<I>Rhizoglomus</I>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Obligate Endobacteria of Arbuscular Mycorrhizal Fungi Are Ancient Heritable Components Related to the Mollicutes
The ISME Journal (2010) 4, 862–871 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes Maria Naumann1,2, Arthur Schu¨ ler2 and Paola Bonfante1 1Department of Plant Biology, University of Turin and IPP-CNR, Turin, Italy and 2Department of Biology, Inst. Genetics, University of Munich (LMU), Planegg-Martinsried, Germany Arbuscular mycorrhizal fungi (AMF) have been symbionts of land plants for at least 450 Myr. It is known that some AMF host in their cytoplasm Gram-positive endobacteria called bacterium-like organisms (BLOs), of unknown phylogenetic origin. In this study, an extensive inventory of 28 cultured AMF, from diverse evolutionary lineages and four continents, indicated that most of the AMF species investigated possess BLOs. Analyzing the 16S ribosomal DNA (rDNA) as a phylogenetic marker revealed that BLO sequences from divergent lineages all clustered in a well- supported monophyletic clade. Unexpectedly, the cell-walled BLOs were shown to likely represent a sister clade of the Mycoplasmatales and Entomoplasmatales, within the Mollicutes, whose members are lacking cell walls and show symbiotic or parasitic lifestyles. Perhaps BLOs maintained the Gram-positive trait whereas the sister groups lost it. The intracellular location of BLOs was revealed by fluorescent in situ hybridization (FISH), and confirmed by pyrosequencing. BLO DNA could only be amplified from AMF spores and not from spore washings. As highly divergent BLO sequences were found within individual fungal spores, amplicon libraries derived from Glomus etunicatum isolates from different geographic regions were pyrosequenced; they revealed distinct sequence compositions in different isolates. -
Population Genomics Reveals That Within-Fungus Polymorphism Is Common and Maintained in Populations of the Mycorrhizal Fungus Rhizophagus Irregularis
The ISME Journal (2016) 10, 2514–2526 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 OPEN www.nature.com/ismej ORIGINAL ARTICLE Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis Tania Wyss1,3, Frédéric G Masclaux1,2,3, Pawel Rosikiewicz1, Marco Pagni2,4 and Ian R Sanders1,4 1Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland and 2Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within- fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations. -
Diversiteit En Functie Van Arbusculaire Mycorrhiza Van Vicia Faba in De Tropische Hooglanden Van Ethiopië
Faculteit Bio-ingenieurswetenschappen Academiejaar 2015 – 2016 Diversiteit en functie van arbusculaire mycorrhiza van Vicia faba in de tropische hooglanden van Ethiopië Reindert Devlamynck Promotor: Prof. dr. ir. Pascal Boeckx Copromotor: Dr. Olivier Honnay Tutor: Dr. Amsalu Nebiyu Masterproef voorgedragen tot het behalen van de graad van Master in de bio-ingenieurswetenschappen: Landbouwkunde English translation of the title: Diversity and function of arbuscular Mycorrhiza of Vicia Faba in the tropical highlands of Ethiopia Acknowledgements Ik ben iedereen dankbaar voor hun hulp en medeleven. Toch wil ik van de gelegenheid gebruik maken om één iemand speciaal te bedanken. Papa, bedankt voor de 22 prachtige jaren en voor je onvoorwaardelijke steun. Bedankt om je genen, normen en waarden door te geven aan mij. Wie ik ben, komt door wie jij was. Ik hoop dat je het resultaat van jouw boetseerwerk verder kunt volgen in de hemel en dat je fier bent op wat ik heb bereikt. i Table of contents Acknowledgements .................................................................................................................................. i Table of contents ..................................................................................................................................... ii List of symbols and abbreviations .......................................................................................................... iv Summary ................................................................................................................................................ -
Effect of Fungicides on Association of Arbuscular Mycorrhiza Fungus Rhizophagus Fasciculatus and Growth of Proso Millet (Panicum Miliaceum L.)
Journal of Soil Science and Plant Nutrition, 2015, 15 (1), 35-45 RESEARCH ARTICLE Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagus fasciculatus and growth of Proso millet (Panicum miliaceum L.) Channabasava1*, H.C. Lakshman1 and M.A. Jorquera2 1Microbiology Laboratory, P.G. Department of Studies in Botany, Karnataka University, Pavate Nagar, Dharwad-580 003, India. 2Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.*Corresponding author: [email protected] Abstract The detrimental effects of fungicides on non-target beneficial microorganisms such as arbuscular mycorrhizal (AM) fungi are of interest to agriculture. Rhizophagus fasciculatus was found to be predominant (21%) AM fungus in studied soil compared to other species (2-9%). Hence, we have conducted a study to evaluate the potential effects of fungicides Benomyl (Methyl [1-[(butylamino) carbonyl]-1H-benzimidazol-2-yl] carbamate), Bavistin (methyl benzimidazol-2-ylcarbamate), Captan ((3aR,7aS)-2-[(trichloromethyl) sulfanyl]-3a,4,7,7a– tetra hydro-1H-isoindole-1,3(2H)-dione and Mancozeb (manganese ethylene-bis(dithiocarbamate) (polymeric) complex with zinc salt) on association of R. fasciculatus with Proso millet (Panicum miliaceum L.), an emerging drought-resistant crop that represent a cheap source of nutrients for human in developing country. The results of this study showed significant (P≤0.05) higher AM colonization (69.7%), spore density (193 spores), plant growth (both lengths and weights of shoots and roots) and grain yield (154 grains per panicle) in mycorrhizal Proso millet plants treated with Captan compared to other fungicides and untreated controls. In contrast, Benomyl had adverse effect in all parameters measured (45.3% AM colonization, 123 spores, 105 grains per panicle, etc.). -
Ordovician Land Plants and Fungi from Douglas Dam, Tennessee
PROOF The Palaeobotanist 68(2019): 1–33 The Palaeobotanist 68(2019): xxx–xxx 0031–0174/2019 0031–0174/2019 Ordovician land plants and fungi from Douglas Dam, Tennessee GREGORY J. RETALLACK Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA. *Email: gregr@uoregon. edu (Received 09 September, 2019; revised version accepted 15 December, 2019) ABSTRACT The Palaeobotanist 68(1–2): Retallack GJ 2019. Ordovician land plants and fungi from Douglas Dam, Tennessee. The Palaeobotanist 68(1–2): xxx–xxx. 1–33. Ordovician land plants have long been suspected from indirect evidence of fossil spores, plant fragments, carbon isotopic studies, and paleosols, but now can be visualized from plant compressions in a Middle Ordovician (Darriwilian or 460 Ma) sinkhole at Douglas Dam, Tennessee, U. S. A. Five bryophyte clades and two fungal clades are represented: hornwort (Casterlorum crispum, new form genus and species), liverwort (Cestites mirabilis Caster & Brooks), balloonwort (Janegraya sibylla, new form genus and species), peat moss (Dollyphyton boucotii, new form genus and species), harsh moss (Edwardsiphyton ovatum, new form genus and species), endomycorrhiza (Palaeoglomus strotheri, new species) and lichen (Prototaxites honeggeri, new species). The Douglas Dam Lagerstätte is a benchmark assemblage of early plants and fungi on land. Ordovician plant diversity now supports the idea that life on land had increased terrestrial weathering to induce the Great Ordovician Biodiversification Event in the sea and latest Ordovician (Hirnantian) -
Occurrence of Glomeromycota Species in Aquatic Habitats: a Global Overview
Occurrence of Glomeromycota species in aquatic habitats: a global overview MARIANA BESSA DE QUEIROZ1, KHADIJA JOBIM1, XOCHITL MARGARITO VISTA1, JULIANA APARECIDA SOUZA LEROY1, STEPHANIA RUTH BASÍLIO SILVA GOMES2, BRUNO TOMIO GOTO3 1 Programa de Pós-Graduação em Sistemática e Evolução, 2 Curso de Ciências Biológicas, and 3 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil * CORRESPONDENCE TO: [email protected] ABSTRACT — Arbuscular mycorrhizal fungi (AMF) are recognized in terrestrial and aquatic ecosystems. The latter, however, have received little attention from the scientific community and, consequently, are poorly known in terms of occurrence and distribution of this group of fungi. This paper provides a global list on AMF species inhabiting aquatic ecosystems reported so far by scientific community (lotic and lentic freshwater, mangroves, and wetlands). A total of 82 species belonging to 5 orders, 11 families, and 22 genera were reported in 8 countries. Lentic ecosystems have greater species richness. Most studies of the occurrence of AMF in aquatic ecosystems were conducted in the United States and India, which constitute 45% and 78% reports coming from temperate and tropical regions, respectively. KEY WORDS — checklist, flooded areas, mycorrhiza, taxonomy Introduction Aquatic ecosystems comprise about 77% of the planet surface (Rebouças 2006) and encompass a diversity of habitats favorable to many species from marine (ocean), transitional estuaries to continental (wetlands, lentic and lotic) environments (Reddy et al. 2018). Despite this territorial representativeness and biodiversity already recorded, there are gaps when considering certain types of organisms, e.g. fungi. Fungi are considered a common and important component of almost all trophic levels. -
Coordinated Changes in the Accumulation of Metal Ions in Maize (Zea Mays Ssp. Mays L.) in Response to Inoculation with the Arbus
bioRxiv preprint doi: https://doi.org/10.1101/135459; this version posted June 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coordinated changes in the accumulation of metal ions in maize (Zea mays ssp. mays L.) in response to inoculation with the arbuscular mycorrhizal fungus Funneliformis mosseae Running title: Ionome of mycorrhizal maize Corresponding Author: Dr. R.J.H. Sawers Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV-IPN), Irapuato C.P. 36821, Guanajuato, México tel: +52 462 1663012 fax: +52 462 6078246 e-mail: [email protected] Subject areas: 2) environmental and stress responses Figures and Tables: 6 color figures; 2 tables; supplemental PDF containing two figures; supplementary data as csv bioRxiv preprint doi: https://doi.org/10.1101/135459; this version posted June 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coordinated changes in the accumulation of metal ions in maize (Zea mays ssp. mays L.) in response to inoculation with the arbuscular mycorrhizal fungus Funneliformis mosseae Running title: Ionome of mycorrhizal maize M. Rosario Ramirez-Flores1, Ruben Rellan-Alvarez2, Barbara Wozniak3, Mesfin-Nigussie Gebreselassie3, Iver Jakobsen4, Victor Olalde-Portugal1, Ivan Baxter5, Uta Paszkowski3, 6 and Ruairidh J. -
Specificity of Assemblage, Not Fungal Partner Species, Explains
The ISME Journal (2021) 15:1614–1627 https://doi.org/10.1038/s41396-020-00874-x ARTICLE Specificity of assemblage, not fungal partner species, explains mycorrhizal partnerships of mycoheterotrophic Burmannia plants 1 1 2 3,4 2 Zhongtao Zhao ● Xiaojuan Li ● Ming Fai Liu ● Vincent S. F. T. Merckx ● Richard M. K. Saunders ● Dianxiang Zhang 1 Received: 9 July 2020 / Revised: 29 November 2020 / Accepted: 7 December 2020 / Published online: 6 January 2021 © The Author(s) 2021. This article is published with open access Abstract Mycoheterotrophic plants (MHPs) growing on arbuscular mycorrhizal fungi (AMF) usually maintain specialized mycorrhizal associations. The level of specificity varies between MHPs, although it remains largely unknown whether interactions with mycorrhizal fungi differ by plant lineage, species, and/or by population. Here, we investigate the mycorrhizal interactions among Burmannia species (Burmanniaceae) with different trophic modes using high-throughput DNA sequencing. We characterized the inter- and intraspecific dynamics of the fungal communities by assessing the composition and diversity of fungi among sites. We found that fully mycoheterotrophic species are more specialized in their 1234567890();,: 1234567890();,: fungal associations than chlorophyllous species, and that this specialization possibly results from the gradual loss of some fungal groups. In particular, although many fungal species were shared by different Burmannia species, fully MHP species typically host species-specific fungal assemblages, suggesting that they have a preference for the selected fungi. Although no apparent cophylogenetic relationship was detected between fungi and plants, we observe that evolutionarily closely related plants tend to have a greater proportion of shared or closely related fungal partners. Our findings suggest a host preference and specialization toward fungal assemblages in Burmannia, improving understanding of interactions between MHPs and fungi. -
How to Cite Complete Issue More Information About This Article
Revista mexicana de biodiversidad ISSN: 1870-3453 ISSN: 2007-8706 Instituto de Biología Álvarez-Lopeztello, Jonás; Hernández-Cuevas, Laura V.; Castillo, Rafael F. del; Robles, Celerino Second world record of Glomus trufemii (Glomeromycota: Fungi), an arbuscular mycorrhizal fungus from a Mexican savanna Revista mexicana de biodiversidad, vol. 89, no. 1, 2018, pp. 298-300 Instituto de Biología DOI: 10.22201/ib.20078706e.2018.1.2101 Available in: http://www.redalyc.org/articulo.oa?id=42559253025 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Project academic non-profit, developed under the open access initiative Revista Mexicana de Biodiversidad 89 (2018): 298-300 Research note Second world record of Glomus trufemii (Glomeromycota: Fungi), an arbuscular mycorrhizal fungus from a Mexican savanna Segundo registro mundial de Glomus trufemii (Glomeromycota: Fungi), un hongo micorrízico arbuscular de una sabana mexicana Jonás Álvarez-Lopeztello a, Laura V. Hernández-Cuevas b, *, Rafael F. del Castillo a, Celerino Robles a a Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Oaxaca, Instituto Politécnico Nacional, Hornos 1003, 71230 Santa Cruz Xoxocotlán, Oaxaca, Mexico b Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Texmelucan-Tlaxcala, 90120 Ixtacuixtla, Tlaxcala, Mexico *Corresponding author: [email protected] (L.V. Hernández-Cuevas) Received: 25 January 2017; accepted: 07 September 2017 Abstract In Mexico, studies of diversity of arbuscular mycorrhizal fungi (AMF) are still scarce. Here we report the second record in the world, and the first record in Mexico of Glomus trufemii (Glomeraceae) from a tropical humid savanna. -
The Genome of Rhizophagus Clarus HR1 Reveals a Common Genetic
Kobayashi et al. BMC Genomics (2018) 19:465 https://doi.org/10.1186/s12864-018-4853-0 RESEARCHARTICLE Open Access The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi Yuuki Kobayashi1, Taro Maeda1, Katsushi Yamaguchi2, Hiromu Kameoka1, Sachiko Tanaka1, Tatsuhiro Ezawa3, Shuji Shigenobu2,4 and Masayoshi Kawaguchi1,4* Abstract Background: Mycorrhizal symbiosis is one of the most fundamental types of mutualistic plant-microbe interaction. Among the many classes of mycorrhizae, the arbuscular mycorrhizae have the most general symbiotic style and the longest history. However, the genomes of arbuscular mycorrhizal (AM) fungi are not well characterized due to difficulties in cultivation and genetic analysis. In this study, we sequenced the genome of the AM fungus Rhizophagus clarus HR1, compared the sequence with the genome sequence of the model species R. irregularis, and checked for missing genes that encode enzymes in metabolic pathways related to their obligate biotrophy. Results: In the genome of R. clarus, we confirmed the absence of cytosolic fatty acid synthase (FAS), whereas all mitochondrial FAS components were present. A KEGG pathway map identified the absence of genes encoding enzymes for several other metabolic pathways in the two AM fungi, including thiamine biosynthesis and the conversion of vitamin B6 derivatives. We also found that a large proportion of the genes encoding glucose-producing polysaccharide hydrolases, that are present even in ectomycorrhizal fungi, also appear to be absent in AM fungi. Conclusions: In this study, we found several new genes that are absent from the genomes of AM fungi in addition to the genes previously identified as missing. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Fungi, Glomeromycota, Glomerales) As Being of Neuter Gender
TAXON 58 (2) • May 2009: 647 Kuyper • (1888) Conserve Glomus PROPOSALS TO CONSERVE OR REJECT NAMES Edited by John McNeill, Scott A. Redhead & John H. Wiersema (1888) Proposal to conserve the name Glomus (Fungi, Glomeromycota, Glomerales) as being of neuter gender Thomas W. Kuyper Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands. [email protected] (1888) Glomus Tul. & C. Tul. in Giorn. Bot. Ital. Anno 1, griseus” respectively, and continues to use the masculine 2(1): 63. 11 Mai 1845, nom. et gen. neut. cons. prop. form, whereas new species in the genus Tuber, which they Typus: G. macrocarpum Tul. & C. Tul. (‘macro- treated as neuter, the diagnosis starts as “mediocre globo- carpus’) sum”, “globosum” and “rotundatum”. Which gender should The majority of plant species form mycorrhiza, a mu- then be correct? Article 62 of the ICBN (McNeill & al. in tually beneficial symbiosis between plant roots and certain Regnum Veg. 146. 2006) provides the answer to that ques- root-inhabiting fungi. The presence and type of mycorrhiza tion. The article mentions three criteria in descending order is also an important character in plant taxonomy and phy- of importance, viz., botanical tradition, the author’s original logeny. The arbuscular mycorrhizal association is by far usage, and classical usage (even though Note 1 tries to link the most important kind of these symbioses. Evolution of original usage and classical usage, which is a bit confusing the group made the conquest of the land by the first root- in an otherwise clear rule). I have been unable to find in- less plants possible.