The Generalized External Order, and Applications to Zonotopal Algebra

Total Page:16

File Type:pdf, Size:1020Kb

The Generalized External Order, and Applications to Zonotopal Algebra The Generalized External Order, and Applications to Zonotopal Algebra by Bryan R. Gillespie A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Olga Holtz, Chair Professor Bernd Sturmfels Professor Lauren Williams Professor David Aldous Summer 2018 The Generalized External Order, and Applications to Zonotopal Algebra Copyright 2018 by Bryan R. Gillespie 1 Abstract The Generalized External Order, and Applications to Zonotopal Algebra by Bryan R. Gillespie Doctor of Philosophy in Mathematics University of California, Berkeley Professor Olga Holtz, Chair Extrapolating from the work of Las Vergnas on the external active order for matroid bases, and inspired by the structure of Lenz's forward exchange matroids in the theory of zonotopal algebra, we develop the combinatorial theory of the generalized external order. This partial ordering on the independent sets of an ordered matroid is a supersolvable join- distributive lattice which is a refinement of the geometric lattice of flats, and is fundamentally derived from the classical notion of matroid activity. We uniquely classify the lattices which occur as the external order of an ordered matroid, and we explore the intricate structure of the lattice's downward covering relations, as well as its behavior under deletion and contraction of the underlying matroid. We then apply this theory to improve our understanding of certain constructions in zonotopal algebra. We first explain the fundamental link between zonotopal algebra and the external order by characterizing Lenz's forward exchange matroids in terms of the external order. Next we describe the behavior of Lenz's zonotopal D-basis polynomials under taking directional derivatives, and we use this understanding to provide a new algebraic construction for these polynomials. The construction in particular provides the first known algorithm for computing these polynomials which is computationally tractible for inputs of moderate size. Finally, we provide an explicit construction for the zonotopal P-basis polynomials for the internal and semi-internal settings. i To my parents, for fanning my passions and giving me a foundation on which to build. To my wife, for supporting me through this and filling my days with love and joy. ii Contents Contents ii 1 Introduction 1 2 Background 8 2.1 Matroids and Antimatroids . 8 2.2 Zonotopal Algebra . 19 3 The Generalized External Order 30 3.1 Feasible and Independent Sets of Join-distributive Lattices . 34 3.2 Definition and Fundamental Properties . 37 3.3 Lattice Theoretic Classification . 45 3.4 Deletion and Contraction . 54 3.5 Passive Exchanges and Downward Covering Relations . 57 4 Applications to Zonotopal Algebra 68 4.1 Forward Exchange Matroids and the External Order . 69 4.2 Canonical Basis Polynomials . 71 4.3 Differential Structure of Central D-Polynomials . 77 4.4 Recursive Construction for the Central D-Basis . 79 4.5 Explicit Construction for the Internal and Semi-internal P-Bases . 85 Bibliography 93 A Software Implementations 96 A.1 Ordered Matroids and the External Order . 96 A.2 Polynomial Vector Spaces . 99 A.3 Zonotopal Spaces . 100 iii Acknowledgments This work could not have been completed without the assistance and support of many individuals, both during graduate school and before it, and I owe a debt of gratitude to everyone who has helped me to reach this point. Thanks first to my parents, whose love and encouragement is responsible for much of who I am today. There is nothing more important in the life of a child than a stable and supportive upbringing, and I can only hope to be as good of a parent someday as you both have been for me. From my earliest years of schooling, I would like to thank two of my grade school math teachers who played a formative role in my education. Thanks to Evan McClintock, my 5th grade teacher, for individual after-school math lessons which put me on track to get the most out of later math curricula. Thanks also to Greg Somers for effectively communicating, in so many small ways, the beauty and elegance of rigorous mathematics. You both have a rare gift in your ability to educate, and I am grateful that my path passed through your classrooms. Among my excellent teachers as an undergraduate at Penn State, thanks especially to Svetlana Katok for encouraging my first awkward steps in theoretical mathematics, and to Omri Sarig for showing me a level of clarity and precision in teaching of which I have yet to see an equal. Thanks to Federico Ardilla, Bernd Sturmfels, Lauren Williams, and Martin Olsson for mathematical and academic advice. Grad school has many ups and downs, and your per- spective and suggestions were invariably helpful in weathering them. Thanks to Matthias Lenz, Sarah Brodsky, Spencer Backman, Jose Samper, and Federico Castillo for helpful conversations and thoughtful insights. Additionally, thanks to Anne Schilling and Nicolas Thi´eryfor a whirlwind initiation into the world of SageMath coding. Thanks especially to my advisor, Olga Holtz, for providing the starting point for my work and much invaluable guidance, and also for allowing me the freedom to explore the mathematics that excited me the most. This dissertation simply would not have been possible without your input and assistance. Thanks also to Bernd Sturmfels, Lauren Williams, and David Aldous for serving on my dissertation committee. Finally, thank you to my wife Maria, for your unwavering support and encouragement throughout graduate school. Your energy, enthusiasm, and determination are an inspiration to me. I look forward to sharing many more years of mathematical adventures with you. The material in this dissertation is based in part upon work supported by the National Science Foundation under Grant No. DMS-1303298. Thanks to the NSF for the time and freedom this support afforded me over several semesters, and thanks also to the Berkeley Graduate Division for support provided by the Graduate Division Summer Grant. 1 Chapter 1 Introduction The theory of zonotopal algebra studies the characteristics and applications of certain finite- dimensional polynomial vector spaces, and related annihilating ideals, which are derived from the structure of particular combinatorial and geometric objects formed from a finite ordered list of vectors. The theory lies at an interface between several starkly contrasting mathemat- ical disciplines, especially approximation theory, commutative algebra, and matroid theory, and wide-ranging connections have been found with topics in enumerative combinatorics, representation theory, and discrete geometry. Zonotopal algebra has at its foundation a collection of ideas in numerical analysis and approximation theory that were developed in the 1980s and early 90s, in works such as [1, 9, 10, 11, 17, 19, 16]. In these works, the central zonotopal spaces were discovered in relation to the approximation of multivariate functions by so-called (exponential) box splines, and as the solutions of certain classes of multivariate differential and difference equations. The central zonotopal spaces lie in the real polynomial ring Π = R[x1; : : : ; xd], and consist of two finite-dimensional polynomial vector spaces D(X) and P(X), and two related ideals I(X) and J (X) which are constructed from the columns of a d × n matrix X. The D-space, also known as the Dahmen-Michelli space, is the space of polynomials spanned by the local polynomial pieces of the box spline associated with the matrix X. It can be realized as the differential kernel or Macaulay inverse system of the J -ideal, an ideal generated by products of linear forms corresponding with the cocircuits of the linear independence matroid of the columns of X. The P-space is defined using the notion of matroid activity of bases of X, and acts as the dual vector space of the D-space under the identification p 7! hp; ·i, where h·; ·i :Π×Π ! R : denotes the differential bilinear form given by hp; qi = p(@)q x=0, and where p(@) is the differential operator obtained from p by replacing each variable xi with the operator @=@xi. This space is realized as the differential kernel of the I-ideal, a power ideal generated by certain powers of linear forms corresponding to orthogonal vectors of the hyperplanes spanned by column vectors of X. The D- and P-spaces in particular each contain a unique interpolating polynomial for any function defined on the vertex set of certain hyperplane arrangements associated with CHAPTER 1. INTRODUCTION 2 the matrix X, a property known as correctness. In addition, the Dahmen-Michelli space has a simple construction in terms of the least map, an operator introduced in [11] which plays an important role in interpolation theory. Furthermore, relations dual to these can be developed with respect to generic vertex sets for the zonotope of X, which is formed by taking the Minkowski sum of the segments [0; x] = ftx : t 2 [0; 1]g for the column vectors x of X. It is from this geometric connection (and related combinatorial structure) that the name zonotopal algebra is derived. 1 0 1 X = 0 1 1 Figure 1.1: A hyperplane arrangement and corresponding dual zonotope of the matrix X. Particularly in the last decade, the area of zonotopal algebra has witnessed a resurgence of interest, with applications and generalizations of the theory emerging in a variety of new directions. In [38], Sturmfels and Xu study sagbi bases of Cox-Nagata rings, and discuss an algebraic generalization of the zonotopal spaces called zonotopal Cox rings which can be described as subalgebras of particular Cox-Nagata rings. In [33], Luca Moci generalizes some of the results of zonotopal algebra regarding hyperplane arrangements to a discrete setting related to the geometry of toric arrangements.
Recommended publications
  • Matroid Theory
    MATROID THEORY HAYLEY HILLMAN 1 2 HAYLEY HILLMAN Contents 1. Introduction to Matroids 3 1.1. Basic Graph Theory 3 1.2. Basic Linear Algebra 4 2. Bases 5 2.1. An Example in Linear Algebra 6 2.2. An Example in Graph Theory 6 3. Rank Function 8 3.1. The Rank Function in Graph Theory 9 3.2. The Rank Function in Linear Algebra 11 4. Independent Sets 14 4.1. Independent Sets in Graph Theory 14 4.2. Independent Sets in Linear Algebra 17 5. Cycles 21 5.1. Cycles in Graph Theory 22 5.2. Cycles in Linear Algebra 24 6. Vertex-Edge Incidence Matrix 25 References 27 MATROID THEORY 3 1. Introduction to Matroids A matroid is a structure that generalizes the properties of indepen- dence. Relevant applications are found in graph theory and linear algebra. There are several ways to define a matroid, each relate to the concept of independence. This paper will focus on the the definitions of a matroid in terms of bases, the rank function, independent sets and cycles. Throughout this paper, we observe how both graphs and matrices can be viewed as matroids. Then we translate graph theory to linear algebra, and vice versa, using the language of matroids to facilitate our discussion. Many proofs for the properties of each definition of a matroid have been omitted from this paper, but you may find complete proofs in Oxley[2], Whitney[3], and Wilson[4]. The four definitions of a matroid introduced in this paper are equiv- alent to each other.
    [Show full text]
  • A Combinatorial Analysis of Finite Boolean Algebras
    A Combinatorial Analysis of Finite Boolean Algebras Kevin Halasz [email protected] May 1, 2013 Copyright c Kevin Halasz. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at http://www.gnu.org/copyleft/fdl.html. 1 Contents 1 Introduction 3 2 Basic Concepts 3 2.1 Chains . .3 2.2 Antichains . .6 3 Dilworth's Chain Decomposition Theorem 6 4 Boolean Algebras 8 5 Sperner's Theorem 9 5.1 The Sperner Property . .9 5.2 Sperner's Theorem . 10 6 Extensions 12 6.1 Maximally Sized Antichains . 12 6.2 The Erdos-Ko-Rado Theorem . 13 7 Conclusion 14 2 1 Introduction Boolean algebras serve an important purpose in the study of algebraic systems, providing algebraic structure to the notions of order, inequality, and inclusion. The algebraist is always trying to understand some structured set using symbol manipulation. Boolean algebras are then used to study the relationships that hold between such algebraic structures while still using basic techniques of symbol manipulation. In this paper we will take a step back from the standard algebraic practices, and analyze these fascinating algebraic structures from a different point of view. Using combinatorial tools, we will provide an in-depth analysis of the structure of finite Boolean algebras. We will start by introducing several ways of analyzing poset substructure from a com- binatorial point of view.
    [Show full text]
  • Matroids and Tropical Geometry
    matroids unimodality and log concavity strategy: geometric models tropical models directions Matroids and Tropical Geometry Federico Ardila San Francisco State University (San Francisco, California) Mathematical Sciences Research Institute (Berkeley, California) Universidad de Los Andes (Bogotá, Colombia) Introductory Workshop: Geometric and Topological Combinatorics MSRI, September 5, 2017 (3,-2,0) Who is here? • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • Who is here? • matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • Who is here? • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Summary. Matroids are everywhere. • Many matroid sequences are (conj.) unimodal, log-concave. • Geometry helps matroids. • Tropical geometry helps matroids and needs matroids. • (If time) Some new constructions and results. • Joint with Carly Klivans (06), Graham Denham+June Huh (17). Properties: (B1) B = /0 6 (B2) If A;B B and a A B, 2 2 − then there exists b B A 2 − such that (A a) b B. − [ 2 Definition. A set E and a collection B of subsets of E are a matroid if they satisfies properties (B1) and (B2).
    [Show full text]
  • The Number of Graded Partially Ordered Sets
    JOURNAL OF COMBINATORIAL THEORY 6, 12-19 (1969) The Number of Graded Partially Ordered Sets DAVID A. KLARNER* McMaster University, Hamilton, Ontario, Canada Communicated by N. G. de Bruijn ABSTRACT We find an explicit formula for the number of graded partially ordered sets of rank h that can be defined on a set containing n elements. Also, we find the number of graded partially ordered sets of length h, and having a greatest and least element that can be defined on a set containing n elements. The first result provides a lower bound for G*(n), the number of posets that can be defined on an n-set; the second result provides an upper bound for the number of lattices satisfying the Jordan-Dedekind chain condition that can be defined on an n-set. INTRODUCTION The terminology we will use in connection with partially ordered sets is defined in detail in the first few pages of Birkhoff [1]; however, we need a few concepts not defined there. A rank function g maps the elements of a poset P into the chain of integers such that (i) x > y implies g(x) > g(y), and (ii) g(x) = g(y) + 1 if x covers y. A poset P is graded if at least one rank function can be defined on it; Birkhoff calls the pair (P, g) a graded poset, where g is a particular rank function defined on a poset P, so our definition differs from his. A path in a poset P is a sequence (xl ,..., x~) such that x~ covers or is covered by xi+l, for i = 1 ...
    [Show full text]
  • Linear Algebra Handbook
    CS419 Linear Algebra January 7, 2021 1 What do we need to know? By the end of this booklet, you should know all the linear algebra you need for CS419. More specifically, you'll understand: • Vector spaces (the important ones, at least) • Dirac (bra-ket) notation and why it's quite nice to use • Linear combinations, linearly independent sets, spanning sets and basis sets • Matrices and linear transformations (they're the same thing) • Changing basis • Inner products and norms • Unitary operations • Tensor products • Why we care about linear algebra 2 Vector Spaces In quantum computing, the `vectors' we'll be working with are going to be made up of complex numbers1. A vector space, V , over C is a set of vectors with the vital property2 that αu + βv 2 V for all α; β 2 C and u; v 2 V . Intuitively, this means we can add together and scale up vectors in V, and we know the result is still in V. Our vectors are going to be lists of n complex numbers, v 2 Cn, and Cn will be our most important vector space. Note we can just as easily define vector spaces over R, the set of real numbers. Over the course of this module, we'll see the reasons3 we use C, but for all this linear algebra, we can stick with R as everyone is happier with real numbers. Rest assured for the entire module, every time you see something like \Consider a vector space V ", this vector space will be Rn or Cn for some n 2 N.
    [Show full text]
  • Matroids You Have Known
    26 MATHEMATICS MAGAZINE Matroids You Have Known DAVID L. NEEL Seattle University Seattle, Washington 98122 [email protected] NANCY ANN NEUDAUER Pacific University Forest Grove, Oregon 97116 nancy@pacificu.edu Anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day. —Gian Carlo Rota [10] Why matroids? Have you noticed hidden connections between seemingly unrelated mathematical ideas? Strange that finding roots of polynomials can tell us important things about how to solve certain ordinary differential equations, or that computing a determinant would have anything to do with finding solutions to a linear system of equations. But this is one of the charming features of mathematics—that disparate objects share similar traits. Properties like independence appear in many contexts. Do you find independence everywhere you look? In 1933, three Harvard Junior Fellows unified this recurring theme in mathematics by defining a new mathematical object that they dubbed matroid [4]. Matroids are everywhere, if only we knew how to look. What led those junior-fellows to matroids? The same thing that will lead us: Ma- troids arise from shared behaviors of vector spaces and graphs. We explore this natural motivation for the matroid through two examples and consider how properties of in- dependence surface. We first consider the two matroids arising from these examples, and later introduce three more that are probably less familiar. Delving deeper, we can find matroids in arrangements of hyperplanes, configurations of points, and geometric lattices, if your tastes run in that direction.
    [Show full text]
  • Arxiv:1508.05446V2 [Math.CO] 27 Sep 2018 02,5B5 16E10
    CELL COMPLEXES, POSET TOPOLOGY AND THE REPRESENTATION THEORY OF ALGEBRAS ARISING IN ALGEBRAIC COMBINATORICS AND DISCRETE GEOMETRY STUART MARGOLIS, FRANCO SALIOLA, AND BENJAMIN STEINBERG Abstract. In recent years it has been noted that a number of combi- natorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting Markov chains such as the Tsetlin library and riffle shuffle. The representation theory of left regular bands then comes into play and has had a major influence on both the combinatorics and the probability theory associated to such structures. In a recent pa- per, the authors established a close connection between algebraic and combinatorial invariants of a left regular band by showing that certain homological invariants of the algebra of a left regular band coincide with the cohomology of order complexes of posets naturally associated to the left regular band. The purpose of the present monograph is to further develop and deepen the connection between left regular bands and poset topology. This allows us to compute finite projective resolutions of all simple mod- ules of unital left regular band algebras over fields and much more. In the process, we are led to define the class of CW left regular bands as the class of left regular bands whose associated posets are the face posets of regular CW complexes. Most of the examples that have arisen in the literature belong to this class. A new and important class of ex- amples is a left regular band structure on the face poset of a CAT(0) cube complex.
    [Show full text]
  • Cayley's and Holland's Theorems for Idempotent Semirings and Their
    Cayley's and Holland's Theorems for Idempotent Semirings and Their Applications to Residuated Lattices Nikolaos Galatos Department of Mathematics University of Denver [email protected] Rostislav Horˇc´ık Institute of Computer Sciences Academy of Sciences of the Czech Republic [email protected] Abstract We extend Cayley's and Holland's representation theorems to idempotent semirings and residuated lattices, and provide both functional and relational versions. Our analysis allows for extensions of the results to situations where conditions are imposed on the order relation of the representing structures. Moreover, we give a new proof of the finite embeddability property for the variety of integral residuated lattices and many of its subvarieties. 1 Introduction Cayley's theorem states that every group can be embedded in the (symmetric) group of permutations on a set. Likewise, every monoid can be embedded into the (transformation) monoid of self-maps on a set. C. Holland [10] showed that every lattice-ordered group can be embedded into the lattice-ordered group of order-preserving permutations on a totally-ordered set. Recall that a lattice-ordered group (`-group) is a structure G = hG; _; ^; ·;−1 ; 1i, where hG; ·;−1 ; 1i is group and hG; _; ^i is a lattice, such that multiplication preserves the order (equivalently, it distributes over joins and/or meets). An analogous representation was proved also for distributive lattice-ordered monoids in [2, 11]. We will prove similar theorems for resid- uated lattices and idempotent semirings in Sections 2 and 3. Section 4 focuses on the finite embeddability property (FEP) for various classes of idempotent semirings and residuated lat- tices.
    [Show full text]
  • Operations on Partially Ordered Sets and Rational Identities of Type a Adrien Boussicault
    Operations on partially ordered sets and rational identities of type A Adrien Boussicault To cite this version: Adrien Boussicault. Operations on partially ordered sets and rational identities of type A. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 2 (2), pp.13–32. hal- 00980747 HAL Id: hal-00980747 https://hal.inria.fr/hal-00980747 Submitted on 18 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:2, 2013, 13–32 Operations on partially ordered sets and rational identities of type A Adrien Boussicault Institut Gaspard Monge, Universite´ Paris-Est, Marne-la-Valle,´ France received 13th February 2009, revised 1st April 2013, accepted 2nd April 2013. − −1 We consider the family of rational functions ψw = Q(xwi xwi+1 ) indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P . In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP . We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P , and we compute its numerator in some special cases.
    [Show full text]
  • LATTICE THEORY of CONSENSUS (AGGREGATION) an Overview
    Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 1 LATTICE THEORY of CONSENSUS (AGGREGATION) An overview Bernard Monjardet CES, Université Paris I Panthéon Sorbonne & CAMS, EHESS Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 2 First a little precision In their kind invitation letter, Klaus and Clemens wrote "Like others in the judgment aggregation community, we are aware of the existence of a sizeable amount of work of you and other – mainly French – authors on generalized aggregation models". Indeed, there is a sizeable amount of work and I will only present some main directions and some main results. Now here a list of the main contributors: Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 3 Bandelt H.J. Germany Barbut, M. France Barthélemy, J.P. France Crown, G.D., USA Day W.H.E. Canada Janowitz, M.F. USA Mulder H.M. Germany Powers, R.C. USA Leclerc, B. France Monjardet, B. France McMorris F.R. USA Neumann, D.A. USA Norton Jr. V.T USA Powers, R.C. USA Roberts F.S. USA Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 4 LATTICE THEORY of CONSENSUS (AGGREGATION) : An overview OUTLINE ABSTRACT AGGREGATION THEORIES: WHY? HOW The LATTICE APPROACH LATTICES: SOME RECALLS The CONSTRUCTIVE METHOD The federation consensus rules The AXIOMATIC METHOD Arrowian results The OPTIMISATION METHOD Lattice metric rules and the median procedure The "good" lattice structures for medians: Distributive lattices Median semilattice Workshop Judgement Aggregation and Voting September 9-11, 2011, Freudenstadt-Lauterbad 5 ABSTRACT CONSENSUS THEORIES: WHY? "since Arrow’s 1951 theorem, there has been a flurry of activity designed to prove analogues of this theorem in other contexts, and to establish contexts in which the rather dismaying consequences of this theorem are not necessarily valid.
    [Show full text]
  • Problems and Comments on Boolean Algebras Rosen, Fifth Edition: Chapter 10; Sixth Edition: Chapter 11 Boolean Functions
    Problems and Comments on Boolean Algebras Rosen, Fifth Edition: Chapter 10; Sixth Edition: Chapter 11 Boolean Functions Section 10. 1, Problems: 1, 2, 3, 4, 10, 11, 29, 36, 37 (fifth edition); Section 11.1, Problems: 1, 2, 5, 6, 12, 13, 31, 40, 41 (sixth edition) The notation ""forOR is bad and misleading. Just think that in the context of boolean functions, the author uses instead of ∨.The integers modulo 2, that is ℤ2 0,1, have an addition where 1 1 0 while 1 ∨ 1 1. AsetA is partially ordered by a binary relation ≤, if this relation is reflexive, that is a ≤ a holds for every element a ∈ S,it is transitive, that is if a ≤ b and b ≤ c hold for elements a,b,c ∈ S, then one also has that a ≤ c, and ≤ is anti-symmetric, that is a ≤ b and b ≤ a can hold for elements a,b ∈ S only if a b. The subsets of any set S are partially ordered by set inclusion. that is the power set PS,⊆ is a partially ordered set. A partial ordering on S is a total ordering if for any two elements a,b of S one has that a ≤ b or b ≤ a. The natural numbers ℕ,≤ with their ordinary ordering are totally ordered. A bounded lattice L is a partially ordered set where every finite subset has a least upper bound and a greatest lower bound.The least upper bound of the empty subset is defined as 0, it is the smallest element of L.
    [Show full text]
  • Some Lattices of Closure Systems on a Finite Set Nathalie Caspard, Bernard Monjardet
    Some lattices of closure systems on a finite set Nathalie Caspard, Bernard Monjardet To cite this version: Nathalie Caspard, Bernard Monjardet. Some lattices of closure systems on a finite set. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2004, 6 (2), pp.163-190. hal-00959003 HAL Id: hal-00959003 https://hal.inria.fr/hal-00959003 Submitted on 13 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science 6, 2004, 163–190 Some lattices of closure systems on a finite set Nathalie Caspard1 and Bernard Monjardet2 1 LACL, Universite´ Paris 12 Val-de-Marne, 61 avenue du Gen´ eral´ de Gaulle, 94010 Creteil´ cedex, France. E-mail: [email protected] 2 CERMSEM, Maison des Sciences Economiques,´ Universite´ Paris 1, 106-112, bd de l’Hopital,ˆ 75647 Paris Cedex 13, France. E-mail: [email protected] received May 2003, accepted Feb 2004. In this paper we study two lattices of significant particular closure systems on a finite set, namely the union stable closure systems and the convex geometries. Using the notion of (admissible) quasi-closed set and of (deletable) closed set we determine the covering relation ≺ of these lattices and the changes induced, for instance, on the irreducible elements when one goes from C to C ′ where C and C ′ are two such closure systems satisfying C ≺ C ′.
    [Show full text]