Therapeutic Potential of Venom Peptides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cone Snail Case
Cone Snail case Cone snail molecular phylogeny Cone snail video Snail Venom Yields Potent Painkiller, But Delivering The Drug Is Tricky Updated August 4, 201510:52 AM ETPublished August 3, 20153:30 PM ET http://www.npr.org/sections/health-shots/2015/08/03/428990755/snail-venom- yields-potent-painkiller-but-delivering-the-drug-is-tricky Magician’s cone (Conus magus) The magician’s cone, Conus magus, is a fish-hunting, or piscivorous cone snail found in the Western Pacific. It is so common in some of small Pacific islands, especially in the Philippines, that it is routinely sold in the market as food. The magician’s cone attacks its fish prey by sticking out its light yellowish proboscis, from which venom is pushed through a harpoon-like tooth. It hunts by the hook-and-line method and so will engulf its prey after it has been paralyzed. To learn more about hook-and-line hunters, click here. Scientists have analyzed the venom of the magician’s cone and one of its venom components was discovered to have a unique pharmacological activity by blocking a specific calcium channel (N-type). After this venom component was isolated and characterized in a laboratory, researchers realized that it had potential medical application. By blocking N-type calcium channels, the venom blocks channels that when open convey pain from nerve cells. If this is blocked, the brain cannot perceive these pain signals. It was developed as a pain management drug, and is now chemically synthesized and sold under the trade name Prialt. This drug is given to patients who have very severe pain that is not alliviated by morphine. -
Shell Classification – Using Family Plates
Shell Classification USING FAMILY PLATES YEAR SEVEN STUDENTS Introduction In the following activity you and your class can use the same techniques as Queensland Museum The Queensland Museum Network has about scientists to classify organisms. 2.5 million biological specimens, and these items form the Biodiversity collections. Most specimens are from Activity: Identifying Queensland shells by family. Queensland’s terrestrial and marine provinces, but These 20 plates show common Queensland shells some are from adjacent Indo-Pacific regions. A smaller from 38 different families, and can be used for a range number of exotic species have also been acquired for of activities both in and outside the classroom. comparative purposes. The collection steadily grows Possible uses of this resource include: as our inventory of the region’s natural resources becomes more comprehensive. • students finding shells and identifying what family they belong to This collection helps scientists: • students determining what features shells in each • identify and name species family share • understand biodiversity in Australia and around • students comparing families to see how they differ. the world All shells shown on the following plates are from the • study evolution, connectivity and dispersal Queensland Museum Biodiversity Collection. throughout the Indo-Pacific • keep track of invasive and exotic species. Many of the scientists who work at the Museum specialise in taxonomy, the science of describing and naming species. In fact, Queensland Museum scientists -
BAST1986050004005.Pdf
BASTERIA, 50: 93-150, 1986 Alphabetical revision of the (sub)species in recent Conidae. 9. ebraeus to extraordinarius with the description of Conus elegans ramalhoi, nov. subspecies H.E. Coomans R.G. Moolenbeek& E. Wils Institute of Taxonomic Zoology (Zoological Museum) University of Amsterdam INTRODUCTION In this ninth part of the revision all names of recent Conus taxa beginning with the letter e are discussed. Amongst these are several nominal species of tent-cones with a C.of close-set lines, the shell a darker pattern consisting very giving appearance (e.g. C. C. The elisae, euetrios, eumitus). phenomenon was also mentioned for C. castaneo- fasciatus, C. cholmondeleyi and C. dactylosus in former issues. This occurs in populations where with normal also that consider them specimens a tent-pattern are found, so we as colour formae. The effect is known shells in which of white opposite too, areas are present, leaving 'islands' with the tent-pattern (e.g. C. bitleri, C. castrensis, C. concatenatus and C. episco- These colour formae. patus). are also art. Because of a change in the rules of the ICZN (3rd edition, 1985: 73-74), there has risen a disagreement about the concept of the "type series". In cases where a museum type-lot consists of more than one specimen, although the original author(s) did not indicate that more than one shell was used for the description, we will designate the single originally mentioned and/or figured specimen as the "lectotype". Never- theless a number of taxonomists will consider that "lectotype" as the holotype, and disregard the remaining shells in the lot as type material. -
Pharmacological Modulation of Processes Contributing to Spinal Hyperexcitability: Electrophysiological Studies in the Rat
Pharmacological modulation of processes contributing to spinal hyperexcitability: electrophysiological studies in the rat. By Katherine J Carpenter A thesis submitted to the University of London for the degree of Doctor of Philosophy Department of Pharmacology University College London Gower Street London WC1E6BT ProQuest Number: U642184 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642184 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Two of the most effective analgesic strategies in man are (i) blockade of the NMDA receptor for glutamate, which plays a major role in nociceptive transmission and (ii) augmentation of inhibitory systems, exemplified by the use of ketamine and the opioids respectively. Both are, however, are associated with side effects. Potential novel analgesic targets are investigated here using in vivo electrophysiology in the anaesthetised rat with pharmacological manipulation of spinal neuronal transmission. Three different approaches were used to target NMDA receptors: (i) glycine site antagonists (Mrz 2/571 and Mrz 2/579), (ii) antagonists selective for receptors containing the NR2B subunit (ifenprodil and ACEA-1244), (iii) elevating the levels of N-acetyl-aspartyl- glutamate (NAAG), an endogenous peptide, by inhibition of its degradative enzyme. -
A Transcriptomic Survey of Ion Channel-Based Conotoxins in the Chinese Tubular Cone Snail (Conus Betulinus)
marine drugs Article A Transcriptomic Survey of Ion Channel-Based Conotoxins in the Chinese Tubular Cone Snail (Conus betulinus) Yu Huang 1,2,†, Chao Peng 2,†, Yunhai Yi 1,2, Bingmiao Gao 3 and Qiong Shi 1,2,4,* 1 BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; [email protected] (Y.H.); [email protected] (Y.Y.) 2 Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; [email protected] 3 Hainan Provincial Key Laboratory of Research and Development of Tropical Medicinal Plants, Hainan Medical University, Haikou 571199, China; [email protected] 4 Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China * Correspondence: [email protected]; Tel.: +86-185-6627-9826 † These authors contributed equally to this work. Received: 31 May 2017; Accepted: 13 July 2017; Published: 18 July 2017 Abstract: Conotoxins in the venom of cone snails (Conus spp.) are a mixture of active peptides that work as blockers, agonists, antagonists, or inactivators of various ion channels. Recently we reported a high-throughput method to identify 215 conotoxin transcripts from the Chinese tubular cone snail, C. betulinus. Here, based on the previous datasets of four transcriptomes from three venom ducts and one venom bulb, we explored ion channel-based conotoxins and predicted their related ion channel receptors. Homologous analysis was also performed for the most abundant ion channel protein, voltage-gated potassium (Kv; with Kv1.1 as the representative), and the most studied ion channel receptor, nicotinic acetylcholine receptor (nAChR; with α2-nAChR as the representative), in different animals. -
Letter from the Desk of David Challinor December 1992 We Often
Letter from the Desk of David Challinor December 1992 We often identify poisonous animals as snakes even though no more than a quarter of these reptiles are considered venomous. Snakes have a particular problem that is ameliorated by venom. With nothing to hold its food while eating, a snake can only grab its prey with its open mouth and swallow it whole. Their jaws can unhinge which allows snakes to swallow prey larger in diameter than their own body. Clearly the inside of a snake's mouth and the tract to its stomach must be slippery enough for the prey animal to slide down whole, and saliva provides this lubricant. When food first enters our mouths and we begin to chew, saliva and the enzymes it contains immediately start to break down the material for ease of swallowing. We are seldom aware of our saliva unless our mouths become dry, which triggers us to drink. When confronted with a chocolate sundae or other favorite dessert, humans salivate. The very image of such "mouth watering" food and the anticipation of tasting it causes a reaction in our mouths which prepares us for a delightful experience. Humans are not the only animals that salivate to prepare for eating, and this fluid has achieved some remarkable adaptations in other creatures. scientists believe that snake venom evolved from saliva. Why it became toxic in certain snake species and not in others is unknown, but the ability to produce venom helps snakes capture their prey. A mere glancing bite from a poisonous snake is often adequate to immobilize its quarry. -
Venom Gland Transcriptomic and Proteomic
toxins Article Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components Carlos E. Santibáñez-López 1, Jimena I. Cid-Uribe 1, Cesar V. F. Batista 2, Ernesto Ortiz 1,* and Lourival D. Possani 1,* 1 Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico; [email protected] (C.E.S.-L.); [email protected] (J.I.C.-U.) 2 Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico; [email protected] * Correspondence: [email protected] (E.O.); [email protected] (L.D.P.); Tel.: +52-777-329-1647 (E.O.); +52-777-317-1209 (L.D.P.) Academic Editor: Richard J. Lewis Received: 25 October 2016; Accepted: 1 December 2016; Published: 9 December 2016 Abstract: Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. -
An in Vivo Examination of the Differences Between Rapid
www.nature.com/scientificreports OPEN An in vivo examination of the diferences between rapid cardiovascular collapse and prolonged hypotension induced by snake venom Rahini Kakumanu1, Barbara K. Kemp-Harper1, Anjana Silva 1,2, Sanjaya Kuruppu3, Geofrey K. Isbister 1,4 & Wayne C. Hodgson1* We investigated the cardiovascular efects of venoms from seven medically important species of snakes: Australian Eastern Brown snake (Pseudonaja textilis), Sri Lankan Russell’s viper (Daboia russelii), Javanese Russell’s viper (D. siamensis), Gaboon viper (Bitis gabonica), Uracoan rattlesnake (Crotalus vegrandis), Carpet viper (Echis ocellatus) and Puf adder (Bitis arietans), and identifed two distinct patterns of efects: i.e. rapid cardiovascular collapse and prolonged hypotension. P. textilis (5 µg/kg, i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms induced rapid (i.e. within 2 min) cardiovascular collapse in anaesthetised rats. P. textilis (20 mg/kg, i.m.) caused collapse within 10 min. D. russelii (100 µg/kg, i.v.) and D. siamensis (100 µg/kg, i.v.) venoms caused ‘prolonged hypotension’, characterised by a persistent decrease in blood pressure with recovery. D. russelii venom (50 mg/kg and 100 mg/kg, i.m.) also caused prolonged hypotension. A priming dose of P. textilis venom (2 µg/kg, i.v.) prevented collapse by E. ocellatus venom (50 µg/kg, i.v.), but had no signifcant efect on subsequent addition of D. russelii venom (1 mg/kg, i.v). Two priming doses (1 µg/kg, i.v.) of E. ocellatus venom prevented collapse by E. ocellatus venom (50 µg/kg, i.v.). B. gabonica, C. vegrandis and B. -
Toxicology in Antiquity
TOXICOLOGY IN ANTIQUITY Other published books in the History of Toxicology and Environmental Health series Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume I, May 2014, 978-0-12-800045-8 Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume II, September 2014, 978-0-12-801506-3 Wexler, Toxicology in the Middle Ages and Renaissance, March 2017, 978-0-12-809554-6 Bobst, History of Risk Assessment in Toxicology, October 2017, 978-0-12-809532-4 Balls, et al., The History of Alternative Test Methods in Toxicology, October 2018, 978-0-12-813697-3 TOXICOLOGY IN ANTIQUITY SECOND EDITION Edited by PHILIP WEXLER Retired, National Library of Medicine’s (NLM) Toxicology and Environmental Health Information Program, Bethesda, MD, USA Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright r 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). -
The Case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arachnologische Mitteilungen Jahr/Year: 2020 Band/Volume: 59 Autor(en)/Author(s): Nentwig Wolfgang, Blick Theo, Gloor Daniel, Jäger Peter, Kropf Christian Artikel/Article: How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020 How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) Wolfgang Nentwig, Theo Blick, Daniel Gloor, Peter Jäger & Christian Kropf doi: 10.30963/aramit5904 Abstract. When the museums of Lübeck, Stuttgart, Tübingen and partly of Wiesbaden were destroyed during World War II between 1942 and 1945, also all or parts of their type material were destroyed, among them types from spider species described by Embrik Strand bet- ween 1906 and 1917. He did not illustrate type material from 181 species and one subspecies and described them only in an insufficient manner. These species were never recollected during more than 110 years and no additional taxonomically relevant information was published in the arachnological literature. It is impossible to recognize them, so we declare these 181 species here as nomina dubia. Four of these species belong to monotypic genera, two of them to a ditypic genus described by Strand in the context of the mentioned species descriptions. Consequently, without including valid species, the five genera Carteroniella Strand, 1907, Eurypelmella Strand, 1907, Theumella Strand, 1906, Thianella Strand, 1907 and Tmeticides Strand, 1907 are here also declared as nomina dubia. Palystes modificus minor Strand, 1906 is a junior synonym of P. -
Slow Inactivation in Voltage Gated Potassium Channels Is Insensitive to the Binding of Pore Occluding Peptide Toxins
Biophysical Journal Volume 89 August 2005 1009–1019 1009 Slow Inactivation in Voltage Gated Potassium Channels Is Insensitive to the Binding of Pore Occluding Peptide Toxins Carolina Oliva, Vivian Gonza´lez, and David Naranjo Centro de Neurociencias de Valparaı´so, Facultad de Ciencias, Universidad de Valparaı´so, Valparaı´so, Chile ABSTRACT Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important features: i), both are sensitive to the occupancy of the pore by permeant ions or tetraethylammonium, and ii), both are critically affected by point mutations in the external vestibule. Thus, mutual interference between these two processes is expected. To explore the extent of the conformational change involved in Shaker slow inactivation, we estimated the energetic impact of such interference. We used kÿconotoxin-PVIIA (kÿPVIIA) and charybdotoxin (CTX) peptides that occlude the pore of Shaker K-channels with a simple 1:1 stoichiometry and with kinetics 100-fold faster than that of slow inactivation. Because inactivation appears functionally different between outside-out patches and whole oocytes, we also compared the toxin effect on inactivation with these two techniques. Surprisingly, the rate of macroscopic inactivation and the rate of recovery, regardless of the technique used, were toxin insensitive. We also found that the fraction of inactivated channels at equilibrium remained unchanged at saturating kÿPVIIA. -
Role of the Inflammasome in Defense Against Venoms
Role of the inflammasome in defense against venoms Noah W. Palm and Ruslan Medzhitov1 Department of Immunobiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520 Contributed by Ruslan Medzhitov, December 11, 2012 (sent for review November 14, 2012) Venoms consist of a complex mixture of toxic components that are Large, multiprotein complexes responsible for the activation used by a variety of animal species for defense and predation. of caspase-1, termed inflammasomes, are activated in response Envenomation of mammalian species leads to an acute inflamma- to various infectious and noninfectious stimuli (14). The activa- tory response and can lead to the development of IgE-dependent tion of inflammasomes culminates in the autocatalytic cleavage venom allergy. However, the mechanisms by which the innate and activation of the proenzyme caspase-1 and the subsequent – immune system detects envenomation and initiates inflammatory caspase-1 dependent cleavage and noncanonical (endoplasmic- – fl and allergic responses to venoms remain largely unknown. Here reticulum and Golgi-independent) secretion of the proin am- matory cytokines IL-1β and IL-18, which lack leader sequences. we show that bee venom is detected by the NOD-like receptor fl family, pyrin domain-containing 3 inflammasome and can trigger In addition, activation of caspase-1 leads to a proin ammatory cell death termed pyroptosis. The NLRP3 inflammasome con- activation of caspase-1 and the subsequent processing and uncon- “ ” ventional secretion of the leaderless proinflammatory cytokine sists of the sensor protein NLRP3, the adaptor apoptosis-as- sociated speck-like protein (ASC) and caspase-1. Damage to IL-1β in macrophages.