A Small Compound Targeting TACC3 Revealed Its Different Spatiotemporal Contributions for Spindle Assembly in Cancer Cells

Total Page:16

File Type:pdf, Size:1020Kb

A Small Compound Targeting TACC3 Revealed Its Different Spatiotemporal Contributions for Spindle Assembly in Cancer Cells Oncogene (2014) 33, 4242–4252 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc ORIGINAL ARTICLE A small compound targeting TACC3 revealed its different spatiotemporal contributions for spindle assembly in cancer cells RYao1, Y Kondoh2, Y Natsume1, H Yamanaka1, M Inoue1,3,HToki3, R Takagi2, T Shimizu2, T Yamori4, H Osada2 and T Noda1,3 The mitotic spindle is assembled by the coordinated action of centrosomes and kinetochore microtubules. An evolutionally conserved protein family, transforming acidic coiled-coil (TACC), has been shown to be involved in this process. In humans, TACC3 is aberrantly expressed in a variety of human cancers, but its biological significance remains to be elucidated. Here, using a novel compound targeting TACC3, spindlactone (SPL), we show that the perturbation of TACC3 selectively inhibited the nucleation of centrosome microtubules in ovarian cancer cells. In contrast to centrosome microtubules, the kinetochore microtubules were robustly assembled, forming ectopic spindle poles that resulted in multipolar spindles. Interestingly, the extensive inhibition of TACC3 partially suppressed the nucleation of kinetochore microtubules. These dose-dependent effects of SPL were consistent with the results observed by the depletion of TACC3 and its binding partner, colonic and hepatic tumor overexpressed gene protein (TOGp). Although these proteins both have roles in the assembly of centrosome and kinetochore microtubules, their contributions were spatiotemporally different. Notably, SPL did not affect spindle assembly in normal cells. Furthermore, the oral administration of SPL significantly suppressed tumor growth in vivo. The unique mechanism of action of SPL not only enables it to be used as a tool to dissect the molecular basis of spindle assembly but also to provide a rationale for the use of TACC3 as a molecular target for cancer treatment. This rationale offers an opportunity to develop new strategies for cancer chemotherapy that overcome the limitations of microtubule toxins and expand their scope and clinical efficacy. Oncogene (2014) 33, 4242–4252; doi:10.1038/onc.2013.382; published online 30 September 2013 Keywords: TACC3; TOGp; spindle assembly INTRODUCTION one of the sister kinetochores on a chromosome.7 Although this The mitotic spindle is a well-established molecular target for ‘search and capture’ mechanism appears to be the predominant cancer chemotherapy, and clinically, drugs targeting microtubules means by which chromosomes become attached and aligned on are used to treat hematological and solid malignancies. In tumor the spindle, mathematical modeling studies have indicated that cells, the anti-mitotic effects of these drugs are thought to result unbiased search and capture alone is not sufficient to align all the from the suppression of the dynamic instability of microtubules, chromosomes on the mitotic spindle within a normal timeframe.8 which is required for spindle assembly during mitosis. However, Growing evidence indicates that in addition to centrosomes, these drugs also inhibit microtubule function in non-dividing cells, chromosomes also drive spindle assembly. This chromosome- which results in serious side effects, such as peripheral neuro- driven mitotic spindle formation was originally thought to function pathy. In addition, resistance to microtubule-targeted drugs is only in meiosis, a process in which centrosomes are not present. acquired by the overexpression of specific tubulin isoforms.1 To However, subsequent studies have indicated that this process overcome these problems, new therapeutic agents are being works cooperatively with centrosome microtubules to assemble developed to target the mitotic proteins involved in spindle bipolar mitotic spindles in somatic cells.9–11 In these systems, assembly rather than the tubulin itself.2 Among these mitotic kinetochore microtubules support effective spindle assembly by proteins, the motor protein KIF-11, which is also called Eg5; the guiding centrosome microtubule growth toward the kinetochores. Aurora kinases; and the Polo-like kinases have been extensively However, the direct evaluation of kinetochore microtubules in studied as potential drug targets. Although the antitumor somatic cells is hampered by the mass of centrosome microtubules activities of these agents have been demonstrated both in vitro that rapidly grow after nuclear envelope breakdown (NEB). Thus, and in xenograft models,3–5 the scope of their clinical efficacy the relative contributions of centrosome and kinetochore appears to be limited.6 Thus, novel therapeutic targets that microtubules to spindle assembly remain to be elucidated. selectively perturb spindle microtubules without affecting Human transforming acidic coiled-coil (TACC3) was originally microtubule functions in post-mitotic cells are beneficial to the identified within a translocation breakpoint region that was development of effective therapeutics for cancer treatment. associated with multiple myelomas,12 and subsequent studies In vertebrate somatic cells, spindle microtubule nucleation occurs have indicated that it is aberrantly expressed in various cancers.13–16 at the centrosome, which contains plus ends that dynamically grow TACC proteins are evolutionally conserved, from yeasts to humans. and shrink, probing space until they are captured and stabilized by In Drosophila, a microtubule-associated protein, termed msps, was 1Department of Cell Biology, Cancer Institute, The Japanese Foundation for Cancer Research, Tokyo, Japan; 2Chemical Biology Core Facility, RIKEN Advanced Science Institute, Saitama, Japan; 3Team for the Advanced Development and Evaluation of Human Disease Models, Bioresource Center, RIKEN, Tsukuba, Japan and 4Division of Molecular Pharmacology, Cancer Chemotherapy Center, The Japanese Foundation for Cancer Research, Tokyo, Japan. Correspondence: Dr R Yao, Department of Cell Biology, Cancer Institute, The Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo 135-8550, Japan. E-mail: [email protected] Received 11 March 2013; revised 17 July 2013; accepted 9 August 2013; published online 30 September 2013 Spindle aberration by the TACC3 inhibitor R Yao et al 4243 identified as a binding partner of the D-TACC protein, and their the investigation of the molecular mechanisms involved in spindle interaction is thought to be critical for the function of TACC proteins assembly and for the development of new cancer chemotherapy in promoting microtubule assembly.17,18 A Xenopus homolog of strategies. msps, XMAP215, regulates microtubule plus-end assembly and is a processive microtubule polymerase.19 On the basis of these findings, the current model suggests that TACC proteins recruit msps/XMAP215 to the centrosome, enhancing microtubule RESULTS polymerization.20 Interestingly, tumor overexpressed gene protein The Identification of small compounds that inhibit TACC3 (TOGp), the human homolog of msps/XMAP215, which was To explore the role of TACC3 in spindle assembly and to develop a originally identified as a gene that was overexpressed in colon novel cancer chemotherapeutic targeting TACC3, we searched for and hepatic cancers,21 has been shown to physically interact with small compounds that were able to inhibit TACC3 function. We human TACC3.18 Furthermore, TOGp depletion has been shown to utilized a chemical array onto which small compounds obtained induce multipolar spindles, but the molecular basis of this action from the Natural Products Depository (NPDepo) chemical library remains under debate.22–24 The depletion of TACC3 leads to a range had been immobilized (Figure 1a).28 Using a cell lysate that of phenotypes, including a minor decrease in microtubule expressed a TACC3-DsRed fusion protein as a probe, we screened polymerization,22 chromosome misalignment leading to caspase- 6800 compounds and identified 70 as candidate TACC3- dependent apoptosis25 and declustered centrosomes in cancer cells interacting molecules. with supernumerary centrosomes.26 Using conditional knockout To determine the effects of the candidate compounds on mice, we previously demonstrated that disrupting Tacc3 in mitosis, we performed a visual screen using single cell-based lymphoma cells induced the formation of multipolar spindles.27 analysis. We used ovarian cancer cells because previous studies Interestingly, an in vivo analysis demonstrated that the thymic have indicated that TACC3 is aberrantly expressed in this type of lymphoma tissues underwent massive apoptosis, leading to tumor cancer.14,29 Cells expressing enhanced green fluorescent protein regression, whereas the normal thymus exhibited no overt (EGFP)-a-tubulin were synchronized using a double thymidine abnormalities. These observations indicate that Tacc3 is an block, and the candidate compounds were added to the medium important component of spindle assembly in cancer cells and is a at the release from the second block. Fluorescence images were potential target for cancer chemotherapy. In this study, we collected, and the image sequences were analyzed to determine developed a novel chemical compound that perturbed TACC3 the duration of mitosis. function. The pharmacological inhibition of TACC3 revealed Among the 70 candidates, four small molecules, NPD3574, different spatiotemporal contributions of TACC3 in spindle NPD2568, NPD4089 and NPD2448, induced mitotic arrest in a dose- formation. This unique mechanism of action provides a tool for dependent manner (Supplementary Figures S1a, b). Interestingly,
Recommended publications
  • Htpx2 Is Required for Normal Spindle Morphology and Centrosome Integrity During Vertebrate Cell Division
    Current Biology, Vol. 12, 2055–2059, December 10, 2002, 2002 Elsevier Science Ltd. All rights reserved. PII S0960-9822(02)01277-0 hTPX2 Is Required for Normal Spindle Morphology and Centrosome Integrity during Vertebrate Cell Division Sarah Garrett,2 Kristi Auer,1 Duane A. Compton,1 hTPX2 Knockdown by siRNA Results and Tarun M. Kapoor2,3 in Multipolar Spindles 1Department of Biochemistry To examine hTPX2 function in vertebrate cells, we Dartmouth Medical School sought to disrupt the expression of human TPX2 by Hanover, New Hampshire 03755 using siRNA [4]. An RNA duplex corresponding to bases 2 Laboratory of Chemistry and Cell Biology 74–94 of the human TPX2 open reading frame was trans- Rockefeller University fected into HeLa cells. Thirty hours after transfection, we New York, New York 10021 consistently found hTPX2 protein levels to be reduced below 1% of those in untreated cells (Figure 2D). Knockdown of hTPX2 resulted in two effects. First, loss of hTPX2 arrested cells in mitosis. In three indepen- Summary dent experiments, cells treated with hTPX2 siRNA showed a mitotic index of 30%, whereas control cells Bipolar spindle formation is essential for the accurate showed a mitotic index of 3% (n ϭ at least 300 cells; segregation of genetic material during cell division. Figure 2E). Second, more than 40% of the mitotic cells Although centrosomes influence the number of spin- after siRNA treatment had spindles with more than two dle poles during mitosis, motor and non-motor micro- poles (Figures 2A–2C and 2E). Each pole in these tubule-associated proteins (MAPs) also play key roles multipolar spindles had several microtubule bundles in determining spindle morphology [1].
    [Show full text]
  • Emerging Molecular Mechanisms That Power and Regulate the Anastral Mitotic Spindle of Flowering Plants
    Cell Motility and the Cytoskeleton 65: 1–11 (2008) Review Article Emerging Molecular Mechanisms that Power and Regulate the Anastral Mitotic Spindle of Flowering Plants Alex Bannigan, Michelle Lizotte-Waniewski, Margaret Riley, and Tobias I. Baskin* Biology Department, University of Massachusetts, Amherst, Massachusetts Flowering plants, lacking centrosomes as well as dynein, assemble their mitotic spindle via a pathway that is distinct visually and molecularly from that of ani- mals and yeast. The molecular components underlying mitotic spindle assembly and function in plants are beginning to be discovered. Here, we review recent evidence suggesting the preprophase band in plants functions analogously to the centrosome in animals in establishing spindle bipolarity, and we review recent progress characterizing the roles of specific motor proteins in plant mitosis. Loss of function of certain minus-end-directed KIN-14 motor proteins causes a broad- ening of the spindle pole; whereas, loss of function of a KIN-5 causes the forma- tion of monopolar spindles, resembling those formed when the homologous motor protein (e.g., Eg5) is knocked out in animal cells. We present a phylogeny of the kinesin-5 motor domain, which shows deep divergence among plant sequences, highlighting possibilities for specialization. Finally, we review information con- cerning the roles of selected structural proteins at mitosis as well as recent find- ings concerning regulation of M-phase in plants. Insight into the mitotic spindle will be obtained through continued comparison of mitotic mechanisms in a diver- sity of cells. Cell Motil. Cytoskeleton 65: 1–11, 2008. ' 2007 Wiley-Liss, Inc. Key words: kinesin-5; kinesin-14; mitosis; monopolar spindle; phylogeny INTRODUCTION The mitotic spindle has fascinated biologists for centuries.
    [Show full text]
  • Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma
    cancers Article Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma 1, 1, 1 1 1 Lan Wang y, Anudeep Yekula y, Koushik Muralidharan , Julia L. Small , Zachary S. Rosh , Keiko M. Kang 1,2, Bob S. Carter 1,* and Leonora Balaj 1,* 1 Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; [email protected] (L.W.); [email protected] (A.Y.); [email protected] (K.M.); [email protected] (J.L.S.); [email protected] (Z.S.R.); [email protected] (K.M.K.) 2 School of Medicine, University of California San Diego, San Diego, CA 92092, USA * Correspondence: [email protected] (B.S.C.); [email protected] (L.B.) These authors contributed equally. y Received: 11 March 2020; Accepted: 7 May 2020; Published: 13 May 2020 Abstract: Sequencing studies have provided novel insights into the heterogeneous molecular landscape of glioblastoma (GBM), unveiling a subset of patients with gene fusions. Tissue biopsy is highly invasive, limited by sampling frequency and incompletely representative of intra-tumor heterogeneity. Extracellular vesicle-based liquid biopsy provides a minimally invasive alternative to diagnose and monitor tumor-specific molecular aberrations in patient biofluids. Here, we used targeted RNA sequencing to screen GBM tissue and the matched plasma of patients (n = 9) for RNA fusion transcripts. We identified two novel fusion transcripts in GBM tissue and five novel fusions in the matched plasma of GBM patients. The fusion transcripts FGFR3-TACC3 and VTI1A-TCF7L2 were detected in both tissue and matched plasma.
    [Show full text]
  • Hsp72 and Nek6 Cooperate to Cluster Amplified Centrosomes in Cancer Cells
    Published OnlineFirst July 18, 2017; DOI: 10.1158/0008-5472.CAN-16-3233 Cancer Molecular and Cellular Pathobiology Research Hsp72 and Nek6 Cooperate to Cluster Amplified Centrosomes in Cancer Cells Josephina Sampson1, Laura O'Regan1, Martin J.S. Dyer2, Richard Bayliss3, and Andrew M. Fry1 Abstract Cancer cells frequently possess extra amplified centrosomes Unlike some centrosome declustering agents, blocking Hsp72 clustered into two poles whose pseudo-bipolar spindles exhib- or Nek6 function did not induce formation of acentrosomal it reduced fidelity of chromosome segregation and promote poles, meaning that multipolar spindles were observable only genetic instability. Inhibition of centrosome clustering triggers in cells with amplified centrosomes. Inhibition of Hsp72 in multipolar spindle formation and mitotic catastrophe, offer- acute lymphoblastic leukemia cells resulted in increased mul- ing an attractive therapeutic approach to selectively kill cells tipolar spindle frequency that correlated with centrosome with amplified centrosomes. However, mechanisms of centro- amplification, while loss of Hsp72 or Nek6 function in non- some clustering remain poorly understood. Here, we identify a cancer-derived cells disturbs neither spindle formation nor new pathway that acts through NIMA-related kinase 6 (Nek6) mitotic progression. Hence, the Nek6–Hsp72 module repre- and Hsp72 to promote centrosome clustering. Nek6, as well as sents a novel actionable pathway for selective targeting of its upstream activators polo-like kinase 1 and Aurora-A, tar- cancer cells with amplified centrosomes. Cancer Res; 77(18); geted Hsp72 to the poles of cells with amplified centrosomes. 4785–96. Ó2017 AACR. Introduction are nucleated (11, 12). The g-TuRC is concentrated at centrosomes through binding to components of the pericentriolar material The mitotic spindle is bipolar in nature as it is organized around (PCM), a highly ordered matrix of coiled-coil proteins that two poles, each possessing a single centrosome (1, 2).
    [Show full text]
  • Germline Mutation Contribution to Chromosomal Instability
    249 S H Chan and J Ngeow Germline mutations and 24:9 T33–T46 Thematic Review chromosomal instability Germline mutation contribution to chromosomal instability Correspondence Sock Hoai Chan1 and Joanne Ngeow1,2 should be addressed to J Ngeow 1 Division of Medical Oncology, Cancer Genetics Service, National Cancer Centre Singapore, Singapore Email 2 Oncology Academic Clinical Program, Duke-NUS Medical School Singapore, Singapore Joanne.Ngeow.Y.Y@ singhealth.com.sg Abstract Genomic instability is a feature of cancer that fuels oncogenesis through increased Key Words frequency of genetic disruption, leading to loss of genomic integrity and promoting f molecular genetics clonal evolution as well as tumor transformation. A form of genomic instability prevalent f chromosome instability across cancer types is chromosomal instability, which involves karyotypic changes including f cancer chromosome copy number alterations as well as gross structural abnormalities such as transversions and translocations. Defects in cellular mechanisms that are in place to govern fidelity of chromosomal segregation, DNA repair and ultimately genomic integrity are known to contribute to chromosomal instability. In this review, we discuss the association of germline mutations in these pathways with chromosomal instability in the background of related cancer predisposition syndromes. We will also reflect on the impact of genetic predisposition to clinical management of patients and how we can exploit this vulnerability to promote catastrophic genomic instability as a Endocrine-Related Cancer Endocrine-Related Cancer Endocrine-Related therapeutic strategy. (2017) 24, T33–T46 Introduction Genomic instability is a hallmark of human cancers Pino & Chung 2010, Bakhoum & Compton 2012, (Negrini et al. 2010). It refers to the increased frequency Pikor et al.
    [Show full text]
  • Improved Detection of Gene Fusions by Applying Statistical Methods Reveals New Oncogenic RNA Cancer Drivers
    bioRxiv preprint doi: https://doi.org/10.1101/659078; this version posted June 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Improved detection of gene fusions by applying statistical methods reveals new oncogenic RNA cancer drivers Roozbeh Dehghannasiri1, Donald Eric Freeman1,2, Milos Jordanski3, Gillian L. Hsieh1, Ana Damljanovic4, Erik Lehnert4, Julia Salzman1,2,5* Author affiliation 1Department of Biochemistry, Stanford University, Stanford, CA 94305 2Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 3Department of Computer Science, University of Belgrade, Belgrade, Serbia 4Seven Bridges Genomics, Cambridge, MA 02142 5Stanford Cancer Institute, Stanford, CA 94305 *Corresponding author [email protected] Short Abstract: The extent to which gene fusions function as drivers of cancer remains a critical open question. Current algorithms do not sufficiently identify false-positive fusions arising during library preparation, sequencing, and alignment. Here, we introduce a new algorithm, DEEPEST, that uses statistical modeling to minimize false-positives while increasing the sensitivity of fusion detection. In 9,946 tumor RNA-sequencing datasets from The Cancer Genome Atlas (TCGA) across 33 tumor types, DEEPEST identifies 31,007 fusions, 30% more than identified by other methods, while calling ten-fold fewer false-positive fusions in non-transformed human tissues. We leverage the increased precision of DEEPEST to discover new cancer biology. For example, 888 new candidate oncogenes are identified based on over-representation in DEEPEST-Fusion calls, and 1,078 previously unreported fusions involving long intergenic noncoding RNAs partners, demonstrating a previously unappreciated prevalence and potential for function.
    [Show full text]
  • Comparative Transcriptomics Reveals Similarities and Differences
    Seifert et al. BMC Cancer (2015) 15:952 DOI 10.1186/s12885-015-1939-9 RESEARCH ARTICLE Open Access Comparative transcriptomics reveals similarities and differences between astrocytoma grades Michael Seifert1,2,5*, Martin Garbe1, Betty Friedrich1,3, Michel Mittelbronn4 and Barbara Klink5,6,7 Abstract Background: Astrocytomas are the most common primary brain tumors distinguished into four histological grades. Molecular analyses of individual astrocytoma grades have revealed detailed insights into genetic, transcriptomic and epigenetic alterations. This provides an excellent basis to identify similarities and differences between astrocytoma grades. Methods: We utilized public omics data of all four astrocytoma grades focusing on pilocytic astrocytomas (PA I), diffuse astrocytomas (AS II), anaplastic astrocytomas (AS III) and glioblastomas (GBM IV) to identify similarities and differences using well-established bioinformatics and systems biology approaches. We further validated the expression and localization of Ang2 involved in angiogenesis using immunohistochemistry. Results: Our analyses show similarities and differences between astrocytoma grades at the level of individual genes, signaling pathways and regulatory networks. We identified many differentially expressed genes that were either exclusively observed in a specific astrocytoma grade or commonly affected in specific subsets of astrocytoma grades in comparison to normal brain. Further, the number of differentially expressed genes generally increased with the astrocytoma grade with one major exception. The cytokine receptor pathway showed nearly the same number of differentially expressed genes in PA I and GBM IV and was further characterized by a significant overlap of commonly altered genes and an exclusive enrichment of overexpressed cancer genes in GBM IV. Additional analyses revealed a strong exclusive overexpression of CX3CL1 (fractalkine) and its receptor CX3CR1 in PA I possibly contributing to the absence of invasive growth.
    [Show full text]
  • Spindle Microtubule Dysfunction and Cancer Predisposition
    PERSPECTIVE 1881 JournalJournal ofof Cellular Spindle Microtubule Dysfunction Physiology and Cancer Predisposition JASON STUMPFF,1* PRACHI N. GHULE,2** AKIKO SHIMAMURA,3,4 JANET L. STEIN,2 5 AND MARC GREENBLATT 1Vermont Cancer Center and Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 2Vermont Cancer Center and Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 3Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 4Seattle Children’s Hospital and University of Washington, Seattle, Washington 5Vermont Cancer Center and Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont Chromosome segregation and spindle microtubule dynamics are strictly coordinated during cell division in order to preserve genomic integrity. Alterations in the genome that affect microtubule stability and spindle assembly during mitosis may contribute to genomic instability and cancer predisposition, but directly testing this potential link poses a significant challenge. Germ-line mutations in tumor suppressor genes that predispose patients to cancer and alter spindle microtubule dynamics offer unique opportunities to investigate the relationship between spindle dysfunction and carcinogenesis. Mutations in two such tumor suppressors, adenomatous polyposis coli (APC) and Shwachman–Bodian–Diamond syndrome (SBDS), affect multifunctional proteins that have been well characterized for their roles in Wnt signaling and interphase ribosome assembly, respectively. Less understood, however, is how their shared involvement in stabilizing the microtubules that comprise the mitotic spindle contributes to cancer predisposition. Here, we briefly discuss the potential for mutations in APC and SBDS as informative tools for studying the impact of mitotic spindle dysfunction on cellular transformation. J.
    [Show full text]
  • Transient Tetraploidy As a Route to Chromosomal Instability
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Biologie der Ludwig-Maximilians-Universität München Transient tetraploidy as a route to chromosomal instability vorgelegt von Anastasia Yurievna Kuznetsova aus Moskau, Russland 2013 Erklärung Die vorliegende Arbeit wurde zwischen October 2008 und Mai 2013 unter Anleitung von Frau. Dr. Zuzana Storchova - - Martinsried Wesentliche Teile dieser Arbeit sind in folgenden Publikationen veröffentlicht: Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells Kuffer C, Kuznetsova AY, Zuzana Storchova. Chromosoma. DOI 10.1007/s00412-013-0414-0 2 Ehrenwörtliche Versicherung Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet. Martinsried, am Anastasia Kuznetsova Dissertation eingereicht am: 1. Gutachter: Herr Prof. Dr. Stefan Jentsch 2. Gutachter: Herr Prof. Dr. Peter Becker Mündliche Prüfung am: 3 Table of Contents Summary ......................................................................................................................... 7 Introduction ..................................................................................................................... 8 1. Tetraploidy: causes and proliferation control. ....................................................... 8 2. Tetraploid state as an intermediate to aneuploidy, chromosomal instability and tumorigenesis. ........................................................................................................... 11 3. Molecular mechanisms triggering CIN. ..............................................................
    [Show full text]
  • Anti-TACC3 Antibody (ARG41980)
    Product datasheet [email protected] ARG41980 Package: 100 μl anti-TACC3 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes TACC3 Tested Reactivity Hu, Ms, Rat Tested Application ICC/IF, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name TACC3 Antigen Species Human Immunogen Synthetic peptide of Human TACC3. Conjugation Un-conjugated Alternate Names Transforming acidic coiled-coil-containing protein 3; ERIC-1; ERIC1 Application Instructions Application table Application Dilution ICC/IF 1:50 - 1:200 IHC-P 1:50 - 1:200 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control C6 Calculated Mw 90 kDa Observed Size ~ 140 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.4), 150 mM NaCl, 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol TACC3 Gene Full Name transforming, acidic coiled-coil containing protein 3 Background This gene encodes a member of the transforming acidic colied-coil protein family. The encoded protein is a motor spindle protein that may play a role in stabilization of the mitotic spindle.
    [Show full text]
  • Menin Associates with the Mitotic Spindle and Is Important for Cell Division
    RESEARCH ARTICLE Menin Associates With the Mitotic Spindle and Is Important for Cell Division Mark P. Sawicki,1,2,3 Ankur A. Gholkar,4 and Jorge Z. Torres3,4,5 1Department of Surgery, VA Greater Los Angeles Healthcare System, Los Angeles, California 90095; 2Department of Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, Downloaded from https://academic.oup.com/endo/article/160/8/1926/5519300 by guest on 23 September 2021 California 90095; 3Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095; 4Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095; and 5Molecular Biology Institute, University of California, Los Angeles, California 90095 ORCiD numbers: 0000-0002-2158-889X (J. Z. Torres). Menin is the protein mutated in patients with multiple endocrine neoplasia type 1 (MEN1) syn- drome and their corresponding sporadic tumor counterparts. We have found that menin functions in promoting proper cell division. Here, we show that menin localizes to the mitotic spindle poles and the mitotic spindle during early mitosis and to the intercellular bridge microtubules during cytokinesis in HeLa cells. In our study, menin depletion led to defects in spindle assembly and chromosome congression during early mitosis, lagging chromosomes during anaphase, defective cytokinesis, multinucleated interphase cells, and cell death. In addition, pharmacological inhibition of the menin-MLL1 interaction also led to similar cell division defects. These results indicate that menin and the menin-MLL1 interaction are important for proper cell division. These results highlight a function for menin in cell division and aid our understanding of how mutation and misregulation of menin promotes tumorigenesis.
    [Show full text]
  • Mild Replication Stress Causes Chromosome Mis-Segregation Via Premature Centriole Disengagement
    ARTICLE https://doi.org/10.1038/s41467-019-11584-0 OPEN Mild replication stress causes chromosome mis-segregation via premature centriole disengagement Therese Wilhelm1,4,6, Anna-Maria Olziersky1,6, Daniela Harry1, Filipe De Sousa1, Helène Vassal1,2, Anja Eskat1,5 & Patrick Meraldi1,3 1234567890():,; Replication stress, a hallmark of cancerous and pre-cancerous lesions, is linked to structural chromosomal aberrations. Recent studies demonstrated that it could also lead to numerical chromosomal instability (CIN). The mechanism, however, remains elusive. Here, we show that inducing replication stress in non-cancerous cells stabilizes spindle microtubules and favours premature centriole disengagement, causing transient multipolar spindles that lead to lagging chromosomes and micronuclei. Premature centriole disengagement depends on the G2 activity of the Cdk, Plk1 and ATR kinases, implying a DNA-damage induced deregulation of the centrosome cycle. Premature centriole disengagement also occurs spontaneously in some CIN+ cancer cell lines and can be suppressed by attenuating replication stress. Finally, we show that replication stress potentiates the effect of the chemotherapeutic agent taxol, by increasing the incidence of multipolar cell divisions. We postulate that replication stress in cancer cells induces numerical CIN via transient multipolar spindles caused by premature centriole disengagement. 1 Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland. 2 National Institute of Applied Sciences, Villeurbanne 69621, France. 3 Translational Research Centre in Onco-hematology, University of Geneva, 1211 Geneva 4, Switzerland. 4Present address: Department of Genetic Stability and Oncogenesis, Institut Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. 5Present address: Clinical Trials Center, University Hospital Zurich, 8091 Zurich, Switzerland.
    [Show full text]