Evaluation of Larval Fish Sampling Gears for Use on Large Rivers

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Larval Fish Sampling Gears for Use on Large Rivers £ ~ f ENVIRONMENTAL AND WATER QUALITY OPERATIONAL STUDIES US Army Corps TECHNICAL REPORT E-86-9 of Engineers EVALUATION OF LARVAL FISH SAMPLING GEARS FOR USE ON LARGE RIVERS by Timothy R. Bosley, C. H. Pennington, Michael E. Potter, Scott S. Knight Environmental Laboratory DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631 July 1986 Final Report Approved For Public Release; Distribution Unlimited Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000 Under EWQOS Work Unit VII.B library DEC 15 '86 Bureau of Reclamation Denver, Ootorado Destroy this report when no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. BUREAU OF RECLAMATION 92008412 ^□□0412 \ £• I Un classi, f.lp.d- SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER Technical Report E-86-9 4. T ITL E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED EVALUATION OF LARVAL FISH SAMPLING GEARS FOR USE Final report ON LARGE RIVERS 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR*» 8. CONTRACT OR GRANT NUMBER*» Timothy R. Bosley, C. H. Pennington, Michael E. Potter, Scott S. Knight 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS US Army Engineer Waterways Experiment Station Environmental Laboratory PO Box 631, Vicksburg, Mississippi 39180-0631 EWQOS Work Unit VII.B 11. CONTROLLING OFFICE NAME AND ADDRESS 12. RJEPO-RT DATE DEPARTMENT OF THE ARMY July 1986 US Army Corps of Engineers 13. NUMBER OF PAGES Washington, DC 20314-1000 53 14. MONITORING AGENCY NAME a ADDRESS(7f different from Controlling Office) 15. SECURITY CLASS, (of this report) Unclassified 15«. D ECL ASSI FI CATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEM EN T (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEM EN T (of the abstract entered in Block 20, it different from Report) 18. SUPPLEMENTARY NOTES Available from National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Larvae— Fishes— Research— Equipment and supplies (LC) Ichthyological research— Equipment and supplies (LC) 20* ABSTRACT (Continue en reverse altBs ft necessary and. identity by block number) A study was conducted to evaluate the effectiveness of five different collecting gears in sampling larval fishes associated with dikes and revet­ ments. The tests were conducted on the Lower Mississippi River at mile 508.8 and miles 447-448. The five collecting gears used were: plankton nets fished at discrete depths in the water column of a dike pool and the main channel; a push sled; a diaphragm pump; an electroshocker; and basket implants. (Continued) FORM DD * JAM 73 U73 EDITION O F f NOV 65 IS O BSO LETE Unclassified S E C U R I T Y C L A S S IF IC A T I O N O F TH IS P A G E (Wr«* Data Entered) ______Unclassified__________________ S ECURITY CLASSIFICATION OF THIS PAGEfWTian Data Entered) 20. ABSTRACT (Continued). These gears were used during the day and night to describe diel and temporal changes in the larval fish community in main channel, dike pool, dike, revet­ ment, and sandbar habitats. The discrete depth net gear was effective in documenting the vertical, diel, and temporal distribution of ichthyoplankton drift in the main channel and dike pool habitats. Similarities and differences in ichthyoplankton abundance and diversity occurred between habitats. The most notable observation was the comparable abundance among like depth strata between habitats in May. In June, the surface stratum at each habitat contained a far greater abundance of larvae than the samples collected at lower depths. The push sled was effective for sampling shallow water in the vicinity of sandbars. Use of the sled revealed diel and temporal differences in the shallow- water ichthyoplankton. Night samples had a much greater abundance of larvae than day samples, especially in July. Carpsuckers, shad, and minnows were domi­ nant in May, whereas minnows and carpsuckers comprised nearly all the larvae collected in July. The diaphragm pump, electroshocker, and implant baskets were used to sample ichthyoplankton associated with dike and revetment habitats. Of these gears, the diaphragm pump was the most effective. Samples collected along dikes and revetments contained a greater abundance and diversity of larvae than open-water samples. Based on the samples collected using the electroshocker, the presence of an electrical field did not improve catch efficiency. Of the three gears used to sample larval fish from dikes and revetments, the implant baskets were least effective. Unclassified SECURITY CLASSIFICATION OF THIS PAGEfWien Data Entered) PREFACE The study described in this report was sponsored by the Office, Chief of Engineers (OCE), US Army, under the Environmental and Water Quality Operational Studies (EWQOS) Program, Work Unit VII.B, Waterways Field Studies. The EWQOS Program has been assigned to the US Army Engi­ neer Waterways Experiment Station (WES) under the direction of the Envi­ ronmental Laboratory (EL). The OCE Technical Monitors for EWQOS were Mr. Earl Eiker, Dr. John Bushman, and Mr. James L. Gottesman. This report presents results of a study designed to evaluate five different gears for sampling fish larvae from habitats within the main­ line levees of the Lower Mississippi River. Habitats of particular con­ cern were those associated with dikes and revetments. The study was conducted at river mile 508.8 and river miles 447-448 from May through July 1982. This report was prepared by Mr. Timothy R. Bosley, Dr. C. H. Pen­ nington, Mr. Michael E. Potter, and Dr. Scott S. Knight, under the supervision of Dr. Thomas D. Wright, Chief, Aquatic Habitat Group, and Dr. Conrad J. Kirby, Chief, Environmental Resources Division. Dr. Jerome L. Mahloch was Program Manager, EWQOS, and Dr. John Harrison was Chief, EL. The report was edited by Ms. Jessica S. Ruff of the WES Information Products Division. COL Allen F. Grum, USA, was the previous Director of WES. COL Dwayne G. Lee, CE, is the present Commander and Director. Dr. Robert W. Whalin is Technical Director. This report should be cited as follows: Bosley, T. R., et al. 1986. "Evaluation of Larval Fish Sampling Gears for Use on Large Rivers," Technical Report E-86-9, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. 1 CONTENTS Page PREFACE ........................................................ 1 PART I: INTRODUCTION............ ......... ......... 3 Background .............................................. 3 O b j e c t i v e s ......................................... 4 PART II: REVIEW OF SAMPLING METHODS AND G E A R S ................. 5 Towed G e a r .............................................. 5 Push N e t s ................... 12 Water P u m p s ............................... 12 Larvae T r a p .............................................. 15 Other G e a r s ................... 18 PART III: M E T H O D S ..................... 23 Study A r e a ............................... 23 Description and Use of Gears . ...................... 23 Laboratory Procedures ................................... 32 Evaluation Procedure ......................... 33 PART IV: RESULTS AND EVALUATION.............................. 34 Discrete Depth N e t s ...................................... 34 Push S l e d ................................................ 39 Diaphragm P u m p .......................................... 41 Electroshocker .......................................... 43 Implant B a s k e t .......................................... 45 PART V: CONCLUSIONS AND RECOMMENDATIONS.................... 47 Conclusions.............................................. 47 Recommendations..................................... 48 R E F E R E N C E S ............................................ 49 2 EVALUATION OF LARVAL FISH SAMPLING GEARS FOR USE ON LARGE RIVERS PART I: INTRODUCTION Background 1. From 1978 through 1980 the US Army Engineer Waterways Experi­ ment Station (WES) conducted larval fish studies in the Mississippi River between river mile 480 and 530 (Greenville, Miss., to Lake Provi­ dence, La.) as part of the Environmental and Water Quality Operational Studies (EWQOS) Program sponsored by the Office, Chief of Engineers, US Army. The larval fish studies were performed as a portion of a larger investigation to evaluate the impacts of channel alignment struc­ tures (dikes and revetments) on water quality, macroinvertebrates, and fishes in large rivers. This investigation was also intended to clarify the biological characteristics of natural habitats (sandbars, abandoned channels, natural banks, etc.) in addition to the habitats modified by navigation structures. 2. The larval fish studies consisted of collecting samples from near the water’s surface (0.5- to 1.0-m depth) in main channel, natural bank, revetted bank, secondary channel, abandoned channel, and dike pool habitats using 0.5-m-diam conical
Recommended publications
  • J. Mar. Biol. Ass. UK (1958) 37, 7°5-752
    J. mar. biol. Ass. U.K. (1958) 37, 7°5-752 Printed in Great Britain OBSERVATIONS ON LUMINESCENCE IN PELAGIC ANIMALS By J. A. C. NICOL The Plymouth Laboratory (Plate I and Text-figs. 1-19) Luminescence is very common among marine animals, and many species possess highly developed photophores or light-emitting organs. It is probable, therefore, that luminescence plays an important part in the economy of their lives. A few determinations of the spectral composition and intensity of light emitted by marine animals are available (Coblentz & Hughes, 1926; Eymers & van Schouwenburg, 1937; Clarke & Backus, 1956; Kampa & Boden, 1957; Nicol, 1957b, c, 1958a, b). More data of this kind are desirable in order to estimate the visual efficiency of luminescence, distances at which luminescence can be perceived, the contribution it makes to general back• ground illumination, etc. With such information it should be possible to discuss. more profitably such biological problems as the role of luminescence in intraspecific signalling, sex recognition, swarming, and attraction or re• pulsion between species. As a contribution to this field I have measured the intensities of light emitted by some pelagic species of animals. Most of the work to be described in this paper was carried out during cruises of R. V. 'Sarsia' and RRS. 'Discovery II' (Marine Biological Association of the United Kingdom and National Institute of Oceanography, respectively). Collections were made at various stations in the East Atlantic between 30° N. and 48° N. The apparatus for measuring light intensities was calibrated ashore at the Plymouth Laboratory; measurements of animal light were made at sea.
    [Show full text]
  • Fish Larvae, Development, Allometric Growth, and the Aquatic Environment
    II. Developmental and environmental interactions ICES mar. Sei. Symp., 201: 21-34. 1995 Fish larvae, development, allometric growth, and the aquatic environment J. W. M. Osse and J. G. M. van den Boogaart Osse, J. W. M., and van den Boogaart, J. G. M. 1995. Fish larvae, development, allometric growth, and the aquatic environment. - ICES mar. Sei. Symp., 201: 21-34. During metamorphosis, fish larvae undergo rapid changes in external appearance and dimensions of body parts. The juveniles closely resemble the adult form. The focus of the present paper is the comparison of stages of development of fishes belonging within different taxa in a search for general patterns. The hypothesis that these patterns reflect the priorities of vital functions, e.g., feeding, locomotion, and respiration, is tested taking into account the size-dependent influences of the aquatic environment on the larvae. A review of some literature on ailometries of fish larvae is given and related to the rapidly changing balance between inertial and viscous forces in relation to body length and swimming velocity. New data on the swimming of larval and juvenile carp are presented. It is concluded that the patterns of development and growth shows in many cases a close parallel with the successive functional requirements. J. W. M. Osse and J. G. M. van den Boogaart: Wageningen Agricultural University, Department of Experimental Animal Morphology and Cell Biology, Marijkeweg 40, 6709 PG Wageningen, The Netherlands [tel: (+31) (0)317 483509, fax: (+31) (0)317 483962], Introduction Fish larvae, being so small, must have problems using their limited resources for maintenance, activity, obtain­ Fish larvae are the smallest free-living vertebrates.
    [Show full text]
  • Report on the First Scotian Shelf Ichthyoplankton Program
    NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR (S) International Commission for a the Northwest Atlantic Fisheries Serial No. 5179 ICNAF Res. Doc. 78/VI/21 (D.c.1) ANNUAl MEETING - JUNE 1978 Report on the First Scotian Shelf Ichthyoplanktoll Program (SSIP) Workshop, 29 August to 3 September 1977, St. Andrews, N. B. Sponsored by Department of Fisheries and Environment Marine Fish Division Resource Branch, Maritimes Bedford Institute of Oceanography Dartmouth, Nova Scotia TABLE OF CONTENTS Page Abstract 2 Terms of Reference 2 Introduction 4 Oceanographic Regime •••••..••••.•.•.•••••••..••••••.••..•. 4 Overview of Present Approaches ••••••••••••••••••..•••.•••• 6 - Canada 6 - United States of America 13 - Un! ted Kingdom 19 - Federal Republic of Germany......................... 24 Sampling Recommendations 25 Sorting Protocols 26 Planning Sessions 26 Summary and Resolutions ••••••••.•..••...•••.••••...•.•.•.• 27 References 28 List of participants 30 Convener P. F. Lett Rapporteur: J. F. Schweigert C2 - 2 - ABSTRACT The Scotian Shelf ichthyoplankton workshop was organized to draw on expertise from other prevailing programs and to incorporate any new ideas on ichthyoplankton ecology and sampling 8S it might relate to the stock-recruitment problem and fisheries management. Experts from a number of leading fisheries laboratories presented overviews of their ichthyoplankton programs and approaches to fisheries management. The importance of understanding the eJirly life history of most fish species was emphasized and some pre! iminary reBul
    [Show full text]
  • Freshwater Fish of New River, Belize
    FRESHWATER FISH OF NEW RIVER, BELIZE Belize is home to an abundant diversity of freshwater Blue Tilapia fish species and is often considered a fisherman’s Oreochromis aureus, Tilapia paradise. The New River area is a popular freshwater Adult size: 13–20 cm (5–8 in) fishing destination in the Orange Walk district of northern Belize. Here locals and visitors alike take to the lagoons and waterways for dinner or for good sportfishing. This guide highlights the most popular species in the area and will help people identify and understand these species. A fishing license is required for all fishers, so before casting be sure to check the local laws and regulations. Tarpon Victor Atkins Megalops atlanticus This edible, fleshy fish can be identified by its overall blue Adult size: 1-2.5 m (4-8 ft) color. Adults can weigh up to 2.7kg (6 lbs). This exotic cichlid is abundant in both fresh and brackish waters. Mayan Cichlid Cichlasoma urophthalmus, Pinta Adult size: 25–27 cm (10–11 in) Albert Kok Tarpon are large fish that can weigh up to 127kg (280 lbs). They are covered in large, silver scales and have no spines in their fins, and have a broad mouth with a prominent lower jaw. Tarpon are fighters and may jump out of the water DATZ. R. Stawikowski several times when hooked. They are found in fresh and saltwater. This popular food fish has dark vertical bars and a large black eyespot with a blue border at the tail base. The first Bay Snook dorsal and anal fins have many sharp spines.
    [Show full text]
  • Comparison of an Active and a Passive Age-0 Fish Sampling Gear in a Tropical Reservoir
    Comparison of an Active and a Passive Age-0 Fish Sampling Gear in a Tropical Reservoir M. Clint Lloyd, Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Box 9690 Mississippi State, MS 39762 J. Wesley Neal, Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Box 9690 Mississippi State, MS 39762 Abstract: Age-0 fish sampling is an important tool for predicting recruitment success and year-class strength of cohorts in fish populations. In Puerto Rico, limited research has been conducted on age-0 fish sampling with no studies addressing reservoir systems. In this study, we compared the efficacy of passively-fished light traps and actively-fished push nets for sampling the limnetic age-0 fish community in a tropical reservoir. Diversity of catch between push nets and light traps were similar, although species composition of catches differed between gears (pseudo-F = 32.21, df =1,23, P < 0.001) and among seasons (pseudo-F = 4.29, df = 3,23, P < 0.006). Push-net catches were dominated by threadfin shad (Dorosoma petenense), comprising 94.2% of total catch. Conversely, light traps collected primarily channel catfish Ictalurus( punctatus; 76.8%), with threadfin shad comprising only 13.8% of the sample. Light-trap catches had less species diversity and evenness compared to push nets, consequently their efficiency may be limited to presence/ absence of species. These two gears sampled different components of the age-0 fish community and therefore, gear selection should be based on- re search goals, with push nets an ideal gear for threadfin shad age-0 fish sampling, and light traps more appropriate for community sampling.
    [Show full text]
  • Cartilaginous Fish: Sharks, Sawfish and Stingrays
    Cartilaginous fish: Sharks, sawfish and stingrays. It may come as a surprise to some readers that there are sharks, sawfish and stingrays in the Mekong River, because most people connect these fishes with the big oceans. Most species in these groups are in fact strictly marine. However, several species have some tolerance to freshwater and have the ability to venture far up into rivers during their searches for food, while a few live their entire life in fresh water. Sharks, sawfish and stingrays are all cartilaginous fishes (the class Chondrichthyes), while all the species we have presented in Catch and Cultures supplement series until this point have been bony fish (the class Osteichthyes). Let us therefore start by looking at the characters that distinguish cartilaginous fish from bony fishes. As implied in the name, the skeleton in cartilaginous fish does not include bone but consists of cartilage, and all Fins supported by the fins are supported by horny horny structures structures rather than fin rays. Gill openings seen as Body covered with None of the species possess a a series of slits denticles swimbladder, the organ most bony fish use to prevent them from sinking to the bottom. Many cartilaginous fish species are therefore Mouth protrusible either bottom dwellers or accomplish neutral buoyancy by Specialized teeth arranged in rows maintaining a high fat or oil content A generalized cartilaginous fish, the milk shark in their tissues. (Rhizoprionodon acutus), which has been The gill openings in cartilaginous fish are not covered recorded from the Great Lake in Cambodia. with operculae, and are seen as a series of slits on the side of the fish just behind the head, or on the underside of the fish.
    [Show full text]
  • REPRINTED from KOOLEWONG Vol
    REPRINTED FROM KOOLEWONG Vol. 4, No. 2 The Lungfish-Creature from the Past by GORDON C. GRIGG The survivor from prehistoric times, the salmon-fleshed Queensland lungfish, may fall victim to agricultural destruction of its habitat. Along the more remote reaches of Queensland's Burnett River, particularly toward evening, it is easy to believe that prehistoric creatures exist in the still, dark pools. Yet despite the heavily primeval atmosphere of the river it has so far produced only one genuine survivor from prehistoric times-the Queensland lungfish, Neoceratodus forsteri. Dissection of a lungfish (above) reveals the structure of its single lung. The lungfish also has a set of gills and can breathe air or water at will. Photo by Gordon C. Grigg. Fossil evidence suggests that this fish has remained essentially unaltered by any evolutionary processes for at least the last 150 million years. The lungfish is a member of an extraordinary group of fishes, the Dipnoi, which have lungs as well as gills, allowing them to breathe air as well as water. Of the once widespread Dipnoan fish, only three survive today: Neoceratodus in Queensland, Protopterus in Africa and Lepidosiren in South America. Neoceratodus appears to be more primitive than its overseas cousins. It is the closest surviving relative of the fish from which the first land vertebrates, the labyrinthodonts, arose about 325 million years ago. This makes it of particular interest to zoologists. The Queensland lungfish inhabits waterholes in rivers where the channel widens, deepens and flows more slowly. During the day it remains on the bottom and can sometimes be seen in the shade of overhanging trees.
    [Show full text]
  • Oxygen Depletion Affects Kinematics and Shoaling Cohesion of Cyprinid Fish
    water Communication Oxygen Depletion Affects Kinematics and Shoaling Cohesion of Cyprinid Fish Daniel S. Hayes 1,2,* , Paulo Branco 2 , José Maria Santos 2 and Teresa Ferreira 2 1 Institute of Hydrobiology and Aquatic Ecosystem Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna (BOKU), 1180 Vienna, Austria 2 Forest Research Centre (CEF), School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal; [email protected] (P.B.); [email protected] (J.M.S.); [email protected] (T.F.) * Correspondence: [email protected]; Tel.: +43-1-47654-81223 Received: 24 January 2019; Accepted: 25 March 2019; Published: 27 March 2019 Abstract: Numerous anthropogenic stressors impact rivers worldwide. Hypoxia, resulting from organic waste releases and eutrophication, occurs very commonly in Mediterranean rivers. Nonetheless, little is known about the effects of deoxygenation on the behavior of Mediterranean freshwater fish. To fill this knowledge gap, we assessed the impact of three different dissolved oxygen levels (normoxia, 48.4%, 16.5% saturation) on kinematics indicators (swimming velocity, acceleration, distance traveled) and shoaling cohesion of adult Iberian barbel, Luciobarbus bocagei, a widespread cyprinid species inhabiting a broad range of lotic and lentic habitats. We conducted flume experiments and video-tracked individual swimming movements of shoals of five fish. Our results reveal significant differences between the treatments regarding kinematics. Swimming velocity, acceleration, and total distance traveled decreased stepwise from the control to each of the two oxygen depletion treatments, whereby the difference between the control and both depletion levels was significant, respectively, but not between the depletion levels themselves.
    [Show full text]
  • Nearshore Ichthyoplankton Associated with Seagrass Beds in the Lower Chesapeake Bay
    MARINE ECOLOGY - PROGRESS SERIES Vol. 45: 33-43, 1988 Published June 20 Mar. Ecol. Prog. Ser. P -- -- Nearshore ichthyoplankton associated with seagrass beds in the lower Chesapeake Bay John E. Olneyl, George W. ~oehlert~ ' Virginia Institute of Marine Science and School of Marine Science. College of William and Mary, Gloucester Point, Virginia 23062. USA Southwest Fisheries Center Honolulu Laboratory, National Marine Fisheries Service. NOAA. 2570 Dole Street. Honolulu, Hawaii 96822-2396, USA ABSTRACT: Estuaries serve as important nursery habitats for larvae and juveniles of many species of fishes and invertebrates. Within the estuary, however, partitioning may occur among main channel. mud flat, tidal creek, and vegetated habitats. In this study we describe the egg, larval, and juvenile fish assemblages in shallow areas of submerged aquatic vegetation (SAV) of the lower Chesapeake Bay and compare them with those over the adjacent, shallow sand habitat. Densities at night over all habitats were about 1 order of magnitude higher than daytime densities, and were highest in summer. The SAV habitats were not important spawning sites for species with pelagic eggs, but were important for species brooding eggs or with demersal eggs. Overall, collections were dominated by the bay anchovy Ancl~oa mitchdh, but contained many species not commonly found in the midchannel ichthyoplankton described in earlier studies; these include the croaker Micropogonias undulatus, rough silverside Membras martinica and northern pipefish Syngnathus fuscus. Conversely, the weakfish Cynoscion regaljs was rare in our collections as compared to main channel sampling areas. Our results suggest that SAV areas do not play an important nursery role for pelagic eggs and early larvae, which may suffer increased predation by planktivores in these areas.
    [Show full text]
  • Osmoregulation and Smolt Physiology of Sea‐Run Brown Trout (Salmo Trutta) Kelli Mosca & Dr
    Osmoregulation and smolt physiology of sea‐run brown trout (Salmo trutta) Kelli Mosca & Dr. John Kelly Department of Biology and Environmental Science, University of New Haven Introduction: Results (continued): Most fish can only 0.25 0.25 survive in a small range 0.20 0.20 (mol/L) (mol/L) of water salinities, and 0.15 0.15 are classified as 0.10 0.10 chloride chloride stenohaline. However, some fish can acclimate 0.05 0.05 Plasma to a wide range of Plasma 0.00 0.00 salinities, and are 1YO FW 1YOSW 2YO FW 2YO SW 21days Treatment Treatment referred to as euryhaline. Figure 2: Chloride concentrations for all treatments. 1 year‐old ggproups are on the left ((glight blue) and 2 year‐old Of th ese euryhlihaline fis h, Figure 1: Two year‐old fhfreshwater S. trutta at the CT DEEP hhhatchery in FbFebruary 2016, groups are on the right (dark blue). Error bars represent ±1 SEM. some are also showing pre‐smolt coloration. anadromous, living in 7 7 6 6 freshwater early in life as “parr”, migrating to the ocean as “smolts”, and then returning to rivers to spawn. Before they leave freshwater, the fish undergo a complex suite of transformations in order to survive in 5 5 4 4 activity protein/hr) protein/hr) Activity the ocean (McCormick 2001). This is referred to as the parr-smolt transformation. 3 Physiological changes are necessary to maintain the appropriate balance of salt and water in the fish’s 3 2 2 ATPase ATPase body, a process referred to as osmoregulation.
    [Show full text]
  • Freshwater Sharks
    Freshwater Sharks Care Sheet Imposters Housing While not true sharks, this group of freshwater fish – many of which are Red tail sharks and rainbow sharks become territorial as they grow from the Family Cyprinidae – have a strong resemblance to their and should be provided with plenty of space, as well as caves and ocean-going counterparts, only in miniature form. Their characteristic other structures to call “home”. Others, like bala, black, harlequin and torpedo-shaped bodies and high dorsal fins give them a decided Colombian sharks can reach over 12” in length, and will require an “shark-like” look, and their active swimming behavior and sometimes aquarium of at least 100 gallons when full grown. It should be pointed feisty personalities complete the package. out that Chinese banded and red-finned cigar sharks can achieve 36”, Shark Fish Type Relation and iridescent sharks exceed 48” in nature. These fish should not be kept in home aquariums. (The notion that fish grow to the size of their habitat Bala, redtail, rainbow, harlequin and black shark Barbs, goldfish, koi is false.) Most freshwater sharks are accomplished jumpers, so keep a Red streak and red-finned cigar shark Barbs, goldfish, koi secure lid on the aquarium. Hi-fin bull and iridescent shark Catfish Freshwater sharks are native to Southeast Asia, China, Africa and Behavior/Compatibility Central America, however most specimens sold today are produced on Red tail sharks and rainbow sharks become territorial, especially commercial fish farms. Albino varieties of several species have become toward one another, and are best kept individually when they get older.
    [Show full text]
  • Making a Big Splash with Louisiana Fishes
    Making a Big Splash with Louisiana Fishes Written and Designed by Prosanta Chakrabarty, Ph.D., Sophie Warny, Ph.D., and Valerie Derouen LSU Museum of Natural Science To those young people still discovering their love of nature... Note to parents, teachers, instructors, activity coordinators and to all the fishermen in us: This book is a companion piece to Making a Big Splash with Louisiana Fishes, an exhibit at Louisiana State Universi- ty’s Museum of Natural Science (MNS). Located in Foster Hall on the main campus of LSU, this exhibit created in 2012 contains many of the elements discussed in this book. The MNS exhibit hall is open weekdays, from 8 am to 4 pm, when the LSU campus is open. The MNS visits are free of charge, but call our main office at 225-578-2855 to schedule a visit if your group includes 10 or more students. Of course the book can also be enjoyed on its own and we hope that you will enjoy it on your own or with your children or students. The book and exhibit was funded by the Louisiana Board Of Regents, Traditional Enhancement Grant - Education: Mak- ing a Big Splash with Louisiana Fishes: A Three-tiered Education Program and Museum Exhibit. Funding was obtained by LSUMNS Curators’ Sophie Warny and Prosanta Chakrabarty who designed the exhibit with Southwest Museum Services who built it in 2012. The oarfish in the exhibit was created by Carolyn Thome of the Smithsonian, and images exhibited here are from Curator Chakrabarty unless noted elsewhere (see Appendix II).
    [Show full text]