An Executable UML with OCL-Based Action Semantics Language
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Unified Modeling Language 2.0 Part 1 - IntroductionUML 2.0 – Tutorial (v4) 1 Unified Modeling Language 2.0 Part 1 - Introduction Prof. Dr. Harald Störrle Dr. Alexander Knapp University of Innsbruck University of Munich mgm technology partners (c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp UML 2.0 – Tutorial (v4) 2 1 - Introduction History and Predecessors • The UML is the “lingua franca” of software engineering. • It subsumes, integrates and consolidates most predecessors. • Through the network effect, UML has a much broader spread and much better support (tools, books, trainings etc.) than other notations. • The transition from UML 1.x to UML 2.0 has – resolved a great number of issues; – introduced many new concepts and notations (often feebly defined); – overhauled and improved the internal structure completely. • While UML 2.0 still has many problems, current version (“the standard”) it is much better than what we ever had formal/05-07-04 of August ‘05 before. (c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp UML 2.0 – Tutorial (v4) 3 1 - Introduction Usage Scenarios • UML has not been designed for specific, limited usages. • There is currently no consensus on the role of the UML: – Some see UML only as tool for sketching class diagrams representing Java programs. – Some believe that UML is “the prototype of the next generation of programming languages”. • UML is a really a system of languages (“notations”, “diagram types”) each of which may be used in a number of different situations. • UML is applicable for a multitude of purposes, during all phases of the software lifecycle, and for all sizes of systems - to varying degrees.
- 
												  Capabilities StatementCapabilities Statement Email: [email protected] Web site: www.modeldriven.com 1 Model Driven Solutions Model Driven Solutions is a leading provider of professional services and products that leverage Services Oriented Architecture (SOA), the Object Management Group’s (OMG) Model Driven Architecture (MDA), Information Sharing, Ontologies and Semantics and W3C’s Semantic Web techniques and standards to federate processes, information, systems and organizations. A current focus is information interoperability and federation with a current emphasis on finance, risk and threats across cyber and physical domains as well as a model-driven approach to NIEM. We assist major organizations in achieving effectiveness and agility in a changing and collaborative world. Founded in 1996, as Data Access Technologies, Inc., its division, Model Driven Solutions, has been a leader in the development of open standards and supporting products that result in SOA based Executable Enterprise Architectures (EEA). Model Driven Solutions’ EEA focus helps drive information systems to quickly and cost effectively address business and defense initiatives. Active in the Object Management Group (OMG), the Organization for the Advancement of Structured Information Standards (OASIS), the Open Group and other standards development organizations, Model Driven Solutions has provided industry leadership that is, today, resulting in significant technological advancements and customer satisfaction. With customers like the General Services Administration (GSA), the U.S. Information Sharing Environment, the US Army, Raytheon, Lockheed Martin, Kaiser Permanente, Unisys and many others, Model Driven Solutions is at the leading edge of today’s software technology advances. General Information Parent Company Name: Data Access Technologies, Inc. (DAT) Virginia Affiliate: Model Driven Solutions, Inc.
- 
												  Unifying Modeling and Programming with ALFSOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering Unifying Modeling and Programming with ALF Thomas Buchmann and Alexander Rimer University of Bayreuth Chair of Applied Computer Science I Bayreuth, Germany email: fthomas.buchmann, [email protected] Abstract—Model-driven software engineering has become more The Eclipse Modeling Framework (EMF) [5] has been and more popular during the last decade. While modeling the established as an extensible platform for the development of static structure of a software system is almost state-of-the art MDSE applications. It is based on the Ecore meta-model, nowadays, programming is still required to supply behavior, i.e., which is compatible with the Object Management Group method bodies. Unified Modeling Language (UML) class dia- (OMG) Meta Object Facility (MOF) specification [6]. Ideally, grams constitute the standard in structural modeling. Behavioral software engineers operate only on the level of models such modeling, on the other hand, may be achieved graphically with a set of UML diagrams or with textual languages. Unfortunately, that there is no need to inspect or edit the actual source code, not all UML diagrams come with a precisely defined execution which is generated from the models automatically. However, semantics and thus, code generation is hindered. In this paper, an practical experiences have shown that language-specific adap- implementation of the Action Language for Foundational UML tations to the generated source code are frequently necessary. (Alf) standard is presented, which allows for textual modeling In EMF, for instance, only structure is modeled by means of of software systems.
- 
												  Meta-Class Features for Large-Scale Object Categorization on a BudgetMeta-Class Features for Large-Scale Object Categorization on a Budget Alessandro Bergamo Lorenzo Torresani Dartmouth College Hanover, NH, U.S.A. faleb, [email protected] Abstract cation accuracy over a predefined set of classes, and without consideration of the computational costs of the recognition. In this paper we introduce a novel image descriptor en- We believe that these two assumptions do not meet the abling accurate object categorization even with linear mod- requirements of modern applications of large-scale object els. Akin to the popular attribute descriptors, our feature categorization. For example, test-recognition efficiency is a vector comprises the outputs of a set of classifiers evaluated fundamental requirement to be able to scale object classi- on the image. However, unlike traditional attributes which fication to Web photo repositories, such as Flickr, which represent hand-selected object classes and predefined vi- are growing at rates of several millions new photos per sual properties, our features are learned automatically and day. Furthermore, while a fixed set of object classifiers can correspond to “abstract” categories, which we name meta- be used to annotate pictures with a set of predefined tags, classes. Each meta-class is a super-category obtained by the interactive nature of searching and browsing large im- grouping a set of object classes such that, collectively, they age collections calls for the ability to allow users to define are easy to distinguish from other sets of categories. By us- their own personal query categories to be recognized and ing “learnability” of the meta-classes as criterion for fea- retrieved from the database, ideally in real-time.
- 
												  Sysml Distilled: a Brief Guide to the Systems Modeling Languageptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML.
- 
												  UML Basics: the Component DiagramEnglish Sign in (or register) Technical topics Evaluation software Community Events UML basics: The component diagram Donald Bell ([email protected]), IT Architect, IBM Corporation Summary: from The Rational Edge: This article introduces the component diagram, a structure diagram within the new Unified Modeling Language 2.0 specification. Date: 15 Dec 2004 Level: Introductory Also available in: Chinese Vietnamese Activity: 259392 views Comments: 3 (View | Add comment - Sign in) Average rating (629 votes) Rate this article This is the next installment in a series of articles about the essential diagrams used within the Unified Modeling Language, or UML. In my previous article on the UML's class diagram, (The Rational Edge, September 2004), I described how the class diagram's notation set is the basis for all UML 2's structure diagrams. Continuing down the track of UML 2 structure diagrams, this article introduces the component diagram. The diagram's purpose The component diagram's main purpose is to show the structural relationships between the components of a system. In UML 1.1, a component represented implementation items, such as files and executables. Unfortunately, this conflicted with the more common use of the term component," which refers to things such as COM components. Over time and across successive releases of UML, the original UML meaning of components was mostly lost. UML 2 officially changes the essential meaning of the component concept; in UML 2, components are considered autonomous, encapsulated units within a system or subsystem that provide one or more interfaces. Although the UML 2 specification does not strictly state it, components are larger design units that represent things that will typically be implemented using replaceable" modules.
- 
												  The Validation Possibility of Topological Functioning Model Using the Cameo Simulation ToolkitThe Validation Possibility of Topological Functioning Model using the Cameo Simulation Toolkit Viktoria Ovchinnikova and Erika Nazaruka Department of Applied Computer Science, Riga Technical University, Setas Street 1, Riga, Latvia Keywords: Topological Functioning Model, Execution Model, Foundational UML, UML Activity Diagram. Abstract: According to requirements provided by customers, the description of to-be functionality of software systems needs to be provided at the beginning of the software development process. Documentation and functionality of this system can be displayed as the Topological Functioning Model (TFM) in the form of a graph. The TFM must be correctly and traceably validated, according to customer’s requirements and verified, according to TFM construction rules. It is necessary for avoidance of mistakes in the early stage of development. Mistakes are a risk that can bring losses of resources or financial problems. The hypothesis of this research is that the TFM can be validated during this simulation of execution of the UML activity diagram. Cameo Simulation Toolkit from NoMagic is used to supplement UML activity diagram with execution and allows to simulate this execution, providing validation and verification of the diagram. In this research an example of TFM is created from the software system description. The obtained TFM is manually transformed to the UML activity diagram. The execution of actions of UML activity diagrams was manually implemented which allows the automatic simulation of the model. It helps to follow the traceability of objects and check the correctness of relationships between actions. 1 INTRODUCTION It represents the full scenario of system functionality and its relationships. Development of the software system is a complex The simulation of models can help to see some and stepwise process.
- 
												  The Convergence of Modeling and ProgrammingThe Convergence of Modeling and Programming: Facilitating the Representation of Attributes and Associations in the Umple Model-Oriented Programming Language by Andrew Forward PhD Thesis Presented to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree Doctor of Philosophy (Computer Science1) Ottawa-Carleton Institute for Computer Science School of Information Technology and Engineering University of Ottawa Ottawa, Ontario, K1N 6N5 Canada © Andrew Forward, 2010 1 The Ph.D. program in Computer Science is a joint program with Carleton University, administered by the Ottawa Carleton Institute for Computer Science Acknowledgements A very special, and well-deserved, thank you to the following: a) Dr. Timothy C. Lethbridge. Tim has been a mentor of mine for several years, first as one of my undergraduate professors, later as my Master’s supervisor. Tim has again helped to shape my approach to software engineering, research and academics during my journey as a PhD candidate. b) The Complexity Reduction in Software Engineering (CRUISE) group and in particular Omar Badreddin and Julie Filion. Our weekly meetings, work with IBM, and the collaboration with the development of Umple were of great help. c) My family and friends. Thank you and much love Ayana; your support during this endeavor was much appreciated despite the occasional teasing about me still being in school. To my mom (and editor) Jayne, my dad Bill, my sister Allison and her husband Dennis. And, to my friends Neil, Roy, Van, Rob, Pat, and Ernesto – your help will be forever recorded in my work. Finally a special note to Ryan Lowe, a fellow Software Engineer that helped to keep my work grounded during our lengthy discussion about software development – I will miss you greatly.
- 
												  Executable UML: a Foundation for Model Driven Architecture01-Introduction.fm Page 1 Wednesday, April 17, 2002 4:33 PM 1 Introduction Organizations want systems. They don’t want processes, meetings, mod- els, documents, or even code.1 They want systems that work—as quickly as possible, as cheaply as possible, and as easy to change as possible. Organizations don’t want long software development lead-times and high costs; they just want to reduce systems development hassles to the abso- lute minimum. But systems development is a complicated business. It demands distilla- tion of overlapping and contradictory requirements; invention of good abstractions from those requirements; fabrication of an efficient, cost- effective implementation; and clever solutions to isolated coding and abstraction problems. And we need to manage all this work to a successful conclusion, all at the lowest possible cost in time and money. None of this is new. Over thirty years ago, the U.S. Department of Defense warned of a “software crisis” and predicted that to meet the burgeoning need for software by the end of the century, everyone in the country would have to become a programmer. In many ways this prediction has come true, as anyone who has checked on the progress of a flight or made a stock trade using the Internet can tell you. Nowadays, we all write our own 1 Robert Block began his book The Politics of Projects[1] in a similar manner. 1 01-Introduction.fm Page 2 Wednesday, April 17, 2002 4:33 PM 2 INTRODUCTION programs by filling in forms—at the level of abstraction of the application, not the software.
- 
												  UML Class Diagrams UML Is a Graphical Language for Recording Aspects of the Requirements and Design of Software SystemsThe Unified Modeling Language UML class diagrams UML is a graphical language for recording aspects of the requirements and design of software systems. Nigel Goddard It provides many diagram types; all the diagrams of a system together form a UML model. Three important types of diagram: School of Informatics 1. Use-case diagram. Already seen in requirements lecture. University of Edinburgh 2. Class diagram. Today. 3. Interaction diagram. In the future. Reminder: a simple use case diagram A class Reserve book Browse Browser BookBorrower Book Borrow copy of book A class as design entity is an example of a model element: the Return copy of book rectangle and text form an example of a corresponding presentation element. Extend loan UML explicitly separates concerns of actual symbols used vs Update catalogue meaning. Many other things can be model elements: use cases, actors, Borrow journal Librarian associations, generalisation, packages, methods,... Return journal JournalBorrower An object Classifiers and instances An aspect of the UML metamodel that it's helpful to understand up front. jo : Customer An instance is to a classifier as an object is to a class: instance and classifier are more general terms. This pattern generalises: always show an instance of a classifier In the metamodel, Class inherits from Classifier, Object inherits using the same symbol as for the classifier, labelled from Instance. instanceName : classifierName. UML defines many different classifiers. E.g., UseCase and Actor are classifiers. Showing attributes and operations Compartments We saw the standard: Book a compartment for attributes title : String I I a compartment for operations, below it copiesOnShelf() : Integer borrow(c:Copy) They can be suppressed in diagrams.
- 
												  Integration of Model-Based Systems Engineering and Virtual Engineering Tools for Detailed DesignScholars' Mine Masters Theses Student Theses and Dissertations Spring 2011 Integration of model-based systems engineering and virtual engineering tools for detailed design Akshay Kande Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Systems Engineering Commons Department: Recommended Citation Kande, Akshay, "Integration of model-based systems engineering and virtual engineering tools for detailed design" (2011). Masters Theses. 5155. https://scholarsmine.mst.edu/masters_theses/5155 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. INTEGRATION OF MODEL-BASED SYSTEMS ENGINEERING AND VIRTUAL ENGINEERING TOOLS FOR DETAILED DESIGN by AKSHA Y KANDE A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN SYSTEMS ENGINEERING 2011 Approved by Steve Corns, Advisor Cihan Dagli Scott Grasman © 2011 Akshay Kande All Rights Reserved 111 ABSTRACT Design and development of a system can be viewed as a process of transferring and transforming data using a set of tools that form the system's development environment. Conversion of the systems engineering data into useful information is one of the prime objectives of the tools used in the process. With complex systems, the objective is further augmented with a need to represent the information in an accessible and comprehensible manner.
- 
												  Executing UML ModelsExecuting UML Models Miguel Pinto Luz1, Alberto Rodrigues da Silva1 1Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa – Portugal {miguelluz, alberto.silva}@acm.org Abstract. Software development evolution is a history of permanent seeks for raising the abstraction level to new limits overcoming new frontiers. Executable UML (xUML) comes this way as the expectation to achieve the next level in abstraction, offering the capability of deploying a xUML model in a variety of software environments and platforms without any changes. This paper comes as a first expedition inside xUML, exploring the main aspects of its specification including the action languages support and the fundamental MDA compliance. In this paper is presented a future new xUML tool called XIS-xModels that gives Microsoft Visio new capabilities of running and debugging xUML models. This paper is an outline of the capabilities and main features of the future application. Keywords: UML, executable UML, Model Debugging, Action Language. 1. Introduction In a dictionary we find that an engineer is a person who uses scientific knowledge to solve practical problems, planning and directing, but an information technology engineer is someone that spends is time on implementing lines of code, instead of being focus on planning and projecting. Processes, meetings, models, documents, or even code are superfluous artifacts for organizations: all they need is well design and fast implemented working system, that moves them towards a new software development paradigm, based on high level executable models. According this new paradigm it should be possible to reduce development time and costs, and to bring new product quality warranties, only reachable by executing, debugging and testing early design stages (models).