Explosion Mechanism, Neutrino Burst, and Gravitational Wave in Core-Collapse Supernovae Kei Kotake, Katsuhiko Sato†and Keitaro Takahashi‡ § Science & Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan Department of Physics, School of Science, the University of Tokyo, 7-3-1 Hongo, † Bunkyo-ku, Tokyo 113-0033, Japan Department of Physics, Princeton University, Princeton, NJ 08544, U.S.A. ‡ arXiv:astro-ph/0509456v2 16 Sep 2005 To whom correspondence should be addressed (
[email protected], or ktaka- §
[email protected]) Explosion Mechanism of Core-Collapse Supernovae 2 Abstract. Core-collapse supernovae are among the most energetic explosions in the universe marking the catastrophic end of massive stars. In spite of rigorous studies for several decades, we still don’t understand the explosion mechanism completely. Since they are related to many astrophysical phenomena such as nucleosynthesis, gamma-ray bursts and acceleration of cosmic rays, understanding of their physics has been of wide interest to the astrophysical community. In this article, we review recent progress in the study of core-collapse supernovae focusing on the explosion mechanism, supernova neutrinos, and the gravitational waves. As for the explosion mechanism, we present a review paying particular attention to the roles of multidimensional aspects, such as convection, rotation, and magnetic fields, on the neutrino heating mechanism. Next, we discuss supernova neutrinos, which is a powerful tool to probe not only deep inside of the supernovae but also intrinsic properties of neutrinos. For this purpose, it is necessary to understand neutrino oscillation which has been established recently by a lot of experiments.