-1 (Graduate Texts in Mathematics, 2009. XI, 263 p. (Modeling, Simulation & 7 Approx. $39.95 Volume 106) Hardcover of Tensor Product Applications, Volume 3) Hardcover ISBN 978-0-387-09493-9 7 $59.95 Decompositions of ISBN 978-88-470-1121-2 7 $59.95 U(N) and Generalized Casimir Operators For access check with your librarian page 931 Stochastic Partial Linear Optimization Mathematica in Action Riverside Meeting Differential Equations The Simplex Workbook The Power of Visualization A Modeling, White Noise Approach G.
    [Show full text]