MANAGEMENT OPERATIONS and ASTRONOMICAL SCIENCES

Total Page:16

File Type:pdf, Size:1020Kb

MANAGEMENT OPERATIONS and ASTRONOMICAL SCIENCES NATIONAL ASTRONOMY & IONOSPHERE CENTER Operated by Cornell University under cooperative agreement with the National Science Foundation MANAGEMENT OPERATIONS and ASTRONOMICAL SCIENCES 2006 PROGRESS REPORT 2007 PROGRAM PLAN Students at the University of Texas, Brownsille control the Arecibo telescope from their remote control center. March 2007 NATIONAL ASTRONOMY & IONOSPHERE CENTER Operated by Cornell University under cooperative agreement with the National Science Foundation MANAGEMENT OPERATIONS and ASTRONOMICAL SCIENCES 2006 PROGRESS REPORT 2007 PROGRAM PLAN March 2007 Cooperative Agreement No. AST-0431904 Table of Contents1 Section 1 Introduction and Overview 1 Section 2 Annual Progress Summary 2 2.1 Summary of Achievements in PY2006 2 2.2 Problems Encountered, Solutions and Impact 7 2.3 List of Observing Programs, Investigators, and Hours - PY 2006 8 2.4 Visiting Public at the Observatory 27 Section 3 Accomplishments and Plans of the NAIC Scientific Staff 27 3.1 Cosmology 27 3.2 Early Galaxies 28 3.3 Active Galaxies 28 3.4 Normal Galaxies and Clusters 29 3.5 Intergalactic Gas and Tidal Remnants 30 3.6 Milky Way Galaxy 31 3.7 Pulsars 33 3.8 Solar System 33 3.9 Fundamental Physics 37 Section 4 Technical Accomplishments and Expectations 38 4.1 Radio Astronomy Instrumentation 38 4.2 IF/LO System 40 4.3 Backends 41 4.4 Computing: Storage and Networking 42 Section 5 NAIC Education and Outreach Programs 43 5.1 Angel Ramos Visitor Center 43 5.2 2006 REU Program 46 5.3 Connecting to Arecibo 52 5.4 ALFALFA Visiting Scientists 52 Section 6 Arecibo Observatory Publications - PY2006 54 Section 7 NAIC External Federal Funding and Active Subcontracts 65 Section 8 Division of Effort for Staff 67 Section 9 NAIC Organization Chart and Description 71 9.1 Management Plan: Organization Charts 71 9.2 Vitae of New Professional Staff 74 1 The contents, headings and order of topics presented here are as specified in the NAIC Coopertative Agreement. Table of Contents continued Section 10 Status Report and Plan for PY2007 75 10.1 Scientific Plans 75 10.2 Technical Plans 87 10.3 Major Project Plans 92 10.4 Operational Changes in Response to the Senior Review Recommendations for NAIC 93 Section 11 Long Range Report and Plan 95 11.1 Major Program Goals and Emphasis 95 11.2 Risk Factors Affecting Program Goals 96 11.3 Management, Contractual, Financial and Technical Issues 97 11.4 Requirements for Support of the Scientific Community 99 Section 12 Budget Report 103 APPENDIX A: Committees 107 tools, to the much wider astronomical community. 1. Introduction and Overview • Routine scheduling of “commensal” observations, simultaneous observa- tions done by two or more academic research groups with different scientific The National Astronomy and Ionosphere Center objectives, each processing the same as- (NAIC) radio/radar telescope located in Arecibo, tronomical signal with its own purpose- Puerto Rico, is the instrument that provides more specific spectrometer; collecting area—more “light gathering power”—for • Completion of the engineering design centimeter-wave radio science than any competi- phase of two new spectrometers, the tive telescope in the world. Operated as a national EALFA spectrometer, designed to en- research facility by Cornell University for the Na- able sensitive spectroscopy of atomic tional Science Foundation (NSF), the Arecibo tele- hydrogen in galaxies to z = 0.2, and the scope in fact provides nearly three times the col- PALFA spectrometer that will triple the lecting area of all the other NSF-sponsored radio analyzed bandwidth used for pulsar telescopes combined. The sheer physical size of searches and timing. Contracts for fab- the Arecibo telescope makes it a uniquely powerful rication of the two new spectrometers research instrument. Unique also to the Arecibo have been let with delivery expected in Observatory is the program of research supported the first quarter of calendar year 2007. by the telescope and the diversity of interests of the • Completion of the contract to clean and scientific user community it serves. Operation of the paint all of the structural steel on the Arecibo Observatory to satisfy the requirements of telescope platform to remove accumu- this interdisciplinary user community is the primary lated corrosion and millscale, and to ap- responsibility of the scientists, engineers and staff ply a coating specifically selected to pro- of the NAIC. Management of NAIC as a national tect the steel for at least 20 years. facility is provided by Cornell University under a Co- 2 operative Agreement with the NSF . In PY2007 the emphasis at NAIC is on making the programmatic and personnel changes necessary Described in this PY2007 NAIC Annual Progress for NAIC to function well at the lower funding level Report and Program Plan (APRPP) are the major recommended by the Senior Review, and to devel- achievements of the past program year, the plans op new scientific partnerships with the NAIC user to meet the major challenges of PY2007, and an community for archiving survey data and making outline of NAIC priorities that inform its long-range the data products accessible for data mining. The planning. highlights include: Highlights of the NAIC achievements in PY2006 de- • Tailoring Observatory services to the scribed in this APRPP include: ALFA survey consortia to the down- stream needs of data archiving and data • Completion of the first year of obser- access through involvement with the vations made by two of the legacy sky Virtual Observatory. In the cost-con- surveys to be done with the Arecibo L- strained environment at NAIC imposed band Feed Array (ALFA) by community- by the reduced funding recommended based ALFA consortia. Scientific results by the Senior Review, this means that published and submitted for publication the data archiving and data access sup- from both the PALFA pulsar survey, and port comes at the expense of services the ALFALFA survey of HI in galaxies in provided to the consortia in the data-tak- the local (z < 0.1) universe, demonstrate ing phase of their survey work. the fruitfulness of the survey programs. They also create data products that are • Using the recommendations of the Are- accessible on-line, and useful as research cibo Users and Scientific Advisory Com- mittee (AUSAC) to develop telescope 2 Cooperative Agreement No. AST-0431904 between the National scheduling procedures that assure the Science Foundation, Arlington, VA 22230 and Cornell University, Ithaca, NY, 14853, dated October 1, 2005. survey programs receive the time an- NAIC APRPP 2007 1 nually they require for their successful NAIC Arecibo Observatory. There were more us- execution, and the traditional common- ers of the NAIC facilities at the Arecibo Observa- user programs maintain full access to tory, more prospective users proposing to use the the telescope and to Observatory user facilities, more students involved with the research support services. at NAIC, and more publications from research at • Assuring that the staff reductions im- NAIC than at any time in the past. posed by the Senior Review are accom- panied by a commensurate reduction in Science Achievement Highlights. NAIC sup- the scope of Observatory tasks so that ports a multidisciplinary science program with re- the burden on the Observatory support search facilities for passive radio astronomy, active staff members remains manageable for radio astronomy done using radar transmitters at each individual. 430 MHz and 2300 MHz to illuminate solar system objects, and upper atmospheric research. In the On the longer term, priorities with a 5-year or great- astronomy program, recent science highlights in- er horizon include (a) organization of academic re- clude: searchers to specify the scientific and technical re- quirements for a comprehensive search for sources • Best limits ever achieved on dipolar of transient cosmic radio emission; (b) organization gravitational wave emission. Pulsar of academic researchers to specify the scientific J1738+0333 is a 5.85-ms object in a bi- and technical requirements for an incoherent scat- nary system with an orbital period of 8.5 ter ionospheric radar facility to be located at the hours; the companion object is a white Arecibo magnetic conjugate point in Argentina; dwarf. High precision timing of the and (c) refinement of the U.S. participatory role in pulsar orbital dynamics reveals that the the international Square Kilometer Array project. orbit is decaying due to dipolar gravita- tional wave emission at a rate of 4.4 x As a NSF National Center, the NAIC shares in the 10-14 s/s, a value that is exactly consistent NSF mission: To promote the progress of science; with that expected from General Rela- to advance the national health, prosperity, and tivity. This is the most precise measure- welfare; to secure the national defense; and for ment ever made of the effect of dipolar other purposes3. Over the years the phrase “other gravitational wave emission. purposes” has been defined by Congressional ac- • Frequency structure has been observed tion to include (1) fostering the interchange of sci- in pulses from the Crab Nebula pulsar entific and engineering information nationally and that is unresolved with a sampling rate internationally; (2) supporting the development of of 0.4 nanoseconds; the corresponding computer and other methodologies; and (3) ad- physical size of the emission region must dressing issues of equal opportunity in science and be less than 13 cm, about the size of a engineering. The NAIC PY2007 Program Plan fully grapefruit. This is, by far, the smallest embraces all these goals with the suite of programs astronomical object, a plasma cloud or and community support outlined in this APRPP. plasma interaction region, ever detect- ed beyond the solar system. During its short lifetime, the blasts of radio emis- sion from the region have a luminosity that exceeds 10 percent of the total lu- 2.
Recommended publications
  • 2004-2005 Annual Report
    Anglo-Australian Observatory Annual Report of the Anglo-Australian Telescope Board 1 July 2004 to 30 June 2005 Anglo-Australian Observatory 167 Vimiera Road Eastwood NSW 2122 Australia Postal Address: PO Box 296 Epping NSW 1710 Australia Telephone: (02) 9372 4800 (international) + 61 2 9372 4800 Facsimile: (02) 9372 4880 (international) + 61 2 9372 4880 e-mail: [email protected] Website: http://www.aao.gov.au/ Annual Report Website: http://www.aao.gov.au/annual/ Anglo-Australian Telescope Board Address as above Telephone: (02) 9372 4813 (international) + 61 2 9372 4813 e-mail: [email protected] ABN: 71871323905 © Anglo-Australian Telescope Board 2005 ISSN 1443-8550 Cover: Dome of the UK Schmidt Telescope. Photo courtesy Shaun Amy. Combined H-alpha and Red colour mosaic image of the Vela Supernova remnant taken from several AAO/UK Schmidt Telescope H- alpha survey fields. Image produced by Mike Read and Quentin Parker Cover Design: TTR Print Management Computer Typeset: Anglo-Australian Observatory Picture Credits: The editors would like to thank for their photographs and images throughout this publication Shaun Amy, Stuart Bebb (Physics Photo- graphic Unit, Oxford), Jurek Brzeski, Chris Evans, Kristin Fiegert, David James, Urs Klauser, David Malin, Chris McCowage and Andrew McGrath ii AAO Annual Report 2004–2005 The Honourable Dr Brendan Nelson, MP, Minister for Education, Science and Training Government of the Commonwealth of Australia The Right Honourable Alan Johnson, MP, Secretary of State for Trade and Industry, Government of the United Kingdom of Great Britain and Northern Ireland In accordance with Article 8 of the Agreement between the Australian Government and the Government of the United Kingdom to provide for the establishment and operation of an optical telescope at Siding Spring Mountain in the state of New South Wales, I present herewith a report by the Anglo-Australian Telescope Board for the year from 1 July 2004 to 30 June 2005.
    [Show full text]
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • ASTRONET IR Final Word Doc for Printing with Logo
    ASTRONET: Infrastructure Roadmap Update Ian Robson The ASTRONET Science Vision and Infrastructure Roadmap were published in 2007 and 2008 respectively and presented a strategic plan for the development of European Astronomy. A requirement was to have a light-touch update of these midway through the term. The Science Vision was updated in 2013 and the conclusions were fed into the Roadmap update. This was completed following the outcome of the ESA decisions on the latest missions. The community has been involved through a variety of processes and the final version of the update has been endorsed by the ASTRONET Executive. ASTRONET was created by a group of European funding agencies in order to establish a strategic planning mechanism for all of European astronomy . It covers the whole astronomical domain, from the Sun and Solar System to the limits of the observable Universe, and from radioastronomy to gamma-rays and particles, on the ground as well as in space; but also theory and computing, outreach, training and recruitment of the vital human resources. And, importantly, ASTRONET aims to engage all astronomical communities and relevant funding agencies on the new map of Europe. http://www.astronet-eu.org/ ASTRONET has been supported by the EC since 2005 as an ERA-NET . Despite the formidable challenges of establishing such a comprehensive plan, ASTRONET reached that goal with the publication of its Infrastructure Roadmap in November 2008. Building on this remarkable achievement, the present project will proceed to the implementation stage, a very significant new step towards the coordination and integration of European resources in the field.
    [Show full text]
  • Inferring Kilonova Population Properties with a Hierarchical Bayesian Framework I : Non-Detection Methodology and Single-Event Analyses
    Draft version July 16, 2021 Typeset using LATEX twocolumn style in AASTeX631 Inferring kilonova population properties with a hierarchical Bayesian framework I : Non-detection methodology and single-event analyses Siddharth R. Mohite,1, 2, ∗ Priyadarshini Rajkumar,3 Shreya Anand,4 David L. Kaplan,1 Michael W. Coughlin,5 Ana Sagues-Carracedo´ ,6 Muhammed Saleem,5 Jolien Creighton,1 Patrick R. Brady,1 Tomas´ Ahumada,7 Mouza Almualla,8 Igor Andreoni,4 Mattia Bulla,9 Matthew J. Graham,4 Mansi M. Kasliwal,4 Stephen Kaye,10 Russ R. Laher,11 Kyung Min Shin,12 David L. Shupe,11 and Leo P. Singer13, 14 1Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin{Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA 2Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA 3Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409-1051, USA 4Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 5School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA 6The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden 7Department of Astronomy, University of Maryland, College Park, MD 20742, USA 8Department of Physics, American University of Sharjah, PO Box 26666, Sharjah, UAE 9The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden 10Caltech Optical Observatories, California
    [Show full text]
  • Four Highly Dispersed Millisecond Pulsars Discovered in the Arecibo PALFA Galactic Plane Survey F
    Four Highly Dispersed Millisecond Pulsars Discovered in the Arecibo PALFA Galactic Plane Survey F. Crawford, K. Stovall, A. G. Lyne, B. W. Stappers, D. J. Nice, I. H. Stairs, P. Lazarus, J. W. T. Hessels, P. C. C. Freire, B. Allen, et al. To cite this version: F. Crawford, K. Stovall, A. G. Lyne, B. W. Stappers, D. J. Nice, et al.. Four Highly Dispersed Millisecond Pulsars Discovered in the Arecibo PALFA Galactic Plane Survey. The Astrophysical Journal, American Astronomical Society, 2012, 757 (90), 10 p. 10.1088/0004-637X/757/1/90. insu- 01266087 HAL Id: insu-01266087 https://hal-insu.archives-ouvertes.fr/insu-01266087 Submitted on 19 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License The Astrophysical Journal, 757:90 (10pp), 2012 September 20 doi:10.1088/0004-637X/757/1/90 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. FOUR HIGHLY DISPERSED MILLISECOND PULSARS DISCOVERED IN THE ARECIBO PALFA GALACTIC PLANE SURVEY F. Crawford1, K. Stovall2,3,A.G.Lyne4, B.
    [Show full text]
  • J-PLUS: on the Identification of New Cluster
    A&A 622, A178 (2019) https://doi.org/10.1051/0004-6361/201731348 Astronomy & © ESO 2019 Astrophysics J-PLUS: On the identification of new cluster members in the double galaxy cluster A2589 and A2593 using PDFs A. Molino1,2, M. V. Costa-Duarte1,3, C. Mendes de Oliveira1, A. J. Cenarro4, G. B. Lima Neto1, E. S. Cypriano1, L. Sodré Jr1, P. Coelho1, M. Chow-Martínez5,6, R. Monteiro-Oliveira7,1, L. Sampedro1,2, D. Cristobal-Hornillos4, J. Varela4, A. Ederoclite4, A. L. Chies-Santos7, W. Schoenell1, T. Ribeiro8, A. Marín-Franch4, C. López-Sanjuan4, J. D. Hernández-Fernández1, A. Cortesi1, H. Vázquez Ramió4, W. Santos Jr1, N. Cibirka1, P. Novais1, E. Pereira1, J. A. Hernández-Jimenez1, Y. Jimenez-Teja9, M. Moles4, N. Benítez2, and R. Dupke9 1 Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Rua do Matão 1226, 05508-090 São Paulo, Brazil e-mail: [email protected] 2 Instituto de Astrofísica de Andalucía. IAA-CSIC. Glorieta de la astronomía s/n, 18008 Granada, Spain 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 4 Centro de Estudios de Física del Cosmos de Aragón, Plaza San Juan 1, 44001 Teruel, Spain 5 Departamento de Astronomía, DCNE, Universidad de Guanajuato, Apdo. Postal 144, CP 36000 Guanajuato, Mexico 6 Instituto de Geología y Geofísica - Centro de Investigaciones Geocientíficas/Universidad Nacional Autónoma de Nicaragua, Managua, Rotonda Universitaria 200 metros al Este, Managua, Nicaragua 7 Departamento de Astronomía, Instituto de Física, Universidade Federal do Rio Grande do Sul, 15051 Porto Alegre RS, Brazil 8 Departamento de Física, Universidade Federal de Sergipe, Av.
    [Show full text]
  • Report to the NSF AST Senior Review (July 2005)
    NATIONAL ASTRONOMY & IONOSPHERE CENTER Operated by Cornell University under cooperative agreement with the National Science Foundation NAIC Science in the Twenty-First Century: Report to the NSF Senior Review El quien no ha visto el Observatorio de Arecibo no ha visto una maravilla. July 2005 NAIC Science in the Twenty-First Century: Report to the NSF Senior Review 1. Executive Summary 1 2. The Unique Role of NAIC in U.S. Astronomy 2 2.1 The “Millennium Questions” in Astrophysics 2 2.2 ALFA Surveys 3 2.3 Pulsar Timing 10 2.4 the High Sensitivity Array 11 2.5 S-Band Planetary Radar 14 2.6 SETI 18 3. NAIC Science in the Twenty-First Century: A New Model for a National Observatory 18 3.1 Partnerships in Detector and Digital Signal Processing Technology 20 3.2 Partnerships in Computation and Information Sharing Technology 21 3.3 ALFA Legacy Survey Consortia Organization 24 3.4 Management of the U.S. Square Kilometer Array Partnership for the Technology Development Project 25 4. NAIC General Facility Description 25 4.1 Overview of the Facility 25 4.2 NAIC Managing Institution and Organization 26 4.3 NAIC Funding Sources 26 4.4 Specifics of the Telescope and Instrumentation 26 4.5 New Capabilities Planned in the Next 5-10 Years 26 4.6 Science Overview 27 4.6.1 Current Forefront Scientific Programs 27 4.6.2 Major NAIC Astronomy Program Scientific Discoveries Made at the Arecibo Observatory 28 4.6.3 NAIC Astronomy Program Science Highlights of the Last Five Years 29 4.6.4 Focus on Future Astronomy Program Science Questions 29 5.
    [Show full text]
  • Combining Dark Energy Survey Science Verification Data with Near
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 16 October 2018 (MN LATEX style file v2.2) Combining Dark Energy Survey Science Verification Data with Near Infrared Data from the ESO VISTA Hemisphere Survey Manda Banerji1⋆, S. Jouvel1, H. Lin2, R. G. McMahon3,4, O. Lahav1, F. J. Castander5, F. B. Abdalla1, E. Bertin6, S. E. Bosman3, A. Carnero7,8, M. Carrasco Kind9, L. N. da Costa7,8, D. Gerdes10, J. Gschwend7,8, M. Lima11,8, M. A. G. Maia7,8, A. Merson3, C. Miller10, R. Ogando7,8, P. Pellegrini7,8, S. Reed3, R. Saglia12,C.Sanchez´ 13, S. Allam14,2, J. Annis2, G. Bernstein15, J. Bernstein16, R. Bernstein17, D. Capozzi18, M. Childress19,20, Carlos E. Cunha21, T. M. Davis22,20, D. L. DePoy23, S. Desai24,25, H. T. Diehl2, P. Doel1, J. Findlay3, D. A. Finley2, B. Flaugher2, J. Frieman2, E. Gaztanaga5, K. Glazebrook26, C. Gonzalez-Fern´ andez´ 3, E. Gonzalez-Solares3, K. Honscheid27, M. J. Irwin3, M. J. Jarvis28,29, A. Kim30, S. Koposov3, K. Kuehn31, A. Kupcu-Yoldas3, D. Lagattuta26,20, J. R. Lewis3, C. Lidman31, M. Makler32, J. Marriner2, Jennifer L. Marshall23, R. Miquel13,33, Joseph J. Mohr24,25,12, E. Neilsen2, J. Peoples2, M. Sako15, E. Sanchez34, V. Scarpine2, R. Schindler35, M. Schubnell10, I. Sevilla34, R. Sharp36, M. Soares-Santos2, M. E. C. Swanson37, G. Tarle11, J. Thaler38, D. Tucker2, S. A. Uddin26,20, R. Wechsler21, W. Wester2, F. Yuan38,19, J. Zuntz39 16 October 2018 ABSTRACT We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near infrared data from the ESO VISTA Hemisphere Survey (VHS).
    [Show full text]
  • Astro-Ph/0509732V1 24 Sep 2005 Hsie K19L UK 9DL, SK11 Cheshire, O 39,P 00612 PR 53995, Box H Aatcnurnsa Ouain(Oie Ta.1993; and Al
    DRAFT VERSION SEPTEMBER 6, 2018 Preprint typeset using LATEX style emulateapj v. 6/22/04 ARECIBO PULSAR SURVEY USING ALFA. I. SURVEY STRATEGY AND FIRST DISCOVERIES J. M. CORDES,1 P. C. C. FREIRE,2 D. R. LORIMER,3 F. CAMILO,4 D. J. CHAMPION,3 D. J. NICE,5 R. RAMACHANDRAN,6 J. W. T. HESSELS,7 W. VLEMMINGS,1 J. VAN LEEUWEN,8 S.M. RANSOM,9 N.D.R.BHAT,10 Z. ARZOUMANIAN,11 M. A. MCLAUGHLIN,3 V. M. KASPI,7 L. KASIAN, 8 J. S.DENEVA,1 B. REID,5 S. CHATTERJEE,12 J. L.HAN,13 D. C. BACKER,6 I. H.STAIRS,8 A. A. DESHPANDE2 AND C.-A. FAUCHER-GIGUÈRE7 Draft version September 6, 2018 ABSTRACT We report results from the initial stage of a long-term pulsar survey of the Galactic plane using the Arecibo L-band Feed Array (ALFA), a seven-beam receiver operating at 1.4 GHz with 0.3 GHz bandwidth, and fast- dump digital spectrometers. The search targets low Galactic latitudes, b . 5◦, in the accessible longitude ranges, 32◦ . ℓ . 77◦ and 168◦ . ℓ . 214◦. The instrumentation, data processing,| | initial survey observations, sensitivity, and database management are described. Data discussed here were collected over a 100 MHz passband centered on 1.42 GHz using a spectrometer that recorded 256 channels every 64 µs. Analysis of the data with their full time and frequency resolutions is ongoing. Here, we report the results of a preliminary, low-resolution analysis for which the data were decimated to speed up the processing.
    [Show full text]
  • Fast and Accurate Estimation for Astrophysical Problems in Large Databases
    Fast and Accurate Estimation for Astrophysical Problems in Large Databases Joseph Richards Thesis Proposal August 18, 2009 Abstract In this proposed thesis, I will develop efficient non-parametric methods for parameter estima- tion in large databases of high-dimensional, noisy data. Specifically, I plan to continue exploring the efficacy of the diffusion map method of data transformation, used in conjunction with the Nystr¨omextension, in uncovering underlying structure in complicated, high-dimensional data sets. I will explore models that effectively exploit this structure to accurately estimate scien- tific parameters of interest. Additionally, I will formulate multi-scale methods that generate data-driven bases within local partitions to allow for the modeling of more complicated data. The proposed methods will be tested on three research problems in astrophysics: estimation of star formation history (SFH) in galaxies using spectra from the Sloan Digital Sky Survey (SDSS), photometric redshift estimation using data from the SDSS Photometric Survey and the Canada-France-Hawaii Telescope Legacy Survey, and detection of classes of quasar and outliers using SDSS spectra. Preliminary work has already shown promise in the proposed methods for both SFH estimation (Richards et al. 2009) and photometric redshift estimation (Freeman et al. 2009). 1 Astronomical survey data Technological advancements in observational astronomy have caused a recent flood of astronomical surveys that collect data from billions of objects.1 Modern surveys amass data for different
    [Show full text]
  • Astro2010: the Astronomy and Astrophysics Decadal Survey
    Astro2010: The Astronomy and Astrophysics Decadal Survey Notices of Interest 1. 4 m space telescope for terrestrial planet imaging and wide field astrophysics Point of Contact: Roger Angel, University of Arizona Summary Description: The proposed 4 m telescope combines capabilities for imaging terrestrial exoplanets and for general astrophysics without compromising either. Extremely high contrast imaging at very close inner working angle, as needed for terrestrial planet imaging, is accomplished by the powerful phase induced amplitude apodization method (PIAA) developed by Olivier Guyon. This method promises 10-10 contrast at 2.0 l/D angular separation, i.e. 50 mas for a 4 m telescope at 500 nm wavelength. The telescope primary mirror is unobscured with off-axis figure, as needed to achieve such high contrast. Despite the off-axis primary, the telescope nevertheless provides also a very wide field for general astrophysics. A 3 mirror anastigmat design by Jim Burge delivers a 6 by 24 arcminute field whose mean wavefront error of 12 nm rms, i.e.diffraction limited at 360 nm wavelength. Over the best 10 square arcminutes the rms error is 7 nm, for diffraction limited imaging at 200 nm wavelength. Any of the instruments can be fed by part or all of the field, by means of a flat steering mirror at the exit pupil. To allow for this, the field is curved with a radius equal to the distance from the exit pupil. The entire optical system fits in a 4 m diameter cylinder, 8 m long. Many have considered that only by using two spacecraft, a conventional on-axis telescope and a remote occulter, could high contrast and wide field imaging goals be reconciled.
    [Show full text]
  • Atlas: a High-Cadence All-Sky Survey System
    Draft version March 30, 2018 Typeset using LATEX preprint style in AASTeX61 ATLAS: A HIGH-CADENCE ALL-SKY SURVEY SYSTEM J. L. Tonry,1 L. Denneau,1 A. N. Heinze,1 B. Stalder,2 K. W. Smith,3 S. J. Smartt,3 C. W. Stubbs,4 H. J. Weiland,1 and A. Rest5, 6 1Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 2LSST, 950 N. Cherry Ave, Tucson, AZ 85719 3Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK 4Department of Physics, Harvard University, Cambridge, MA 02138, USA 5Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 6Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA ABSTRACT Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the \Asteroid Terrestrial-impact Last Alert System" (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m < 19) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence.
    [Show full text]