A New X-Ray Eye in the Sky

Total Page:16

File Type:pdf, Size:1020Kb

A New X-Ray Eye in the Sky INTER NATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 40 NUMBER 7 SEPTEMBER 2000 »i*« A new X-ray eye in the sky ANTIMATTER ASYMMETRY TAU NEUTRINO DISAPPEARING NEUTRINOS Exploring a new route to The most elusive particle Over 250 km, neutrinos slip CP violation p5 of all turns up p6 off the map p8 MATHEMATICA The way the world calculates Web Standards Symbolic Algebra Mathematical typesetting technology Leading financial analysts use was instrumental in the design Mathematical symbolic algebra of MathML. Wolfram Research is capabilities to refine and improve hosting the first conference on this standard models for derivative new'W3C standard for publishing securities pricing. mathematics on the web. [London] [Champaign-Urbana, Illinois] / Technical Documents Mathematical technical typesetting Notebooks system is now used to set all mathe­ Mathematica notebook documents matical formulas in all U.S. patents, let researchers at Mitsubishi thanks to the joint effort of Reed communicate research results Technology and Information Services instantly throughout their company. and Wolfram Research. [Osaka, Japan] [Horsham, Pennsylvania] '•:•. ; \ Numeric Computation Visualization Mathematical numeric differential MaZ-fiemaf/ca-based simulations ^ equation solvers let Ford Motor and models of the retina teach Company model the chemical visual perception to students at kinetics of combustion, testing the Image Sciences Institute at designs to make cars run cleaner. Utrecht University. [Detroit] [Utrecht, Netherlands] • Integrated Environment, Ease of Use Programming Language The all-in-one, easy-to-use Mathematica Mathematica'% uniquely intuitive environment lets students at hundreds of language helps hundreds of new leading colleges and universities world­ high-tech companies overcome wide gain a deeper understanding of their most demanding R&D core concepts. challenges. [All over the Globe] [Silicon Valley, California] In the world of technical computation and With its wealth of powerful, flexible capabilities, communication, Mathematica sets the standard. Mathematica is changing the way the world calculates. Every day, technical professionals around the world Isn't it time to see what Mathematica can do need to solve increasingly complicated problems as for your world? part of their routine work. More and more, they are discovering what leading researchers have known WOLFRAM for over a decade: Mathematica is an indispensible RESEARCH tool for finding and communicating solutions quickly and easily. www* wolf ram*€oni For more information, visit our web site or call toll free 1-877-239-7148. Outside the U.S., find contact information at www.wolfram.com; tional. ©2000 Wolfram Research, Inc. Mathematica is a registered trademark of Wolfram Research, inc. Mntiiùmof'ca is not associated with Mathematica Policy Research, Inc. or Mathïech, Inc. CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to Member State governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly except January and August, in English and French editions. The views expressed are not necessarily those of the CERN management. CERN Editor: Gordon Fraser CERN, 1211 Geneva 23, Switzerland E-mail [email protected] Fax +41 (22) 782 1906 Web http://www.cerncourier.com News editor: James Gillies COURIER VOLUME 40 NUMBER 7 SEPTEMBER 2000 Advisory Board: R Landua (Chairman), F Close, E Lillest0l, H Hoffmann, C Johnson, K Potter, PSphicas Laboratory correspondents: Argonne National Laboratory (USA): D Ayres Brookhaven, National Laboratory (USA): PYamin Cornell University (USA): D G Cassel DESY Laboratory (Germany): Ilka Flegel, P Waloschek Fermi National Accelerator Laboratory (USA): Judy Jackson GSI Darmstadt (Germany): G Siegert INFN(ltaly):APascolini IHEP, Beijing (China): Qi Nading Jefferson Laboratory (USA): S Corneliussen JINR Dubna (Russia): BStarchenko KEK National Laboratory (Japan): A Maki Lawrence Berkeley Laboratory (USA): Christine Celata Los Alamos National Laboratory (USA): C Hoffmann OWL telescope project pl5 LHC report at EPAC 2000 p26 First Wiik prize winners p36 NIKHEF Laboratory (Netherlands): Margrietvan der Heijden Novosibirsk Institute (Russia): S Eidelman Orsay Laboratory (France): Anne-Marie Lutz News 5 PSI Laboratory (Switzerland): P-R Kettle Rutherford Appleton Laboratory (UK): Jacky Hutchinson CP asymmetry moves to new setting. DONUT comes to neutrino town. Saclay Laboratory (France): Elisabeth Locci Energen has a winning plan. Synthetic neutrinos appear to disappear. IHEP, Serpukhov (Russia): Yu Ryabov Stanford Linear Accelerator Center (USA): M Riordan Antiprotons come with ail the trappings. Extreme cryogenics keeps TRIUMF Laboratory (Canada): M K Craddock LHC cool. First test beams are delivered for the LHC. Produced for CERN by Institute of Physics Publishing Ltd I0P Publishing Ltd, Dirac House, Temple Back, Bristol BS16BE, UK Tel. +44 (0)117 929 7481 Physicswatch 13 [email protected] Web http://www.iop.org Astrowatch 15 Head of magazines: Richard Roe Publishing manager: Jo Nicholas Art director: Andrew Giaquinto Features Production editor: Kerry Harding XMM-Newton measures the hot universe 17 Technical illustrator: Alison Tovey Advertising manager: Jo Nicholas First of a new generation of X-ray observatories Recruitment sales: Andrew Hardie and Jayne Purdy Advertisement production: Katie Graham Product manager: So-Mui Cheung Mapping quark confinement by exotic particles 23 Looking for new kinds of particles Advertising: Jo Nicholas, Andrew Hardie or Jayne Purdy Tel.+44 (0)117 930 1026 E-mail [email protected] No stopping the accelerator 26 Fax +44 (0)117 930 1178 Colin Johnson and Philip Bryant report from particle accelerator General distribution: Jacques Dallemagne, CERN, 1211 Geneva 23, Switzerland. E-mail [email protected] conferences in Vienna j In certain countries, to request copies or to make address changes, contact: China: Chen Huaiwei, Institute of High-Energy Physics, P.O. Box Wolfgang Pauli: never to be excluded 30 918, Beijing, People's Republic of China Germany: Gabriela Heessel or Veronika Werschner, DESY, Honouring We conscience of physics' \ Notkestr. 85, 22603 Hamburg 52. E-mail [email protected] Italy: Loredana Rum or Anna Pennacchietti, INFN, Casella Postale 56, 00044 Frascati, Roma People 34 United Kingdom: Su Lockley, Rutherford Appleton Laboratory, • Chilton, Didcot, Oxfordshire 0X11OQX. E-mail [email protected] USA/Canada: Janice Voss, Creative Mailing Services, P.O. Box 1147, Recruitment 39 St Charles, Illinois 60174. Tel. 630-377-1589. Fax 630-377-1569 Published by: European Laboratory for Particle Physics, CERN, Bookshelf 47 1211 Geneva 23, Switzerland. Tel. +41 (22) 767 6111 Telefax +41 (22) 767 65 55 USA: Controlled Circulation Periodicals postage paid at St Charles, Illinois Printed by: Warners (Midlands) pic, Bourne, Lincolnshire, UK © 2000 CERN ISSN 0304-288X Cover: A new X-ray eye in the sky - the European Space Agency's X-ray Multi-Mission XMM-Newton. loP (Photo ESA.) pl7. CERN Courier September 2000 3 All you need. - for particle accelerators _ MAGNET TECHNOLOGY < MAGNET POWER SUPPLIES \« CURRENT TRANSDUCERS \ • ELECTRON \ ACCELERATORS \ • /CW ACCELERATORS * ELECTROSTATICS » BEAM DIAGNOSTICS We cover all your needs "from source to target". Our team cooperates very closely with customers from an early stage in any request or project. We have the experienced engineers who can match all requirements including beam optics, mechanics, vacuum and electronics. We offer tested and documented products and complete installations of all equipment worldwide. DANFYSIK makes the total optimum solution. DANFYSIK DK-4040 Jyllinge. Denmark Tei.:+45 4678 8150- Fax.: +454673 1551- e-mail:sales%danfysik.dk- www.danfysik.dk in USA: GMW Associates; Tel.: (650) 802 8292 - Fax (650) 802 8298- e-mail:sales0gnmcom ' In India: Transact India Corporation, Tel.:(22) 285 5261- Fax: (22) 285 2326- e-mati:ifem$@¥$nLcom in Japan: Marubun Corp., Tel (03) 3639-9652- Fax.(03j 5644-7627- e-mail.vacuurr, 'v marass- c^to NEWS CP asymmetry moves to new setting The year 2000 sees the debut of a new kind of until October, collecting 25 inverse femto­ precision physics. It formally began with the barns (BaBar aimed for 30 inverse femto­ opening plenary talks at the International barns, so they are right there from the start). Conference on High Energy Physics, the bien­ BELLE at KEKB uses the full data sample nial particle physics jamboree, held this year since the start-up, corresponding to 6.8 in Osaka. inverse femtobarns.The luminosity reached so On 31 July the initial plenary speakers at far is 2.04 x 1033.The decay channels used for Osaka - David Hitlin of Caltech and Hiroaki the determination of the sin(2(3) CP-violating Aihara of Tokyo - presented the first physics One B Factory - the PEP-II ring at SLAC... parameter include, in addition to those used at results from the BaBar and BELLE detectors PEP-II, B decays into chi-cl and decays giving respectively. A small but paradoxically impor­ long-lived kaons. (BaBar has about 89 of tant effect called CP violation has now been these but doesn't include them yet.) A total of seen and measured outside its traditional 98 events enter the final BELLE CP fit. hunting ground, which had been limited to For J/psi Ks events only, the BELLE result is studies of neutral kaons. sin(2|3) = 0.49 + 0.53 - 0.57. Combining this BaBar and BELLE
Recommended publications
  • CERN Celebrates Discoveries
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 43 NUMBER 10 DECEMBER 2003 CERN celebrates discoveries NEW PARTICLES NETWORKS SPAIN Protons make pentaquarks p5 Measuring the digital divide pl7 Particle physics thrives p30 16 KPH impact 113 KPH impact series VISyN High Voltage Power Supplies When the objective is to measure the almost immeasurable, the VISyN-Series is the detector power supply of choice. These multi-output, card based high voltage power supplies are stable, predictable, and versatile. VISyN is now manufactured by Universal High Voltage, a world leader in high voltage power supplies, whose products are in use in every national laboratory. For worldwide sales and service, contact the VISyN product group at Universal High Voltage. Universal High Voltage Your High Voltage Power Partner 57 Commerce Drive, Brookfield CT 06804 USA « (203) 740-8555 • Fax (203) 740-9555 www.universalhv.com Covering current developments in high- energy physics and related fields worldwide CERN Courier (ISSN 0304-288X) is distributed to member state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are CERN not necessarily those of the CERN management. Editor Christine Sutton CERN, 1211 Geneva 23, Switzerland E-mail: [email protected] Fax:+41 (22) 782 1906 Web: cerncourier.com COURIER Advisory Board R Landua (Chairman), P Sphicas, K Potter, E Lillest0l, C Detraz, H Hoffmann, R Bailey
    [Show full text]
  • About Testing Nu Mu Oscillation with Dm2 Smaller Than 0.001 Ev2 With
    2 About testing νµ oscillation with ∆m smaller than 0.001 eV2 with the CERN Proton Synchrotron P. F. Loverre, R. Santacesaria, F. R. Spada Universit`a“La Sapienza” and Istituto Nazionale di Fisica Nucleare (INFN) Rome, Italy – Submitted to The European Physical Journal C Abstract We study the feasibility of a long–baseline neutrino experiment from CERN to Gran Sasso LNGS Laboratories using the CERN PS accelerator. Baseline and neutrino energy spectrum are suitable to explore a region of the (∆m2, sin2 2θ) parameters space which is not reached by K2K, the first experiment that will test at accelerator the atmospheric neutrino anomaly put in evidence by Super–Kamiokande. The recent Super–Kamiokande measurements of atmospheric neutrino arXiv:hep-ex/9911043v1 29 Nov 1999 fluxes [1] favour νµ → ντ (or νµ → νx) oscillations, with almost maximal mixing and ∆m2 in the range (5 ÷ 60) · 10−4 eV2. The first test of this atmospheric neutrino anomaly at accelerator will be performed in Japan by the K2K [2] experiment. K2K has recently started taking data using a neutrino beam generated by the KEK 12–GeV Pro- ton Synchrotron directed toward the Super–Kamiokande detector, which is placed about 250 Km away from KEK. The K2K experiment, owing to an L/E ratio of order 250/1 (Km/GeV), explores via disappearance νµ oscilla- tions down to ∆m2 ∼ 2 · 10−3 eV2. The same ∆m2 region can be explored with higher sensitivity with the high energy neutrino beams of FNAL (NuMI – MINOS experiment [3,4]) and 1 CERN (CERN – Gran Sasso LNGS beam [5]).
    [Show full text]
  • K2K Cross Section Studies
    K2K Cross Section Studies Rik Gran U. Minnesota Duluth 0. K2K experiment and NEUT interaction code 1. NC single p0/(All CC) in 1KT Cherenkov detector 2. CC-Coherent Pion Production in SciBar detector 3. MA-QE from shape fit to SciFi detector data Motivations Improve Neutrino Cross Sections knowledge of Cross Sections (Lipari 1995) En (GeV) Cross Sections and Nuclear Effects are important for extracting oscillation parameters from nu-mu disappearance nu-e appearance experiments. K2K oscillation result K2K beamline at KEK in Tsukuba, Japan OperK2Kated frneutom ri1999no osci to 2004llation experiment Al target 12 GeV PS 200m fast extraction every 2.2sec beam spill width 1.1s ( 9 bunches ) ~6x1012 protons/spill K2K beam and near detectors 98% pure n beam target materials: H2O, HC, Fe n energies SciFi Water Target at the K2K near detectors En (GeV) The NEUT neutrino interaction model Charged current quasi-elastic n + N -> l + N' Neutral current elastic n + N -> n + N CC/NC single p (h,K) resonance n + N -> l(n) + N' + p NC coherent pion (not CC !) n + A -> n + A + p0 CC/NC deep inelastic scattering n + q -> l(n) + had Cross-sections Total (NC+CC) n = neutrino (e, or t) ) V CC Total e l = lepton (e, or t) G / 2 m c CC quasi-elastic 8 3 - 0 1 From 100 MeV to 10 TeV ( DIS E / CC single π (cosmic ray induced neutrinos too!) σ NC single π0 Eν (GeV) More about the interaction models Quasi-elastic follows Llewelyn-Smith using dipole form factors and MAQE = 1.1 GeV (For neutrino beam, target is always neutron) Resonance production from Rein and Sehgal 18 resonances, MA1p = 1.1 GeV (Coherent pion production also from Rein and Sehgal) Deep inelastic Scattering from GRV94 PYTHIA/JETSET for hadron final states Bodek-Yang correction in Resonance-DIS overlap region Description and references available in Ch.
    [Show full text]
  • Catholic Christian Christian
    Religious Scientists (From the Vatican Observatory Website) https://www.vofoundation.org/faith-and-science/religious-scientists/ Many scientists are religious people—men and women of faith—believers in God. This section features some of the religious scientists who appear in different entries on these Faith and Science pages. Some of these scientists are well-known, others less so. Many are Catholic, many are not. Most are Christian, but some are not. Some of these scientists of faith have lived saintly lives. Many scientists who are faith-full tend to describe science as an effort to understand the works of God and thus to grow closer to God. Quite a few describe their work in science almost as a duty they have to seek to improve the lives of their fellow human beings through greater understanding of the world around them. But the people featured here are featured because they are scientists, not because they are saints (even when they are, in fact, saints). Scientists tend to be creative, independent-minded and confident of their ideas. We also maintain a longer listing of scientists of faith who may or may not be discussed on these Faith and Science pages—click here for that listing. Agnesi, Maria Gaetana (1718-1799) Catholic Christian A child prodigy who obtained education and acclaim for her abilities in math and physics, as well as support from Pope Benedict XIV, Agnesi would write an early calculus textbook. She later abandoned her work in mathematics and physics and chose a life of service to those in need. Click here for Vatican Observatory Faith and Science entries about Maria Gaetana Agnesi.
    [Show full text]
  • April 2003 $4.95
    SOLVING THE NEUTRINO MYSTERY • RECOGNIZING ANCIENT LIFE APRIL 2003 $4.95 WWW.SCIAM.COM James D.Watson discusses DNA, the brain, designer babies and more as he reflects on Grid Computing’s Unbounded Potential Ginkgo Biloba Will Mount Etna and Memory Explode Tomorrow? Delivering Drugs with Implanted Chips COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC. april 2003 contentsSCIENTIFIC AMERICAN Volume 288 Number 4 features ASTROPHYSICS 40 Solving the Solar Neutrino Problem BY ARTHUR B. MCDONALD, JOSHUA R. KLEIN AND DAVID L. WARK After 30 years, physicists fathom the mystery of the missing neutrinos: the phantom particles change en route from the sun. BIOTECHNOLOGY 50 Where a Pill Won’t Reach BY ROBERT LANGER Implanted microchips, embedded polymers and ultrasonic blasts of proteins will deliver next-generation medicines. 66 James D. Watson VOLCANOLOGY 58 Mount Etna’s Ferocious Future BY TOM PFEIFFER Europe’s most active volcano grows more dangerous, but slowly. CELEBRATING THE GENETIC JUBILEE 66 A Conversation with James D. Watson The co-discoverer of DNA’s double helix reflects on the molecular model that changed both science and society. LIFE SCIENCE 70 Questioning the Oldest Signs of Life BY SARAH SIMPSON Researchers are reevaluating how they identify traces left by life in ancient rocks on earth—and elsewhere in the solar system. INFORMATION TECHNOLOGY 78 The Grid: Computing without Bounds BY IAN FOSTER Powerful global networks of processors and storage may end the era of self-contained computing. MEDICINE 86 The Lowdown on Ginkgo Biloba BY PAUL E. GOLD, LARRY CAHILL AND GARY L. WENK This herbal supplement may slightly improve your memory—but so can eating a candy bar.
    [Show full text]
  • CERN Courier Is Distributed to Member-State Governments, Institutes and Laboratories Affiliated with CERN, and to Their Personnel
    I n t e r n at I o n a l J o u r n a l o f H I g H - e n e r g y P H y s I c s CERN COURIERV o l u m e 4 6 n u m b e r 9 n o V e m b e r 2 0 0 6 OPERA makes its grand debut ACCELERATORS COMPUTING NEWS INTERVIEW Laser-wakefield device Business signs up to Stephen Hawking pays reaches 1 GeV p5 work with EGEE p12 a visit to CERN p28 CCENovCover1.indd 1 18/10/06 08:53:59 CERN & ProCurve Networking 15 petabytes of data And a network that can handle it “CERN uses ProCurve Switches because we generate a colossal amount of data, making dependability a top priority.” —David Foster, Communication Systems Group Leader, CERN CERN has joined with ProCurve to build their network based on high-performance security, reliability and flexibility, along with a lifetime warranty.* From the world’s largest applications, to a company-wide email, just think what ProCurve could do for your network. Get a closer look at CERN and the world’s biggest physics experiment. Visit www.hp.com/eur/procurvecern1 *For as long as you own the product, with next-business-day advance replacement (available in most countries). For details, refer to the ProCurve Software License, Warranty and Support booklet at www.hp.com/rnd/support/warranty/index.htm The ProCurve Routing Switch 9300m series, ProCurve Routing Switch 9408sl, ProCurve Switch 8100fl series, and the ProCurve Access Control Server 745wl have a one-year- warranty with extensions available.
    [Show full text]
  • Long Baseline Neutrino Oscillation Experiments 1 Introduction 2
    Long Baseline Neutrino Oscillation Experiments Mark Thomson Cavendish Laboratory Department of Physics JJ Thomson Avenue Cambridge, CB3 0HE United Kingdom 1 Introduction In the last ten years the study of the quantum mechanical e®ect of neutrino os- cillations, which arises due to the mixing of the weak eigenstates fºe; º¹; º¿ g and the mass eigenstates fº1; º2; º3g, has revolutionised our understanding of neutrinos. Until recently, this understanding was dominated by experimental observations of at- mospheric [1, 2, 3] and solar neutrino [4, 5, 6] oscillations. These measurements have been of great importance. However, the use of naturally occuring neutrino sources is not su±cient to determine fully the flavour mixing parameters in the neutrino sector. For this reason, many of the current and next generation of neutrino experiments are based on high intensity accelerator generated neutrino beams. The ¯rst generation of these long-baseline (LBL) neutrino oscillation experiments, K2K, MINOS and CNGS, are the main subject of this review. The next generation of LBL experiments, T2K and NOºA, are also discussed. 2 Theoretical Background For two neutrino weak eigenstates fº®; º¯g related to two mass eigenstates fºi; ºjg, by a single mixing angle θij, it is simple to show that the survival probability of a neutrino of energy Eº and flavour ® after propagating a distance L through the vacuum is à ! 2 2 2 2 1:27¢mji(eV )L(km) P (º® ! º®) = 1 ¡ sin 2θij sin ; (1) Eº(GeV) 2 2 2 where ¢mji is the di®erence of the squares of the neutrino masses, mj ¡ mi .
    [Show full text]
  • Melvin Schwartz 1932-2006
    MELVIN SCHWARTZ 1932-2006 A Biographical Memoir by N. P. SAMIOS AND P. YAMIN © 2012 The National Academy of Sciences Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. MELVIN SCHWARTZ Courtesy of Brookhaven National Laboratories. November 2, 1932–August 28, 2006 BY N. P. SAMIOS AND P. YAMIN MEL SCHWARTZ DIED ON August 28, 2006, in Twin Falls, Idaho. He was born on 1 November 2, 1932, in New York City. He grew up in the Great Depression, but with a sense of optimism and desire to use his mind for the betterment of human- kind. He entered the Bronx High School of Science in the fall of 1945. It was there that his interest in physics began and that he recognized the importance of interactions with peers in determining his sense of direction in life. One of his classmates and future colleagues recalled that “even then” he wanted a Nobel Prize. Mel noted: My interest in physics began at the age of 12 when I entered the Bronx High School of Science. The four years I spent there were certainly among the most exciting and stimulating in my life, mostly because of the interaction with the other students of similar background, interest, and ability. MELVIN SCHWARTZ MELVIN On Sunday afternoons he attended a school run by the secular and Zionist Yiddish and many others. As Mel commented, “This faculty [was] at this time unmatched by any in the world, largely Nationaler Arbeter Farband (Jewish National Workers Alliance).
    [Show full text]
  • 01Ii Beam Line
    STA N FO RD LIN EA R A C C ELERA TO R C EN TER Fall 2001, Vol. 31, No. 3 CONTENTS A PERIODICAL OF PARTICLE PHYSICS FALL 2001 VOL. 31, NUMBER 3 Guest Editor MICHAEL RIORDAN Editors RENE DONALDSON, BILL KIRK Contributing Editors GORDON FRASER JUDY JACKSON, AKIHIRO MAKI MICHAEL RIORDAN, PEDRO WALOSCHEK Editorial Advisory Board PATRICIA BURCHAT, DAVID BURKE LANCE DIXON, EDWARD HARTOUNI ABRAHAM SEIDEN, GEORGE SMOOT HERMAN WINICK Illustrations TERRY ANDERSON Distribution CRYSTAL TILGHMAN The Beam Line is published quarterly by the Stanford Linear Accelerator Center, Box 4349, Stanford, CA 94309. Telephone: (650) 926-2585. EMAIL: [email protected] FAX: (650) 926-4500 Issues of the Beam Line are accessible electroni- cally on the World Wide Web at http://www.slac. stanford.edu/pubs/beamline. SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policies of the Stanford Linear Accelerator Center. Cover: The Sudbury Neutrino Observatory detects neutrinos from the sun. This interior view from beneath the detector shows the acrylic vessel containing 1000 tons of heavy water, surrounded by photomultiplier tubes. (Courtesy SNO Collaboration) Printed on recycled paper 2 FOREWORD 32 THE ENIGMATIC WORLD David O. Caldwell OF NEUTRINOS Trying to discern the patterns of neutrino masses and mixing. FEATURES Boris Kayser 42 THE K2K NEUTRINO 4 PAULI’S GHOST EXPERIMENT A seventy-year saga of the conception The world’s first long-baseline and discovery of neutrinos. neutrino experiment is beginning Michael Riordan to produce results. Koichiro Nishikawa & Jeffrey Wilkes 15 MINING SUNSHINE The first results from the Sudbury 50 WHATEVER HAPPENED Neutrino Observatory reveal TO HOT DARK MATTER? the “missing” solar neutrinos.
    [Show full text]
  • Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
    Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates.
    [Show full text]
  • Foundation Document Manhattan Project National Historical Park Tennessee, New Mexico, Washington January 2017 Foundation Document
    NATIONAL PARK SERVICE • U.S. DEPARTMENT OF THE INTERIOR Foundation Document Manhattan Project National Historical Park Tennessee, New Mexico, Washington January 2017 Foundation Document MANHATTAN PROJECT NATIONAL HISTORICAL PARK Hanford Washington ! Los Alamos Oak Ridge New Mexico Tennessee ! ! North 0 700 Kilometers 0 700 Miles More detailed maps of each park location are provided in Appendix E. Manhattan Project National Historical Park Contents Mission of the National Park Service 1 Mission of the Department of Energy 2 Introduction 3 Part 1: Core Components 4 Brief Description of the Park. 4 Oak Ridge, Tennessee. 5 Los Alamos, New Mexico . 6 Hanford, Washington. 7 Park Management . 8 Visitor Access. 8 Brief History of the Manhattan Project . 8 Introduction . 8 Neutrons, Fission, and Chain Reactions . 8 The Atomic Bomb and the Manhattan Project . 9 Bomb Design . 11 The Trinity Test . 11 Hiroshima and Nagasaki, Japan . 12 From the Second World War to the Cold War. 13 Legacy . 14 Park Purpose . 15 Park Signifcance . 16 Fundamental Resources and Values . 18 Related Resources . 22 Interpretive Themes . 26 Part 2: Dynamic Components 27 Special Mandates and Administrative Commitments . 27 Special Mandates . 27 Administrative Commitments . 27 Assessment of Planning and Data Needs . 28 Analysis of Fundamental Resources and Values . 28 Identifcation of Key Issues and Associated Planning and Data Needs . 28 Planning and Data Needs . 31 Part 3: Contributors 36 Appendixes 38 Appendix A: Enabling Legislation for Manhattan Project National Historical Park. 38 Appendix B: Inventory of Administrative Commitments . 43 Appendix C: Fundamental Resources and Values Analysis Tables. 48 Appendix D: Traditionally Associated Tribes . 87 Appendix E: Department of Energy Sites within Manhattan Project National Historical Park .
    [Show full text]
  • Sc Ence Celebrating the Neutrino Number 25 1997
    Los Alamos Sc ence Celebrating the Neutrino Number 25 1997 Celebrating the Neutrino . .1 The Evidence for Oscillations . .116 Bill Louis, Vern Sandberg, Gerry Garvey, Hywel White, Geoffrey Mills, and Rex Tayloe Reines-Cowan Experiments—Detecting the Poltergeist . .4 Neutrino oscillations are invoked as the explanation in experiments with solar, atmospheric, and accelerator- A compilation of papers and notes by Fred Reines and Clyde Cowan, Jr. produced (LSND) neutrinos. This summary of the experimental results for mixing angles and neutrino masses includes an interesting model that makes all three data sets consistent. The neutrino’s existence was inferred by Wolfgang Pauli in 1930, who feared that his clever construct might elude detection forever. Twenty-five years later, Fred Reines, Clyde Cowan, Jr., and a Los Alamos team detected the evasive particle. Their dedication to the chase and their innovative detection techniques set The Nature of Neutrinos in Muon Decay and Physics Beyond the Standard Model . .128 a precedent for all future neutrino experiments. Peter Herczeg Beta Decay and the Missing Energy . .7 Experiments that search for electron antineutrinos from m1-decay are sensitive not only to neutrino oscillations Fermi’s Theory of Beta Decay and Neutrino Processes . .8 but also to a class of muon decays that require leptonic interactions not present in the Standard Model. The author explores whether such decays could explain the observed excess of e1 events in the LSND experiments. The Oscillating Neutrino—An Introduction to Neutrino Masses and Mixing . .28 Exorcising Ghosts—In Pursuit of the Missing Solar Neutrinos . .136 Richard Slansky, Stuart Raby, Terry Goldman, and Gerry Garvey as told to Necia Grant Cooper Andrew Hime Today, the neutrino is at the center of particle physics as experimenters around the world explore the possibility that this tiny particle changes its identity just by moving between two points.
    [Show full text]