Convention Used for the Equation of Time

Total Page:16

File Type:pdf, Size:1020Kb

Convention Used for the Equation of Time This manual is the reference for Shadows Pro in version 4.0. It replaces the on-line help in HTML format that was provided until version 3.5. © Copyright 2014-2016 by François Blateyron. Reproduction and/or copy of part of this manual strictly forbidden without written authorization of the author. Version last updated on January 2, 2016 User manual of Shadows Pro version 4.0 – © François Blateyron – page 2 Table of contents TABLE OF CONTENTS ....................................................................................................................................................... 3 PART 1 – INTRODUCTION TO SHADOWS SOFTWARE ....................................................................................................... 9 Introduction ........................................................................................................................................................................ 9 Installing Shadows on a PC ................................................................................................................................................. 9 Instructions to install Shadows ........................................................................................................................................................... 9 Installation of the Shadows license .................................................................................................................................................. 10 Credits ............................................................................................................................................................................... 10 Sources ............................................................................................................................................................................................. 11 Features of the three license levels .................................................................................................................................. 12 Shadows (freeware) ......................................................................................................................................................................... 12 Shadows Expert ................................................................................................................................................................................ 12 Shadows Pro ..................................................................................................................................................................................... 12 Order a Shadows Expert or Shadows Pro license ............................................................................................................. 13 PART 2 – SUNDIALS ........................................................................................................................................................ 15 Introduction to sundials ................................................................................................................................................... 15 Designing a sundial with Shadows .................................................................................................................................... 15 Preliminary information to collect ................................................................................................................................................... 15 Location of installation ................................................................................................................................................................ 15 Orientation of the sundial plate .................................................................................................................................................. 16 Dimension of the sundial ............................................................................................................................................................. 16 Type of sundial ............................................................................................................................................................................ 16 Indications given by the sundial .................................................................................................................................................. 16 Decoration ................................................................................................................................................................................... 16 Quick creation of a sundial from the home screen .......................................................................................................................... 17 Create a new sundial from the File menu ........................................................................................................................................ 17 Choose a place for your sundial ....................................................................................................................................... 19 In the garden .................................................................................................................................................................................... 19 On the front of a house .................................................................................................................................................................... 19 Inside the house! .............................................................................................................................................................................. 19 On the roof of the house!................................................................................................................................................................. 20 Elsewhere... ...................................................................................................................................................................................... 20 Determine the longitude and latitude of a place ............................................................................................................. 20 Find the longitude ............................................................................................................................................................................ 20 Find the latitude ............................................................................................................................................................................... 21 Enter the location in the database ................................................................................................................................................... 21 Find the direction of the local meridian ........................................................................................................................... 22 Using a compass ............................................................................................................................................................................... 22 Using the Sun's passage to the meridian .......................................................................................................................................... 22 Using bisectors ................................................................................................................................................................................. 22 Find the declination of a wall ........................................................................................................................................... 23 Method using a protractor and a plumb line ................................................................................................................................... 23 Method of the chord ........................................................................................................................................................................ 24 Method of the oblique shadow ........................................................................................................................................................ 24 Method of the network of tangents ................................................................................................................................................. 24 Method of circle bisectors ................................................................................................................................................................ 25 User manual of Shadows Pro version 4.0 – © François Blateyron – page 3 Calculation tool for the determination of the wall declination ........................................................................................................ 25 Adjust the size of the sundial............................................................................................................................................ 26 Size of the sundial plate ................................................................................................................................................................... 26 Adjust the scale of the drawing ........................................................................................................................................................ 26 Adjust the anchor of the style .........................................................................................................................................................
Recommended publications
  • Ast 443 / Phy 517
    AST 443 / PHY 517 Astronomical Observing Techniques Prof. F.M. Walter I. The Basics The 3 basic measurements: • WHERE something is • WHEN something happened • HOW BRIGHT something is Since this is science, let’s be quantitative! Where • Positions: – 2-dimensional projections on celestial sphere (q,f) • q,f are angular measures: radians, or degrees, minutes, arcsec – 3-dimensional position in space (x,y,z) or (q, f, r). • (x,y,z) are linear positions within a right-handed rectilinear coordinate system. • R is a distance (spherical coordinates) • Galactic positions are sometimes presented in cylindrical coordinates, of galactocentric radius, height above the galactic plane, and azimuth. Angles There are • 360 degrees (o) in a circle • 60 minutes of arc (‘) in a degree (arcmin) • 60 seconds of arc (“) in an arcmin There are • 24 hours (h) along the equator • 60 minutes of time (m) per hour • 60 seconds of time (s) per minute • 1 second of time = 15”/cos(latitude) Coordinate Systems "What good are Mercator's North Poles and Equators Tropics, Zones, and Meridian Lines?" So the Bellman would cry, and the crew would reply "They are merely conventional signs" L. Carroll -- The Hunting of the Snark • Equatorial (celestial): based on terrestrial longitude & latitude • Ecliptic: based on the Earth’s orbit • Altitude-Azimuth (alt-az): local • Galactic: based on MilKy Way • Supergalactic: based on supergalactic plane Reference points Celestial coordinates (Right Ascension α, Declination δ) • δ = 0: projection oF terrestrial equator • (α, δ) = (0,0):
    [Show full text]
  • The Sundial, Beyond the Form and Time
    ISAMA BRIDGES The International Society of the Mathematical Connections Arts, Mathematics, and Architecture in Art, Music, and Science The Sundial, Beyond the Form and Time ... Andrzej Zarzycki 227 Brighton Street Belmont, MA 02478 E-mail: [email protected] Abstract Architecture (iir" k 1-t].lk" ch ... r) n. 1. The art and science of designing and erecting buildings. Can a building inspire scientific thinking? Can an architectural structure reflect the complexity of the universe? Is there a relationship between the artistic and scientific? This paper discusses an approach to design, which uses an architectural structure as a research apparatus to pursue scientifically driven beauty. Architecture could be defined as the man-made universe - the universe whose primary function was to shelter us from elements, animals and other people. Broadly speaking, to protect us from the "outer Uni­ verse". It is not surprising that the evolution of architecture follows the same trajectories as the evolution of our thinking and perception ofthe surrounding world. However, somewhere along the lines of history, archi­ tecture acquired another purpose and began to playa new role in our self-awareness. In ancient, medieval and even modem times, we have viewed architecture as a medium to express, symbolize, and address the meaning of our existence. Ancient temples reveal an intimate knowledge of geometry and human perception by purposefully distorting their forms to balance visual illusions. Medieval cathedrals manifested greatness of God through art and structural achievements, while contemporary monu­ ments address the social and philosophical aspirations of a present-day society. As a result of this centuries long evolution~ we now associate architecture with its less utilitarian and more symbolic values.
    [Show full text]
  • Basic Principles of Celestial Navigation James A
    Basic principles of celestial navigation James A. Van Allena) Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 ͑Received 16 January 2004; accepted 10 June 2004͒ Celestial navigation is a technique for determining one’s geographic position by the observation of identified stars, identified planets, the Sun, and the Moon. This subject has a multitude of refinements which, although valuable to a professional navigator, tend to obscure the basic principles. I describe these principles, give an analytical solution of the classical two-star-sight problem without any dependence on prior knowledge of position, and include several examples. Some approximations and simplifications are made in the interest of clarity. © 2004 American Association of Physics Teachers. ͓DOI: 10.1119/1.1778391͔ I. INTRODUCTION longitude ⌳ is between 0° and 360°, although often it is convenient to take the longitude westward of the prime me- Celestial navigation is a technique for determining one’s ridian to be between 0° and Ϫ180°. The longitude of P also geographic position by the observation of identified stars, can be specified by the plane angle in the equatorial plane identified planets, the Sun, and the Moon. Its basic principles whose vertex is at O with one radial line through the point at are a combination of rudimentary astronomical knowledge 1–3 which the meridian through P intersects the equatorial plane and spherical trigonometry. and the other radial line through the point G at which the Anyone who has been on a ship that is remote from any prime meridian intersects the equatorial plane ͑see Fig.
    [Show full text]
  • What Time Is It?
    The Astronomical League A Federation of Astronomical Societies Astro Note E3 – What Time Is It? Introduction – There are many methods used to keep time, each having its own special use and advantage. Until recently, when atomic clocks became available, time was reckoned by the Earth's motions: one rotation on its axis was a "day" and one revolution about the Sun was a "year." An hour was one twenty-fourth of a day, and so on. It was convenient to use the position of the Sun in the sky to measure the various intervals. Apparent Time This is the time kept by a sundial. It is a direct measure of the Sun's position in the sky relative to the position of the observer. Since it is dependent on the observer's location, it is also a local time. Being measured according to the true solar position, it is subject to all the irregularities of the Earth's motion. The reference time is 12:00 noon when the true Sun is on the observer's meridian. Mean Time Many of the irregularities in the Earth's motion are due to its elliptical orbit. In order to add some consistency to the measure of time, we use the concept of mean time. Mean time uses the position of a fictitious "mean Sun" which moves smoothly and uniformly across the sky and is insensitive to the irregularities of the Earth’s motion. A mean solar day is 24 hours long. The "Equation of Time," tabulated in almanacs and represented on maps by the analemma, provides the correction between mean and apparent time to allow for the eccentricity of the Earth's orbit.
    [Show full text]
  • Map and Compass
    UE CG 039-089 2018_UE CG 039-089 2018 2018-08-29 9:57 AM Page 56 MAP The north magnetic pole is not the same as the geographic North Pole, also known as AND COMPASS true north, which is the northern end of the axis around which the earth spins. In fact, the north magnetic pole currently lies Background Information approximately 800 mi (1300 km) south of the geographic North Pole, in northern A compass is an instrument that people use Canada. And because the north magnetic to find a direction in relation to the earth as pole migrates at 6.6 mi (10 km) per year, its a whole. The magnetic needle in the location is constantly changing. compass, which is the freely moving needle in the compass that has a red end, points The meridians of longitude on maps and north. More specifically, this needle points globes are based upon the geographic to the north magnetic pole, the northern North Pole rather than the north magnetic end of the earth’s magnetic field, which pole. This means that magnetic north, the can be imagined as lines of magnetism that direction that a compass indicates as north, leave the south magnetic pole, flow north is not the same direction as maps indicate around the earth, and then enter the north for north. Magnetic declination, the magnetic pole. difference in the angle between magnetic north and true north must, therefore, be Any magnetized object, an object with two taken into account when navigating with a oppositely charged ends, such as a magnet map and a compass.
    [Show full text]
  • The Determination of Longitude in Landsurveying.” by ROBERTHENRY BURNSIDE DOWSES, Assoc
    316 DOWNES ON LONGITUDE IN LAXD SUIWETISG. [Selected (Paper No. 3027.) The Determination of Longitude in LandSurveying.” By ROBERTHENRY BURNSIDE DOWSES, Assoc. M. Inst. C.E. THISPaper is presented as a sequel tothe Author’s former communication on “Practical Astronomy as applied inLand Surveying.”’ It is not generally possible for a surveyor in the field to obtain accurate determinationsof longitude unless furnished with more powerful instruments than is usually the case, except in geodetic camps; still, by the methods here given, he may with care obtain results near the truth, the error being only instrumental. There are threesuch methods for obtaining longitudes. Method 1. By Telrgrcrph or by Chronometer.-In either case it is necessary to obtain the truemean time of the place with accuracy, by means of an observation of the sun or z star; then, if fitted with a field telegraph connected with some knownlongitude, the true mean time of that place is obtained by telegraph and carefully compared withthe observed true mean time atthe observer’s place, andthe difference between thesetimes is the difference of longitude required. With a reliable chronometer set totrue Greenwich mean time, or that of anyother known observatory, the difference between the times of the place and the time of the chronometer must be noted, when the difference of longitude is directly deduced. Thisis the simplest method where a camp is furnisl~ed with eitherof these appliances, which is comparatively rarely the case. Method 2. By Lunar Distances.-This observation is one requiring great care, accurately adjusted instruments, and some littleskill to obtain good results;and the calculations are somewhat laborious.
    [Show full text]
  • September 2019
    JUDICIAL COUNCIL OF CALIFORNIA 455 Golden Gate Avenue . San Francisco, California 94102-3688 www.courts.ca.gov REPORT TO THE JUDICI AL COUNCIL For business meeting on: September 23–24, 2019 Title Agenda Item Type Judicial Workload Assessment: 2018 Judicial Action Required Workload Study Updated Caseweights Effective Date Rules, Forms, Standards, or Statutes Affected September 24, 2019 None Date of Report Recommended by September 10, 2019 Workload Assessment Advisory Committee Hon. Lorna A. Alksne, Chair Contact Judicial Council staff Kristin Greenaway, 415-865-7832 Kristin Greenaway, Supervising Research [email protected] Analyst Office of Court Research Executive Summary The Workload Assessment Advisory Committee (WAAC) recommends that the Judicial Council adopt the proposed Judicial Workload Study updated model parameters that are used as part of the formula for assessing judicial need in the trial courts. The council previously approved the Judicial Workload Study in 2001 and 2011; the current update accounts for changes in the law and practice that have affected judicial workload since the last study update in 2011. The recommendation also reflects direction from the Judicial Council, at its July 18, 2019 meeting, to perform additional analysis to ensure the model best represents courts of all sizes. Further, WAAC recommends that the council approve an updated Judicial Needs Assessment per Government Code section 69614(c)(1) based on the new judicial workload measures and the established methodology for prioritization of judgeships. The updated needs assessment would replace a preliminary version that was completed in 2018 using workload measures developed in 2011. Recommendation The Workload Assessment Advisory Committee recommends that the Judicial Council: 1.
    [Show full text]
  • Dead Reckoning and Magnetic Declination: Unveiling the Mystery of Portolan Charts
    Joaquim Alves Gaspar * Dead reckoning and magnetic declination: unveiling the mystery of portolan charts Keywords : medieval charts; cartometric analysis; history of cartography; map projections of old charts; portolan charts Summary For more than two centuries much has been written about the origin and method of con- struction of the Mediterranean portolan charts; still these matters continue to be the object of some controversy as no one explanation was able to gather unanimous agreement among researchers. If some theory seems to prevail, that is certainly the one asserting the medieval origin of the portolan chart, which would have followed the introduction of the marine compass in the Mediterranean, when the pilots start to plot the magnetic directions and es- timated distances between ports observed at sea. In the research here presented a numerical model which simulates the construction of the old portolan charts is tested. This model was developed in the light of the navigational methods available at the time, taking into account the spatial distribution of the magnetic declination in the Mediterranean, as estimated by a geomagnetic model based on paleomagnetic data. The results are then compared with two extant charts using cartometric analysis techniques. It is concluded that this type of meth- odology might contribute to a better understanding of the geometry and methods of con- struction of the portolan charts. Also, the good agreement between the geometry of the ana- lysed charts and the model’s results clearly supports the a-priori assumptions on their meth- od of construction. Introduction The medieval portolan chart has been considered as a unique achievement in the history of maps and marine navigation, and its appearance one of the most representative turn- ing points in the development of nautical cartography.
    [Show full text]
  • Sidereal Time Distribution in Large-Scale of Orbits by Usingastronomical Algorithm Method
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Sidereal Time Distribution in Large-Scale of Orbits by usingAstronomical Algorithm Method Kutaiba Sabah Nimma 1UniversitiTenagaNasional,Electrical Engineering Department, Selangor, Malaysia Abstract: Sidereal Time literally means star time. The time we are used to using in our everyday lives is Solar Time.Astronomy, time based upon the rotation of the earth with respect to the distant stars, the sidereal day being the unit of measurement.Traditionally, the sidereal day is described as the time it takes for the Earth to complete one rotation relative to the stars, and help astronomers to keep them telescops directions on a given star in a night sky. In other words, earth’s rate of rotation determine according to fixed stars which is controlling the time scale of sidereal time. Many reserachers are concerned about how long the earth takes to spin based on fixed stars since the earth does not actually spin around 360 degrees in one solar day.Furthermore, the computations of the sidereal time needs to take a long time to calculate the number of the Julian centuries. This paper shows a new method of calculating the Sidereal Time, which is very important to determine the stars location at any given time. In addition, this method provdes high accuracy results with short time of calculation. Keywords: Sidereal time; Orbit allocation;Geostationary Orbit;SolarDays;Sidereal Day 1. Introduction (the upper meridian) in the sky[6]. Solar time is what the time we all use where a day is defined as 24 hours, which is The word "sidereal" comes from the Latin word sider, the average time that it takes for the sun to return to its meaning star.
    [Show full text]
  • Appendix A. the Normal Geomagnetic Field in Hutchinson, Kansas (
    Appendix A. The Normal Geomagnetic Field in Hutchinson, Kansas (http://www.ngdc.noaa.gov/cgi-bin/seg/gmag/fldsnth1.pl) Model: IGRF2000 Latitude: 38 deg, 3 min, 54 sec Longitude: -97 deg, 54 min, 50 sec Elevation: 0.50 km Date of Interest: 11/12/2003 ---------------------------------------------------------------------------------- D I H X Y Z F (deg) (deg) (nt) (nt) (nt) (nt) (nt) 5d 41m 66d 33m 21284 21179 2108 49067 53484 dD dI dH dX dY dZ dF (min/yr) (min/yr) (nT/yr) (nT/yr) (nT/yr) (nT/yr) (nT/yr) -6 -1 -16 -12 -39 -92 -91 ----------------------------------------------------------------------------------- Definitions D: Magnetic Declination Magnetic declination is sometimes referred to as the magnetic variation or the magnetic compass correction. It is the angle formed between true north and the projection of the magnetic field vector on the horizontal plane. By convention, declination is measured positive east and negative west (i.e. D -6 means 6 degrees west of north). For surveying practices, magnetic declination is the angle through which a magnetic compass bearing must be rotated in order to point to the true bearing as opposed to the magnetic bearing. Here the true bearing is taken as the angle measured from true North. Declination is reported in units of degrees. One degree is made up of 60 minutes. To convert from decimal degrees to degrees and minutes, multiply the decimal part by 60. For example, 6.5 degrees is equal to 6 degrees and 30 minutes (0.5 x 60 = 30). If west declinations are assumed to be negative while east declination are considered positive then True bearing = Magnetic bearing + Magnetic declination An example: The magnetic bearing of a property line has an azimuth of 72 degrees East.
    [Show full text]
  • Celestial Coordinate Systems
    Celestial Coordinate Systems Craig Lage Department of Physics, New York University, [email protected] January 6, 2014 1 Introduction This document reviews briefly some of the key ideas that you will need to understand in order to identify and locate objects in the sky. It is intended to serve as a reference document. 2 Angular Basics When we view objects in the sky, distance is difficult to determine, and generally we can only indicate their direction. For this reason, angles are critical in astronomy, and we use angular measures to locate objects and define the distance between objects. Angles are measured in a number of different ways in astronomy, and you need to become familiar with the different notations and comfortable converting between them. A basic angle is shown in Figure 1. θ Figure 1: A basic angle, θ. We review some angle basics. We normally use two primary measures of angles, degrees and radians. In astronomy, we also sometimes use time as a measure of angles, as we will discuss later. A radian is a dimensionless measure equal to the length of the circular arc enclosed by the angle divided by the radius of the circle. A full circle is thus equal to 2π radians. A degree is an arbitrary measure, where a full circle is defined to be equal to 360◦. When using degrees, we also have two different conventions, to divide one degree into decimal degrees, or alternatively to divide it into 60 minutes, each of which is divided into 60 seconds. These are also referred to as minutes of arc or seconds of arc so as not to confuse them with minutes of time and seconds of time.
    [Show full text]
  • Positional Astronomy Coordinate Systems
    Positional Astronomy Observational Astronomy 2019 Part 2 Prof. S.C. Trager Coordinate systems We need to know where the astronomical objects we want to study are located in order to study them! We need a system (well, many systems!) to describe the positions of astronomical objects. The Celestial Sphere First we need the concept of the celestial sphere. It would be nice if we knew the distance to every object we’re interested in — but we don’t. And it’s actually unnecessary in order to observe them! The Celestial Sphere Instead, we assume that all astronomical sources are infinitely far away and live on the surface of a sphere at infinite distance. This is the celestial sphere. If we define a coordinate system on this sphere, we know where to point! Furthermore, stars (and galaxies) move with respect to each other. The motion normal to the line of sight — i.e., on the celestial sphere — is called proper motion (which we’ll return to shortly) Astronomical coordinate systems A bit of terminology: great circle: a circle on the surface of a sphere intercepting a plane that intersects the origin of the sphere i.e., any circle on the surface of a sphere that divides that sphere into two equal hemispheres Horizon coordinates A natural coordinate system for an Earth- bound observer is the “horizon” or “Alt-Az” coordinate system The great circle of the horizon projected on the celestial sphere is the equator of this system. Horizon coordinates Altitude (or elevation) is the angle from the horizon up to our object — the zenith, the point directly above the observer, is at +90º Horizon coordinates We need another coordinate: define a great circle perpendicular to the equator (horizon) passing through the zenith and, for convenience, due north This line of constant longitude is called a meridian Horizon coordinates The azimuth is the angle measured along the horizon from north towards east to the great circle that intercepts our object (star) and the zenith.
    [Show full text]