2.2 Finite Element Method

Total Page:16

File Type:pdf, Size:1020Kb

2.2 Finite Element Method Stochastic crack growth simulation in reinforced concrete structures by means of coupled finite element and meshless methods (Stochastische Rissfortschrittsberechnung in bewehrten Betonstrukturen unter Kopplung der Finiten Elemente Methode mit netzfreien Verfahren) DISSERTATION Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) an der Fakultät Bauingenieurwesen der Bauhaus-Universität Weimar vorgelegt von Dipl.-Ing. Thomas Most geb. am 15. Juni 1975 in Bad Salzungen Weimar, Juni 2005 Gutachter: 1. Prof. Dr. techn. Christian Bucher, Bauhaus-Universität Weimar 2. Prof. Dr. techn. Günter Hofstetter, Universität Innsbruck 3. Prof. Dr. habil. Ulrich Häussler-Combe, Techn. Universität Dresden Disputation am 28. November 2005 Für Yvonne, Olivia, Magnus und meine Eltern Vorwort Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitar- beiter am Institut für Strukturmechanik innerhalb des Sonderforschungsbereiches 524 “Werkstoffe und Konstruktionen für die Revitalisierung von Bauwerken” an der Bauhaus- Universität Weimar. Mein besonderer Dank gilt Herrn Professor Christian Bucher für die Anregung und Förderung dieser Arbeit sowie für die hervorragende Betreuung. Besonders wertvoll waren dabei die Vielzahl fachlicher Diskussionen, sein Vertrauen und seine Offenheit, welche den idealen Rahmen für diese Arbeit bildeten. Herr Professor Günter Hofstetter und Herr Professor Ulrich Häussler-Combe danke ich für die Übernahme der Gutachten und für die Gespräche innerhalb verschiedener wis- senschaftlicher Veranstaltungen. Weiterhin möchte ich mich bei allen Mitarbeitern des Instituts für Strukturmechanik für die Unterstützung und die angenehme Arbeitsatmosphäre bedanken. Besonders her- vorheben möchte ich dabei Herr Jörg F. Unger und Herr Dr. Michael Macke. Einen wichtigen Beitrag zum Gelingen dieser Arbeit leisteten weiterhin die fachlichen Diskus- sionen mit Herrn Professor Carsten Könke, mit Herrn Stefan Eckardt und mit Herrn Kai Schrader. Ganz besonders möchte ich mich bei meiner lieben Yvonne und unseren Kindern für ihre Motivation und auch für ihr Verständnis in schwierigen Phasen bedanken. Dieser Rückhalt ist zur Realisierung dieser Arbeit eine unverzichtbare Basis gewesen. Abschließend danke ich meinen Eltern für die Unterstützung in den vergangenen Jahren insbesondere jedoch für die frühe Förderung meiner Interessen an den Naturwis- senschaften, die die wesentlichtliche Grundlage dieser Arbeit darstellen. Abstract The complex failure process of concrete structures can not be described in detail by stan- dard engineering design formulas. The numerical analysis of crack development in con- crete is essential for several problems. In the last decades a large number of research groups have dealt with this topic and several models and algorithms were developed. However, most of these methods show some difficulties and are limited to special cases. The goal of this study was to develop an automatic algorithm for the efficient simulation of multiple cracking in plain and reinforced concrete structures of medium size. For this purpose meshless methods were used to describe the growth of crack surfaces. Two mesh- less interpolation schemes were improved for a simple application. The cracking process of concrete has been modeled using a stable criterion for crack growth in combination with an improved cohesive crack model which can represent the failure process under combined crack opening and crack sliding very well. This crack growth algorithm was extended in order to represent the fluctuations of the concrete properties by enlarging the single-parameter random field concept for multiple correlated material parameters. Kurzfassung Das komplexe Versagensverhalten von Betonstrukturen kann in der Regel nicht mit Stan- dardbemessungsformeln beschrieben werden. Eine detaillierte numerische Analyse der Rissentwicklung in Beton ist für einige Problemstellungen unverzichtbar. In den letz- ten Jahrzehnten haben sich eine Vielzahl von Forschergruppen mit dieser Thematik aus- einandergesetzt. Dabei wurden verschiedene Modelle und Algorithmen entwickelt. Die meisten dieser Verfahren weisen jedoch verschiedene Probleme auf oder sind nur für Spezialfälle anwendbar. Das Ziel dieser Arbeit war die Entwicklung eines automatischen Algorithmus zur effizienten Simulation von mehrfacher Rissentwicklung in Beton- und Stahlbetonstrukturen mittlerer Größe. Dabei wurden netzfreie Verfahren angewendet, um die Änderung der Rissoberflächen abzubilden. Zwei netzfreie Interpolationstypen wurden im Hinblick auf eine unkomplizierte Anwendung angepaßt. Der Versagensprozess des Betons wurde mit Hilfe eines stabilen Risskriteriums in Kombination mit einem erwei- terten kohäsiven Rissmodell abgebildet. Dieses erweiterte Modell kann die Zusammen- hänge bei kombinierter Rissöffnung und -gleitung sehr gut wiedergeben. Der entwickelte Algorithmus zur Risssimulation wurde in Hinblick auf eine stochastische Modellierung erweitert. Zu diesem Zweck wurde das Zufallsfeldkonzept für die Abbildung mehrerer untereinander korrelierter Materialparameter ergänzt. Contents Symbols and abbreviations v 1 Introduction 1 1.1 Motivation .................................. 1 1.2 Aims of the present work .......................... 3 1.3 Outline ................................... 4 2 Mechanical fundamentals 5 2.1 Continuum formulation ........................... 5 2.1.1 Kinematics ............................. 5 2.1.2 Equilibrium ............................. 7 2.1.3 Constitutive law .......................... 8 2.2 Finite Element Method ........................... 11 2.2.1 Method of Galerkin ......................... 11 2.2.2 Variational formulation ....................... 12 2.2.3 Discretization by finite elements .................. 13 2.2.4 Numerical integration ....................... 15 2.2.5 Material nonlinearity ........................ 16 2.3 Solution strategies .............................. 18 2.3.1 Linear analysis ........................... 18 2.3.2 Load controlled nonlinear analysis ................. 20 2.3.3 Displacement control ........................ 22 2.3.4 Arc-length method ......................... 23 2.3.5 Acceleration of convergence using the line search method .... 26 2.4 Examples .................................. 28 2.4.1 Performance of direct sparse matrix solvers ............ 28 2.4.2 Simulation of a snap-back problem using the arc-length method . 30 3 Meshless methods 33 3.1 Element-free Galerkin Method ....................... 38 3.1.1 Moving Least Squares interpolation ................ 38 3.1.2 Weighting functions ........................ 42 ii 3.1.3 Representation of non-convex domains .............. 47 3.1.4 Fulfillment of geometrical boundary conditions .......... 48 3.1.5 Application of boundary forces .................. 50 3.2 Natural Neighbor Galerkin Method ..................... 54 3.2.1 Voronoi diagram and Delaunay tesselation ............. 54 3.2.2 Natural Neighbor Interpolation ................... 55 3.2.3 Shape function computation .................... 58 3.2.4 Adaptation for non-convex domains ................ 60 3.3 Numerical integration ............................ 64 3.3.1 Gauss integration .......................... 64 3.3.2 Support decomposition of the domain ............... 65 3.3.3 Stabilized conforming nodal integration .............. 65 3.3.4 Adaptive integration ........................ 67 3.4 Examples .................................. 69 3.4.1 MLS-shape functions for regular and irregular sets of nodes ... 69 3.4.2 Patch test with irregular node distribution ............. 70 3.4.3 Interpolation along a non-convex boundary ............ 72 3.4.4 Cantilever with increasing distortion ................ 73 4 Discrete crack modeling 77 4.1 Introduction to Linear Elastic Fracture Mechanics ............. 80 4.1.1 The concept of stress intensity factors ............... 80 4.1.2 Virtual Crack Extension ...................... 85 4.1.3 Crack direction criteria ....................... 89 4.2 Cohesive Crack Model ........................... 92 4.2.1 Mode-I cohesive crack model ................... 92 4.2.2 Improved mixed-mode cohesive crack model ........... 95 4.2.3 Stress-based crack criterion .................... 102 4.2.4 Energy-based criterion using Virtual Crack Extension ....... 103 4.2.5 Crack direction criteria ....................... 105 4.3 Crack growth algorithm ........................... 108 4.3.1 Representation of moving discontinuities ............. 108 4.3.2 Adaptive coupling with finite elements .............. 111 4.4 Modeling of the bond behavior in reinforced concrete ........... 113 4.5 Examples .................................. 115 4.5.1 Application of VCE technique for Mode-I cracking ........ 115 4.5.2 Verification of coplanar VCE method for mixed-mode cracking . 118 4.5.3 Verification of improved mixed-mode cohesive crack model ... 120 4.5.4 Mode-I problem: Three-point bending beam with initial crack .. 122 4.5.5 Mode-I problem: Wedge splitting tests on dam concrete ..... 128 iii 4.5.6 Investigation of L-shaped panel .................. 130 4.5.7 Four-point single edge-notched shear beam ............ 133 4.5.8 Reinforced four-point bending beam ................ 135 5 Modeling of uncertainties 137 5.1 Introduction to random variables ...................... 139 5.1.1 Random variables .......................... 139 5.1.2 Random vectors .......................... 141 5.2 Random fields ................................ 143 5.2.1 Properties .............................. 143 5.2.2 Discretization ...........................
Recommended publications
  • Numerical Solution for Two-Dimensional Flow Under Sluice Gates Using the Natural Element Method
    1550 Numerical solution for two-dimensional flow under sluice gates using the natural element method Farhang Daneshmand, S.A. Samad Javanmard, Tahereh Liaghat, Mohammad Mohsen Moshksar, and Jan F. Adamowski Abstract: Fluid loads on a variety of hydraulic structures and the free surface profile of the flow are important for design purposes. This is a difficult task because the governing equations have nonlinear boundary conditions. The main objective of this paper is to develop a procedure based on the natural element method (NEM) for computation of free surface pro- files, velocity and pressure distributions, and flow rates for a two-dimensional gravity fluid flow under sluice gates. Natu- ral element method is a numerical technique in the field of computational mechanics and can be considered as a meshless method. In this analysis, the fluid was assumed to be inviscid and incompressible. The results obtained in the paper were confirmed via a hydraulic model test. Calculation results indicate a good agreement with previous flow solutions for the water surface profiles and pressure distributions throughout the flow domain and on the gate. Key words: free surface flow, meshless methods, meshfree methods, natural element method, sluice gate, hydraulic struc- tures. Re´sume´ : Les charges de fluides sur les structures hydrauliques et le profil de la surface libre de l’e´coulement sont impor- tants aux fins de conception. Cette conception est une taˆche difficile puisque les e´quations principales pre´sentent des conditions limites non line´aires. Cet article a comme objectif principal de de´velopper une proce´dure base´e sur la me´thode des e´le´ments naturels (NEM) pour calculer les profils de la surface libre, les distributions de vitesse et de pression ainsi que les de´bits pour un e´coulement gravitaire bidimensionnel sous les panneaux de vannes.
    [Show full text]
  • BOOK of ABSTRACTS Conferências 5: Book of Abstracts 15/05/2018, 08:15
    4th International Conference on Mechanics of Composites 9-12 July 2018 Universidad Carlos III de Madrid, Spain Chairs: A. J. M. Ferreira (Univ. Porto, Portugal), Carlos Santiuste (Univ. Carlos III, Spain) BOOK OF ABSTRACTS Conferências 5: Book of Abstracts 15/05/2018, 08:15 Book of Abstracts 14470 | NUMERICAL MODELLING OF SOFT ARMOUR PANELS UNDER HIGH-VELOCITY IMPACTS (Composite Structures) Ester Jalón ([email protected]), Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Spain Marcos Rodriguez , Department of Mechanical Engineering, Universidad Carlos III de Madrid, Spain José Antonio Loya , Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Spain Carlos Santiuste , Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Spain Nowadays, the role of personal protection is crucial in order to minimize the morbidity and mortality from ballistic injuries. The aim of these research is to investigate the behavior of UHMWPE fibre under high-velocity impact. There are two different UHMWPE packages: ‘soft’ ballistics packages (SB) and rigid ‘hard’ ballistics packages (SB). UHMWPE UD has not been sufficiently analyzed since new SB layers have been manufactured. This work, compares the impact behavior of different UHMWPE composites using spherical projectiles. Firstly, the parameter affecting the ballistic capacity are determined in order to define an optimal configuration to fulfill the requirements of manufactured. Then, the experimental test are conducted on different single SB sheets under spherical projectiles. Finally, the FEM model is validated with experimental test on multilayer specimens of the different UD materials considered. A FEM model is developed to predict the response of UHMWPE sheets under ballistic impact and calibrated with the previous experimental test.
    [Show full text]
  • A Numerical Formulation and Algorithm for Limit and Shakedown Analysis Of
    A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures Heng Peng1, Yinghua Liu1,* and Haofeng Chen2 1Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084, People’s Republic of China 2Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK *Corresponding author: [email protected] Abstract In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm. Keywords Direct method; Shakedown analysis; Stress compensation method; Large-scale; Elastoplastic structures 1 Introduction In many fields of technology, such as petrochemical, civil, mechanical and space engineering, structures are usually subjected to variable repeated loading. The computation of the load-carrying capability of those structures beyond the elastic limit is an important but 1 difficult task in structural design and integrity assessment.
    [Show full text]
  • Numerical Modeling of Metal Cutting Processes Using the Particle Finite Element Method
    Numerical modeling of metal cutting processes using the Particle Finite Element Method by Juan Manuel Rodriguez Prieto Advisors Juan Carlos Cante Terán Xavier Oliver Olivella Barcelona, October 2013 1 Abstract Metal cutting or machining is a process in which a thin layer or metal, the chip, is removed by a wedge-shaped tool from a large body. Metal cutting processes are present in big industries (automotive, aerospace, home appliance, etc.) that manufacture big products, but also high tech industries where small piece but high precision is needed. The importance of machining is such that, it is the most common manufacturing processes for producing parts and obtaining specified geometrical dimensions and surface finish, its cost represent 15% of the value of all manufactured products in all industrialized countries. Cutting is a complex physical phenomena in which friction, adiabatic shear bands, excessive heating, large strains and high rate strains are present. Tool geometry, rake angle and cutting speed play an important role in chip morphology, cutting forces, energy consumption and tool wear. The study of metal cutting is difficult from an experimental point of view, because of the high speed at which it takes place under industrial machining conditions (experiments are difficult to carry out), the small scale of the phenomena which are to be observed, the continuous development of tool and workpiece materials and the continuous development of tool geometries, among others reasons. Simulation of machining processes in which the workpiece material is highly deformed on metal cutting is a major challenge of the finite element method (FEM). The principal problem in using a conventional FE model with langrangian mesh are mesh distortion in the high deformation.
    [Show full text]
  • A Stabilized and Coupled Meshfree/Meshbased Method for Fluid-Structure Interaction Problems
    Braunschweiger Schriften zur Mechanik Nr. 59-2005 A Stabilized and Coupled Meshfree/Meshbased Method for Fluid-Structure Interaction Problems von Thomas-Peter Fries aus Lubeck¨ Herausgegeben vom Institut fur¨ Angewandte Mechanik der Technischen Universit¨at Braunschweig Schriftleiter: Prof. H. Antes Institut fur¨ Angewandte Mechanik Postfach 3329 38023 Braunschweig ISBN 3-920395-58-1 Vom Fachbereich Bauingenieurwesen der Technischen Universit¨at Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation From the Faculty of Civil Engineering at the Technische Universit¨at Carolo-Wilhelmina zu Braunschweig in Brunswick, Germany, approved dissertation Eingereicht am: 10.05.2005 Mundliche¨ Prufung¨ am: 21.07.2005 Berichterstatter: Prof. H.G. Matthies, Inst. fur¨ Wissenschaftliches Rechnen Prof. M. Krafczyk, Inst. fur¨ Computeranwendungen im Bauingenieurwesen c Copyright 2005 Thomas-Peter Fries, Brunswick, Germany Abstract A method is presented which combines features of meshfree and meshbased methods in order to enable the simulation of complex flow problems involving large deformations of the domain or moving and rotating objects. Conventional meshbased methods like the finite element method have matured as standard tools for the simulation of fluid and structure problems. They offer efficient and reliable approximations, provided that a conforming mesh with sufficient quality can be maintained throughout the simulation. This, however, may not be guaranteed for complex fluid and fluid-structure interaction problems. Meshfree methods on the other hand approximate partial differential equations based on a set of nodes without the need for an additional mesh. Therefore, these methods are frequently used for problems where suitable meshes are prohibitively expensive to construct and maintain.
    [Show full text]
  • The Optimal Transportation Meshfree Method for General Fluid Flows and Strongly Coupled Fluid-Structure Interaction Problems
    The Optimal Transportation Meshfree Method for General Fluid Flows and Strongly Coupled Fluid-Structure Interaction Problems Thesis by Feras Habbal In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2009 (Defended May 5, 2009) ii c 2009 Feras Habbal All Rights Reserved iii "The way to get started is to quit talking and begin doing." -Walt Disney iv Acknowledgments There are many people who, over the years, have provided me invaluable support and friendship. At Caltech, I would like to thank my advisor Michael Ortiz as well as Professors Ravichandran and Phillips for their support and guidance. Furthermore, the staff at Caltech has been wonderful in their support and assistance. Also, I would like to genuinely thank my mentor at JPL, Claus Hoff, for his support and guidance. During my time at Caltech, I have had the distinct pleasure of working with a number of individuals who ended up being friends beyond school-related tasks, including the members of the group: Lenny, Julian, Bo, Ben, Luigi, Marcial, Gabriela, Celia, and Daniel, among other. I would like to thank my Caltech DJ friends Bodhi, Juanse, Patrick, Signe, and Joe for the Lazy Sundays sessions. Also, I would like to thank my officemates and friends, Mike and Francesco. Outside of Caltech, I would like to thank the Mammoth crew including Jasmine, Charles, Steve, Chris, Marcie, and Alice for their friendship and lasting memories of powder days on the steeps. Also, I would like to thank Alan for his true friendship and for making me relearn everything I thought I knew.
    [Show full text]
  • Simulating Large Deformation of Intraneural Ganglion Cyst Using Finite Element Method
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2013 SIMULATING LARGE DEFORMATION OF INTRANEURAL GANGLION CYST USING FINITE ELEMENT METHOD Sachin Lokhande Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Mechanical Engineering Commons Copyright 2013 Sachin Lokhande Recommended Citation Lokhande, Sachin, "SIMULATING LARGE DEFORMATION OF INTRANEURAL GANGLION CYST USING FINITE ELEMENT METHOD", Master's report, Michigan Technological University, 2013. https://doi.org/10.37099/mtu.dc.etds/605 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Mechanical Engineering Commons SIMULATING LARGE DEFORMATION OF INTRANEURAL GANGLION CYST USING FINITE ELEMENT METHOD By Sachin Lokhande A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Mechanical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2013 © 2013 Sachin Lokhande The report has been approved in the partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Mechanical Engineering. Mechanical Engineering – Engineering Mechanics Report Advisor: Dr. Gregory Odegard Committee Member: Dr. Tolou Shokuhfar Committee Member: Dr. Zhanping You Department Chair: Dr. William Predebon TABLE OF CONTENTS: Abstract………………………………………………………………………………01 1. Motivation…………………………………………………………………………02 2. Introduction………………………………………………………………………..03 2.1. Intra-neural Ganglion Cyst………………………………………………03 3. Limitations of Finite Element Analysis in Bio-mechanics……………………….07 4. Application of Finite Element Analysis for Large deformations………………...08 5. Objective…………………………………………………………………………..12 6. FEA model creation of affected CPN cross-section……………………………....13 7. Material properties and its assumptions…………………………………………..15 8. Mesh-less Methods………………………………………………………………...17 8.2 Motivation for Mesh-less method ………………………………………..17 9.
    [Show full text]
  • Advances in Computational Mechanics with Emphasis on Fracture and Multiscale Phenomena Workshop Honoring Professor Ted Belytschko's 70Th Birthday
    Advances in Computational Mechanics with Emphasis on Fracture and Multiscale Phenomena workshop honoring Professor Ted Belytschko's 70th Birthday. APRIL 18, 2013 - APRIL 20, 2013 List of Abstracts (ordered by presenter’s name) Achenbach Jan 2 Krysl Petr 33 Arroyo Marino 3 Lew Adrian 34 Bažant Zdeněk 4 Li Shaofan 36 Bazilevs Yuri 6 Liu Yan 37 Benson David 7 Liu Zhanli 38 Brannon Rebecca 8 Masud Arif 39 Brinson L Cate 9 Matous Karel 40 Budyn Elisa 10 Moës Nicolas 41 Cazacu Oana 11 Moran Brian 42 Chen J. S. 12 Mullen Robert 43 Cusatis Gianluca 13 Needleman Alan 44 Daniel Isaac 14 Nemat-Nasser Sia 45 Dolbow John 15 Oden Tinsley 46 Duan Qinglin 16 Oñate Eugenio 47 Duarte Armando 17 Oskay Caglar 48 Espinosa Horacio 18 Paci Jeffrey 49 Farhat Charbel 19 Park Harold 50 Fish Jacob 20 Ponthot Jean-Philippe 51 Fleming Mark 21 Qian Dong 52 Geers Marc 22 Rencis Joseph 53 Ghosh Somnath 23 Stolarski Henryk 54 Gracie Robert 24 Sukumar N. 55 Hao Su 25 Ventura Giulio 56 Harari Isaac 26 Vernerey Franck 57 Huang Yonggang 27 Waisman Haim 58 Huerta Antonio 28 Wang Sheldon 59 Hughes Thomas J.R. 30 Yang Qingda 60 Keer Leon 31 Yoon Young-Cheol 61 Kouznetsova Varvara 32 Zhang Sulin 62 1 NWU2013: Advances in Computational Mechanics with Emphasis on Fracture and Multiscale Phenomena. Workshop honoring Professor Ted Belytschko’s 70th Birthday. April 18, 2013 – April 20, 2013, Evanston, IL, USA A New Use of the Elastodynamic Reciprocity Theorem Jan D. Achenbach Department of Mechanical Engineering Northwestern University Evanston, IL, 60208 *Email: [email protected] Abstract The reciprocity theorem is a fundamental theorem of the Theory of Elasticity (Betti 1872, Rayleigh 1873).
    [Show full text]
  • باتک هعومجم یاه شور دودحم یازجا ( Finite Element Method )
    مجموعه کتابهای روش اجزای محدود )Finite Element Method( این مجموعه کامل شامل 250 عنوان کتاب از انتشاراتهای معتبر بینالمللی در زمینه روش اجزای محدود است که امروزه در رشتههای مختلف مهندسی برق، مکانیک، عمران، هوافضا و ... جایگاه ویژه و کاربردهای گستردهای پیدا کرده است. برخی از ویژگیهای ممتاز این مجموعه بدین شرح است: - شامل 10 کتاب 2015. - شامل 28 کتاب 2014. - شامل 19 کتاب 2013. - شامل 13 کتاب 2012. - شامل 18 کتاب 2011. - شامل 15 کتاب 2010. - میانگین سال چاپ همه کتابها از 5/2005 بیشتر است. - غالب کتابها آخرین نسخه چاپشده آنهاست و بعضی از آنها بسیار نایاب هستند! - همه کتابها در قالب PDF و با قابلیت کامل جستجو در متون هستند. کتابهای شاخص و ارزشمند این مجموعه که نویسنده چندین مورد آنها اساتید برجسته ایرانی هستند، عبارتند از: Pub. No. Title Author (s)/Editro (s) Edition Publisher Year Finite Element Analysis: Theory and 4th Pearson 1 Saeed Moaveni 2015 Application with ANSYS Edition Education Extended Finite Element Method: John Wiley & 2 Amir R. Khoei 2014 Theory and Applications Sons Finite Element Analysis of 2nd 3 Ever J. Barbero CRC Press 2014 Composite Materials Using ANSYS Edition Juan José Benito Muñoz, Ramón Universidad Introduction to Finite Element Álvarez Cabal, Francisco Ureña Nacional de 4 2014 Method Prieto, Eduardo Salete Casino, Educación a Ernesto Aranda Ortega Distancia Ted Belytschko, Wing Kam Nonlinear Finite Elements for 2nd John Wiley & 5 Liu, Brian Moran, Khalil I. 2014 Continua and Structures Edition Sons Elkhodary Programming the Finite Element I. M. Smith, D. V. Griffiths, L. 5th John Wiley & 6 2014 Method Margetts Edition Sons The Finite Element Method in 3rd John Wiley & 7 Jian-Ming Jin 2014 Electromagnetics Edition Sons Finite Element Analysis of 8 Ever J.
    [Show full text]
  • Alexander Karatarakis
    National Technical University of Athens (NTUA) School of Civil Engineering Institute of Structural Analysis and Antiseismic Research Massively Parallel Implementation of Finite Element, Meshless and Isogeometric Analysis Methods in Computational Mechanics PhD Dissertation by Alexander Karatarakis Advisor: Professor Manolis Papadrakakis May 2014 National Technical University of Athens School of Civil Engineering Institute of Structural Analysis and Antiseismic Research Massively Parallel Implementation of Finite Element, Meshless and Isogeometric Analysis Methods in Computational Mechanics by Alexander Karatarakis Advisor: Professor Manolis Papadrakakis Athens, May 2014 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Στατικής και Αντισεισμικών Ερευνών Προσομοίωση κατασκευών με πεπερασμένα στοιχεία, μη-πλεγματικές μεθόδους και ισογεωμετρικές μεθόδους σε περιβάλλον μαζικής πολυεπεξεργασίας από τον Αλέξανδρο Καραταράκη Επιβλέπων: Καθηγητής Μανόλης Παπαδρακάκης Αθήνα, Μάιος 2014 Dedicated to my parents Manolis and Anastasia, and my brother Aris © Copyright 2014 by Alexander Karatarakis All Rights Reserved PhD Examination Committee I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. _______________________________ Manolis Papadrakakis Professor (Principal Advisor) School of Civil Engineering National Technical University of Athens I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. _______________________________ Andreas Boudouvis Professor (Member of advisory committee) School of Chemical Engineering National Technical University of Athens I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • 281–283 Accurac
    INDEX AAE, see Auxiliary algebraic evaluations for manufacturing processes modeling, 739 Absorbing boundaries, 260, 267 overrelaxation with, 68 Absorbing media (Monte Carlo methods), 281–283 for structured meshes, 33 Accuracy: for two and three dimensions, 82–83 of discretization, 926–929 AMBER force field, 666 of numerical solution procedures, 17 AMG method, see Algebraic multigrid method Acoustic mismatch model (AMM), 646, 649 AMM, see Acoustic mismatch model Adaptive grids, 483–489 Amorphous silicon, crystallization of, 680 coarsening, 486 AMR, see Adaptive mesh refinement data compression and mining, 487 AMRC, see Adaptive mesh-refinement and hybrid, 487–488 mesh-coarsening moving boundary problems, 486–487 Anderson method, 670 parallel extensions, 488–489 Anisotropic grids, 480–481 Adaptive mesh refinement (AMR), 484–485, Anisotropic scattering, Monte Carlo 488–490 application to, 285 Adaptive mesh-refinement and mesh-coarsening ANN, see Artificial neural networks (AMRC), 486, 488 Annealing, thermal process for, 748 Added-dissipation schemes, 41, 42 Adiabatic (zero normal derivative) boundary Anomalous diffusion, 631–632, 639–641 conditions, 78 A posteriori series convergence acceleration ADI technique, see Alternating direction implicit schemes, 500 technique Apparent rate of convergence, 423, 424 Adjoint forms of equations, 932 Approximate factoring, 83 Adjoint method: Area coordinates, 103 sensitivity analysis, 458–460 Artificial compressibility methods: stochastic inverse problems, 534–535 for continuity and momentum equations, 43 Algebraic
    [Show full text]
  • Programs and Algorithms of Numerical Mathematics 13
    International Conference Programs and Algorithms of Numerical Mathematics 13 in honor of Ivo Babu·ska's 80th birthday under the auspices of Prof. V¶aclavPa·ces, the President of the Academy of Sciences of the Czech Republic Mathematical Institute, Academy of Sciences, Zitn¶a25,· Prague, Czech Republic May 28{31, 2006 Photo courtesy of C. Fonville PROCEEDINGS Edited by J. Chleboun, K. Segeth, T. Vejchodsk¶y Mathematical Institute Academy of Sciences of the Czech Republic Prague 2006 ISBN 80-85823-54-3 Matematick¶y¶ustav AV CR· Praha 2006 Contents Preface .........................................................................7 Lud·ekBene·s,Karel Kozel, Ivo Sl¶adek Numerical modeling of flow and pollution dispersion over real topography . 9 Michal Bene·s,Petr Mayer Numerical analysis of mathematical model of heat and moisture transport in concrete at high temperatures . .16 Radim Blaheta Hierarchical FEM: strengthened CBS inequalities, error estimates and iterative solvers .........................................................................24 Pavel Burda, Jaroslav Novotn¶y,Jakub S¶³stek· Accuracy investigation of a stabilized FEM for solving flows of incompressible fluid ...........................................................................30 Lubor Bu·ri·c,Vladim¶³rJanovsk¶y On a tra±c problem . 37 Claudio Canuto, Tom¶a·sKozubek A ¯ctitious domain approach to the numerical solution of elliptic boundary value problems de¯ned in stochastic domains . 46 Jan Chleboun On a Sandia structural mechanics challenge problem . 53 Ji·r¶³Dobe·s,Herman Deconinck A second order unconditionally positive space-time residual distribution method for solving compressible flows on moving meshes . 60 Ji·r¶³Dobi¶a·s,Svatopluk Pt¶ak,Zden·ekDost¶al,V¶³tVondr¶ak Scalable algorithms for contact problems with geometrical and material non-linearities .
    [Show full text]