Decomposer Insects

Total Page:16

File Type:pdf, Size:1020Kb

Decomposer Insects DECOMPOSER INSECTS Eduardo Galante and Mª Angeles Marcos-Garcia Centro Iberoamericano de la Biodiversidad Alicante, Spain In any natural or semi-natural that the decomposers operate at all the habitat, three types of organisms exist: levels. Thus, all energy not used by the producers, consumers and consumers and producers, as well as decomposers. Good functioning of the that accumulated in excretory products, ecosystem will depend on their suitable is used by the decomposers and action and interaction. Organisms recycled into the ecosystem. This capable of catching energy and process constitutes the energy cycle , synthesizing organic matter from and good functioning and subsistence of inorganic compounds constitute the the ecosystems depends on effective producers. Though chemosynthetic energy cycling. bacteria exist, most producers are In a terrestrial ecosystem, more plants. Green plants use solar energy than 90% of the organic matter and fix CO2, producing organic synthesized by the green plants remains compounds rich in energy. Most of this unconsumed, and it passes to the level accumulated energy will get used in the of decomposers as plant material ecosystem by respiratory processes and decaying on soil, together with the other vital functions, whereas some remains of animal corpses, and the organisms of the community such as the excretory products of all levels. consumers and decomposers will use The process of decomposition is the energy accumulated by other one of the most important events in the organisms. functioning of ecosystems. The consumers are heterotrophic Decomposition can be defined as the organisms that obtain food from process by means of which a dead producers or from other consumers, with organism or its remains are broken the possibility of several levels of down into the parts or elements that complexity inside an ecosystem. comprise it, and at the end of the Primary consumers feed directly on the process the animal or plant remains will producers. Secondary consumers feed have gradually disintegrated until their on primary consumers, etc. Finally, we structures cannot be recognized, and have the decomposers, saprophytic their complex organic molecules will organisms feeding on dead matter or have fragmented. This involves a decaying remains derived from complex process in which biotic and producers and consumers. Thus, the abiotic agents interact within the organic matter synthesized by ecosystem. To sum up, the producers goes on to other levels of decomposition processes cause the organisms across the trophic chains, liberation of energy and mineralization though much of the energy will be used of chemical nutrients, turning the in respiratory processes at all levels. organic matter into inorganic elements. In these trophic processes, an In the process of decomposition, important element to take into account is there are two phases, sometimes difficult to distinguish, that we could call centipedes (Diplopoda), woodlice ‘destruction’ and ‘degradation’ of the (Isopoda), etc. All these groups are organic matter. The process of responsible for the fragmentation of destruction refers to the initial phase of plant or animal remains, contributing to the decomposition cycle and is the destruction phase. They contribute characterized by breaking down the both to the redistribution of the organic organic remains by mechanical means remains and formation of soil elements. so that at the end of this process small- These groups of arthropod sized particles are obtained. During this decomposers are present in nearly all initial phase both abiotic (rain, wind, terrestrial habitats, and generally in very temperature, etc.) and biotic elements high numbers. In some cases, millions (decomposer fauna) play an important of individuals belonging to hundreds of role. In the second phase, degradation species have been identified in just one of the organic matter occurs, resulting in square meter. Especially in temperate the disintegration of the small particles areas, arthropods are the major into molecules, producing CO2, H2O and decomposers, playing a very important mineral salts as final products. role in degradation of waste. Thanks to The destruction phase also the action of the arthropods during the results in dispersion of the organic initial phase of fragmentation, organic matter, because the small resulting remains can be degraded, and particles can be taken by means of eliminated from the soil surface. diverse mechanisms out of the initial When a suitable community of source (dragging by wind and water, or decomposers exists, it prevents the direct action of animals such as burial, appearance of potential bottlenecks in ingestion, movement, etc.). It is the recycling of basic elements in the important to note that nutrients released ecosystem. Thus, when entomofauna by decomposers constitute a food capable of acting effectively on plant source for numerous animal species, and animal remains does not exist in a extending the cycle by means of terrestrial ecosystem, serious alterations incorporation of the nutrients into in the ecosystem arise, with a reduction tissues, and eventually constituting new in energy flow and great loss of corpses and excrements. biodiversity. The groups of arthropods involved in the processes of Decomposers of plant remains decomposition of animals and plants Arthropods play an important role remains belong to many taxa (Fig. 1). in degradation processes of plant They are considered to be mesofauna remains. Nevertheless, most lack the when their size ranges between 100 and ability to develop enzymatic processes 200 mm (such as mites (Acari), for degrading the fundamental springtails (Collembola) and small components of any plant: lignin and insects), or macrofauna when they are cellulose. Degradation of cellulose larger, such as some beetles (e.g., requires the presence of the enzyme Scarabaeidae, Geotrupidae or cellulase, which most arthropods lack. Silphidae), Diptera larvae (e.g., Many insects have solved this problem Muscidae, Sarcophagidae, by means of mutualistic relations with Scatophagidae or Calliphoridae), micro-organisms, having bacteria or symbiotic protozoa in the intestinal tract. (bacteria, fungi and protozoa) and plant Others take advantage the cellulase remains is very close, and therefore, in produced by external microflora. Among most cases it is inevitable that the the well-known insect decomposers are arthropods consume both resources termites (Isoptera) and cockroaches simultaneously. In some cases, the (Blattodea). The termites possess ingested biomass of micro-organisms is symbiotic bacteria and protozoa, and in more important nutritionally than the their absence wood cannot be ingested plant remains. assimilated by these insects. In many ecosystems millipedes The entomofauna of excrement and (Diplopoda) have special importance as corpses decomposers. These arthropods, which The studies of ecosystems have specialize in leaf litter consumption, generally paid preferential attention to sometimes are abundant, concentrated the decomposition processes of in relatively small areas, and active vegetative remains, due to the during a great part of the year. importance that litter has in the Another important group in the composition of the soil and the degradation of plant remains is woodlice contribution of its nutrients. The process (Isopoda), which also possess symbiotic of decomposition of carrion and dung, microorganisms in their intestine that though sometimes not well known and allows them to degrade cellulose. little studied in many ecosystems, is Not all arthropods assimilate also important. cellulose by means of symbiotic To understand the processes of bacteria, but they make use of woody degradation of corpses and excrements, materials that are pre-digested by and the attractiveness of this decaying extraintestinal microorganisms. Included matter to arthropods, we must consider in this group are some species of that they are very rich resources of springtails such as Tomocerus organic components that have very (Collembola), ambrosia beetles special microclimatic conditions. Dung (Coleoptera: Scolitydae), ants of the and carrion represent not only a rich genera Atta (Hymenoptera: Formicidae) source of energy, but also a very and termites (Isoptera) that cultivate specialized habitat that is exploited, in fungi. most cases, by very specific All plant remains do not always entomological fauna. This fauna obtains present the same difficulty of digestion food either directly, such as in the case for arthropods. Fruits are extensively of the coprophages and carrion-eating exploited by arthropods, thanks to the arthropods, or indirectly, such as in the existence of yeasts that enhance fruit case of the predators that feed on the decomposition, allowing many decomposers. arthropods such as flies (Drosophila is It is generally difficult to establish probably the best known example) and the limits of an arthropod community, wasps (Hymenoptera: Vespidae) to feed but when we study carrion or dung we into the product resulting from the meet a perfectly defined ecological unit, fermentation. Nevertheless, a fact that limited in both space and time. Carrion must be remembered is that the (Fig. 2) and dung present many special relationship between micro-organisms characteristics that influence the composition and dynamics of the set of taxonomic categories of carrion or dung species using them. These resources specialists are similar worldwide. constitute isolated
Recommended publications
  • Phylogenetic Relationships of Iberian Dung Beetles Coleoptera: Scarabaeinae): Insights on the Evolution of Nesting Behavior
    J Mol Evol +2002) 55:116±126 DOI: 10.1007/s00239-002-2314-4 Phylogenetic Relationships of Iberian Dung Beetles Coleoptera: Scarabaeinae): Insights on the Evolution of Nesting Behavior Soraya Villalba,Jorge M. Lobo,Fermõ  n Martõ n-Piera,* Rafael Zardoya Museo Nacional de Ciencias Naturales, CSIC, Jose Gutie rrez Abascal 2, 28006 Madrid, Spain Received: 22 October 2001 / Accepted: 25 January 2002 Abstract. A phylogeny of the main lineages of dung Introduction beetles +Coleoptera: Scarabaeinae) from the Iberian Peninsula was based on partial nucleotide sequences The Scarabaeinae +dung beetles) are a worldwide- +about 1221 bp) of the mitochondrial cytochrome distributed, highly successful subfamily of Coleoptera oxidase I and II genes of 33 taxa. Our phylogenetic with nearly 5000 species grouped in 234 genera analyses con®rmed the validity and composition of +Hanski and Cambefort 1991). Ever since Linnaeus' most of the recognized tribes within the subfamily. Systema Naturae, dung beetles have received wide Interestingly, the Onitini showed an evolutionary rate attention from entomologists because of their singu- signi®cantly higher than that of the other tribes. The lar adaptations in exploiting vertebrate dung pads molecular phylogeny supports a sister-group rela- +e.g., Fabre 1897, 1899; Heymons and von Lengerken tionship of the tribes Onitini and Oniticellini + On- 1922; Burmeister 1930; Heymons 1930; Prasse 1957; thophagini. A close relationship of Scarabaeini, Rommel, 1961; Balthasar 1963; Halter and Matth- Gymnopleurini, and Sisyphini is also suggested but ews 1966; Halter and Edmonds 1982). Scarabaeids lacks bootstrap support. Surprisingly, the Coprini, are one of the best-studied groups of beetles in terms which had always been related to the Oniticellini and of taxonomy +Janssens 1949; Balthasar 1963; Iablo- Onthophagini, were placed closer to the Scarabaeini, kov-Khnzorian 1977; Zunino 1984; Browne and Gymnopleurini, and Sisyphini.
    [Show full text]
  • Backyard Food
    Suggested Grades: 2nd - 5th BACKYARD FOOD WEB Wildlife Champions at Home Science Experiment 2-LS4-1: Make observations of plants and animals to compare the diversity of life in different habitats. What is a food web? All living things on earth are either producers, consumers or decomposers. Producers are organisms that create their own food through the process of photosynthesis. Photosynthesis is when a living thing uses sunlight, water and nutrients from the soil to create its food. Most plants are producers. Consumers get their energy by eating other living things. Consumers can be either herbivores (eat only plants – like deer), carnivores (eat only meat – like wolves) or omnivores (eat both plants and meat - like humans!) Decomposers are organisms that get their energy by eating dead plants or animals. After a living thing dies, decomposers will break down the body and turn it into nutritious soil for plants to use. Mushrooms, worms and bacteria are all examples of decomposers. A food web is a picture that shows how energy (food) passes through an ecosystem. The easiest way to build a food web is by starting with the producers. Every ecosystem has plants that make their own food through photosynthesis. These plants are eaten by herbivorous consumers. These herbivores are then hunted by carnivorous consumers. Eventually, these carnivores die of illness or old age and become food for decomposers. As decomposers break down the carnivore’s body, they create delicious nutrients in the soil which plants will use to live and grow! When drawing a food web, it is important to show the flow of energy (food) using arrows.
    [Show full text]
  • Dung Beetle Assemblages Attracted to Cow and Horse Dung: the Importance of Mouthpart Traits, Body Size, and Nesting Behavior in the Community Assembly Process
    life Article Dung Beetle Assemblages Attracted to Cow and Horse Dung: The Importance of Mouthpart Traits, Body Size, and Nesting Behavior in the Community Assembly Process Mattia Tonelli 1,2,* , Victoria C. Giménez Gómez 3, José R. Verdú 2, Fernando Casanoves 4 and Mario Zunino 5 1 Department of Pure and Applied Science (DiSPeA), University of Urbino “Carlo Bo”, 61029 Urbino, Italy 2 I.U.I CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, San Vicente del Raspeig, 03690 Alicante, Spain; [email protected] 3 Instituto de Biología Subtropical, Universidad Nacional de Misiones–CONICET, 3370 Puerto Iguazú, Argentina; [email protected] 4 CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, 30501 Turrialba, Costa Rica; [email protected] 5 Asti Academic Centre for Advanced Studies, School of Biodiversity, 14100 Asti, Italy; [email protected] * Correspondence: [email protected] Abstract: Dung beetles use excrement for feeding and reproductive purposes. Although they use a range of dung types, there have been several reports of dung beetles showing a preference for certain feces. However, exactly what determines dung preference in dung beetles remains controversial. In the present study, we investigated differences in dung beetle communities attracted to horse or cow dung from a functional diversity standpoint. Specifically, by examining 18 functional traits, Citation: Tonelli, M.; Giménez we sought to understand if the dung beetle assembly process is mediated by particular traits in Gómez, V.C.; Verdú, J.R.; Casanoves, different dung types. Species specific dung preferences were recorded for eight species, two of which F.; Zunino, M. Dung Beetle Assemblages Attracted to Cow and prefer horse dung and six of which prefer cow dung.
    [Show full text]
  • Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
    Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance.
    [Show full text]
  • Terrestrial Decomposition
    Terrestrial Decomposition • Objectives – Controls over decomposition • Litter breakdown • Soil organic matter formation and dynamics – Carbon balance of ecosystems • Soil carbon storage 1 Overview • In terrestrial ecosystems, soils (organic horizon + mineral soil) > C than in vegetation and atmosphere combined 2 Overview • Decomposition is: 1. Major pathway for C loss from ecosystems 2. Central to ecosystem C loss and storage 3 Overview 4 Incorporation 1 year later Overview • Predominant controls on litter decomposition are fairly well constrained 1. Temperature and moisture 2. Litter quality • N availability • Lignin concentration • Lignin:N • Mechanisms for soil organic matter stabilization: 1. Recalcitrance (refers to chemistry) 2. Physical protection • Within soil aggregates • Organo-mineral associations 3. Substrate supply regulation (energetic limitation) 5 Overview • Disturbance can override millenia in a matter of days or years: 1. Land use change 2. Invasive species 3. Climate change • Understanding the mechanistic drivers of decomposition, soil organic matter formation, and carbon stabilization help us make management decisions, take mitigation steps, and protect resources. 6 Overview Native Ōhiʻa - Koa forest Conversion to Reforestation in grass-dominated pasture (80 yr) Eucalyptus plantation (10 yr) Conventional sugar cane harvest. 20° C 18° C 16° C 14° C 7 Sustainable ratoon harvest. Decomposition • Decomposition is the biological, physical and chemical breakdown of organic material – Provides energy for microbial growth
    [Show full text]
  • The Beetles Story
    NATURE The Beetles story They outshine butterflies and moths in the world of insects and are a delight for their sheer variety—from the brilliantly coloured to the abysmally dull. But they have their uses, too, such as in museums, where flesh-eating beetles are used to clean off skeletons. Text & photographs by GEETHA IYER THE GIRAFFE WEEVIL (Cycnotrachelus flavotuberosus). Weevils are a type of beetle and they are a menace to crops. 67 FRONTLINE . MARCH 31, 2017 HOW was this watery planet we so much love born? Was it created by God or born off the Big Bang? While arguments swing between science and religion, several ancient cultures had different and interesting per- spectives on how the earth came to be. Their ideas about this planet stemmed from their observations of nature. People living in close prox- imity to nature develop a certain sen- sitivity towards living creatures. They have to protect themselves from many of these creatures and at the same time conserve the very envi- ronment that nurtures them. So there is constant observation and in- teraction with nature’s denizens, es- pecially insects, the most proliferate among all animal groups that stalk every step of their lives. The logic for creation thus revolves around differ- ent types of insects, especially the most abundant amongst them: bee- WATER BEETLE. The Cherokees believed that this beetle created the earth. tles. Beetles though much detested (Right) Mehearchus dispar of the family Tenebrionidae. The Eleodes beetle of by modern urban citizens are per- Mexico belongs to this family. ceived quite differently by indige- nous cultures.
    [Show full text]
  • Revision of the Genera Tiniocellus Péringuey, 1901 and Nitiocellus Gen
    Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 47 (2010) : 71‒126. REVISION OF THE GENERA TINIOCELLUS PÉRINGUEY, 1901 AND NITIOCELLUS GEN. N. (COLEOPTERA, SCARABAEIDAE, ONITICELLINI) Tristão Branco Rua de Camões, 788, 2º Dto, P-4000-142 Porto, Portugal − [email protected] Abstract: The taxonomical history of the genus Tiniocellus Péringuey, 1901 and the 10 species-group names that have been associated with it is reviewed, and the reasons that justify the creation of Nitiocellus gen. n. for Oniticellus panthera Boucomont, 1921 and Oniticellus collarti Janssens, 1939, are explained. The taxonomy of the Oniticellini is briefly reviewed and a key is provided for the separation of Tiniocellus and Nitiocellus gen. n. from all the other genera currently ranged in the tribe. The synonymies of Oniticellus variegatus Fåhraeus, 1857 and Oniticellus humilis Gerstaecker, 1871 with Tiniocellus spinipes (Roth, 1851) are confirmed. The Asian Tiniocellus imbellis (Bates, 1891) and the African Tiniocellus setifer (Kraatz, 1895) are rehabilitated as good species. Oniticellus modestus Arrow, 1908 is synonymised with T. imbellis, and Tiniocellus asmarensis Balthasar, 1968 with T. spinipes. Three Afrotropical species, one of them containing two subspecies, are described: T. praetermissus sp. n. from western Africa, T. dolosus sp. n. from eastern, central and western Africa, T. eurypygus sp. n. from South Africa, the nominotypical subspecies from the uplands west of the Drakensberg mountain range, and T. eurypygus transdrakensbergensis ssp. n. from the lowlands east of the same mountain range. Keys are provided to the species and sub- species of Tiniocellus, and to the species of Nitiocellus gen. n. For this study 4,628 specimens were examined, including the name-bearing types of all the species-group names, except that of T.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Oniticellus (Liatongus)
    Zootaxa 3974 (1): 145–147 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3974.1.13 http://zoobank.org/urn:lsid:zoobank.org:pub:AC597535-68B3-45C5-BBF2-AD0287A15A4C Oniticellus (Liatongus) boucomonti Balthasar, 1932 (Coleoptera: Scarabaeidae: Scarabaeinae: Oniticellini)—clarification of its taxonomic status by lectotype designation ALEŠ BEZDĚK1, DAVID KRÁL2 & FRANTIŠEK X. J. SLÁDEČEK1,3 1Biology Centre CAS, Institute of Entomology, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic. E-mail: [email protected] 2Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-128 43 Praha 2, Czech Republic. E-mail: [email protected] 3Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic. E-mail: [email protected] The dung beetle Oniticellus (Liatongus) boucomonti Balthasar, 1932 was described according to an unknown number of specimens labelled “Giufu-Shan, Szechuan” [= Jinfo Shan, ca. 29°04′N, 107°18′E, Chongqing province, China]. Balthasar evidently did not dissect these specimens and simply assumed that specimens with a small horn on vertex were males and specimens without such horn but with two elevated transversal carinae on head were the females of the same species (Balthasar 1932, 1935). Later, Janssens (1953) claimed that the type series of O. (L.) boucomonti was a mixture of two species. Specimens considered males by Balthasar were actually identical to the female of Liatongus denticornis (Fairmaire, 1887), and those sexed as females were identical to the female of L.
    [Show full text]
  • A Chromosomal Analysis of 15 Species of Gymnopleurini, Scarabaeini and Coprini (Coleoptera: Scarabaeidae)
    A chromosomal analysis of 15 species of Gymnopleurini, Scarabaeini and Coprini (Coleoptera: Scarabaeidae) R. B. Angus, C. J. Wilson & D. J. Mann The karyotypes of one species of Gymnopleurini, two Scarabaeini, five Onitini and seven Coprini are described and illustrated. Gymnopleurus geoffroyi, Scarabaeus cristatus, S. laticollis, Bubas bison, B. bubalus, B. bubaloides, Onitis belial, O. ion, Copris lunaris, Microcopris doriae, M. hidakai and Helopcopris gigas all have karyotypes with 2n=18 + Xy. Copris hispanus and Paracopris ����������ramosiceps have karyotypes with 2n=16 + Xy and Copris sinicus has a karyotype comprising 2n=12 + Xy. Heterochromatic B-chromosomes have been found in Bubas bubalus. Spanish material of Bubas bison lacks the distal heterochromatic blocks found in most of the chromosomes of Italian specimens. The karyotype of Heliocopris gigas is unusual in that the autosomes and X chromosome are largely heterochromatic. R. B. Angus* & C. J. Wilson, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. [email protected] D. J. Mann, Hope Entomological Collections, Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. [email protected] Introduction of chromosome preparation and C-banding are given A previous publication (Wilson & Angus 2005) gave by Wilson (2001). In some cases it has been possible information on the karyotypes of species of Oniticel- to C-band preparations after they have been photo- lini and Onthophagini studied by C. J. Wilson in her graphed plain, giving a very powerful set of data for Ph. D. research (Wilson 2002). The present paper re- preparation of karyotypes.
    [Show full text]
  • Plant Species Effects on Nutrient Cycling: Revisiting Litter Feedbacks
    Review Plant species effects on nutrient cycling: revisiting litter feedbacks Sarah E. Hobbie Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA In a review published over two decades ago I asserted reinforce those gradients and patterns of NPP, focusing that, along soil fertility gradients, plant traits change in on feedbacks operating through plant litter decomposition. ways that reinforce patterns of soil fertility and net Specifically, I evaluate two key assumptions underlying primary productivity (NPP). I reevaluate this assertion the plant litter feedback idea: (i) plant litter traits vary in light of recent research, focusing on feedbacks to NPP predictably along fertility gradients, and (ii) such variation operating through litter decomposition. I conclude that reinforces soil fertility gradients through effects on decom- mechanisms emerging since my previous review might position and litter N release. Given the number of synthetic weaken these positive feedbacks, such as negative cross-site analyses of plant traits and their consequences effects of nitrogen on decomposition, while others for nutrient cycling over the past two decades, the time is might strengthen them, such as slower decomposition ripe for revisiting my original assertions. Indeed, I show of roots compared to leaf litter. I further conclude that that my original assertion is more nuanced and complex predictive understanding of plant species effects on than originally claimed. In particular, I discuss the need to nutrient cycling will require developing new frameworks consider leaf litter decomposition more carefully and move that are broadened beyond litter decomposition to con- beyond consideration of leaf litter feedbacks to a more sider the full litter–soil organic matter (SOM) continuum.
    [Show full text]
  • 'Insect Succession Pattern on Decomposing Pig Carcasses In
    Papers and Proceedings of the Royal Society of Tasmania, Volume 153, 2019 31 INSECT SUCCESSION PATTERN ON DECOMPOSING PIG CARCASSES IN TASMANIA: A SUMMER STUDY by Paola A. Magni, J. David North, Melle Zwerver, Ian R. Dadour (with one text- igure, two plates and one table) Magni, P.A., North, J.D., Zwerver, M., Dadour, I.R. 2019 (14:xii). Insect succession pattern on decomposing pig carcasses in Tasmania: a summer study. Papers and Proceedings of the Royal Society of Tasmania 153: 31–38. https://doi.org/10.26749/rstpp.153.31 ISSN 0080–4703. Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South St, Murdoch, Western Australia 6150, Australia (PAM, IRD). Murdoch University Singapore, King’s Centre, 390 Havelock Road, Singapore 169662 (current address: PAM). Tasmania Police Forensic Services, 37–43 Liverpool Street, Hobart, Tasmania 7000, Australia (JDN). Tasmania Police, Devonport Police Station, 24 Wenvoe Street, Devonport, Tasmania 7310, Australia (MZ). *Author for correspondence: Email: [email protected]. Insect succession has been studied around the world using the predictable and mostly sequential arrival pattern of different insect species that are attracted to a decomposing carcass. In cases of suspicious death of humans and animals, carrion insects may be used to assist in crime scene reconstruction. The present research represents the first study in forensic entomology to be undertaken in Tasmania, investi-gating insect succession patterns on decomposing pig carcasses and providing a preliminary database of forensically important insects. Six pig carcasses were placed in two contrasting locations (rural and urban) in northern Tasmania. Insect successional waves were recorded over a 40-day study during the austral summer season.
    [Show full text]