Crystal Structure of the MID-PIWI Lobe of a Eukaryotic Argonaute Protein

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Structure of the MID-PIWI Lobe of a Eukaryotic Argonaute Protein Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein Andreas Boland, Eric Huntzinger, Steffen Schmidt, Elisa Izaurralde1, and Oliver Weichenrieder1 Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany Edited by Jennifer A. Doudna, University of California, Berkeley, CA, and approved May 6, 2011 (received for review March 10, 2011) Argonaute proteins (AGOs) are essential effectors in RNA- involved in the micro-RNA (miRNA) pathway] contain a second, mediated gene silencing pathways. They are characterized by a allosteric nucleotide binding site with an affinity for m7GpppG bilobal architecture, in which one lobe contains the N-terminal cap analogs. However, considering the structures of the prokaryotic and PAZ domains and the other contains the MID and PIWI do- AGOs, it was unclear whether the putative second ligand-binding mains. Here, we present the first crystal structure of the MID-PIWI site would be accessible in the presence of the PIWI domain. lobe from a eukaryotic AGO, the Neurospora crassa QDE-2 protein. Toaddress this question and gain further molecular insight into Compared to prokaryotic AGOs, the domain orientation is con- eukaryotic AGOs, we determined the crystal structure of the served, indicating a conserved mode of nucleic acid binding. The entire MID-PIWI lobe of the Nc QDE-2 protein, tested its PIWI domain shows an adaptable surface loop next to a eukar- RNA-binding properties in vitro, and analyzed its implications yote-specific α-helical insertion, which are both likely to contact in vivo in the context of the Dm AGO1 protein. The structure the PAZ domain in a conformation-dependent manner to sense the provides a detailed, high-resolution view of the MID-PIWI inter- functional state of the protein. The MID-PIWI interface is hydrophi- face in a eukaryotic AGO protein and shows that the two domains lic and buries residues that were previously thought to participate are oriented very similarly to their prokaryotic counterparts, directly in the allosteric regulation of guide RNA binding. The inter- indicating a conserved mode of guide RNA/DNA strand recogni- face includes the binding pocket for the guide RNA 5′ end, and tion. However, despite these similarities, the PIWI-domain residues from both domains contribute to binding. Accordingly, exhibits eukaryote-specific structural features that might act as micro-RNA (miRNA) binding is particularly sensitive to alteration in sensors for the functional state of the protein. Finally, we show the MID-PIWI interface in Drosophila melanogaster AGO1 in vivo. that residues that have been implicated in allosteric regulation in The structure of the QDE-2 MID-PIWI lobe provides molecular and previous studies (21) are in fact involved in MID-PIWI interdo- mechanistic insight into eukaryotic AGOs and has significant impli- main interactions and contribute to guide RNA binding by cations for understanding the role of these proteins in silencing. stabilizing the MID-PIWI interface. roteins of the Argonaute (AGO) family play essential roles in Results PRNA-mediated gene silencing mechanisms in eukaryotes The Eukaryotic AGO MID-PIWI Lobe Adopts a Fold Highly Similar to the (1, 2). They are loaded with small noncoding RNAs to form the Prokaryotic Homologs. The Neurospora crassa Argonaute protein core of RNA-induced silencing complexes, which repress the QDE-2 (Nc QDE-2) is a close sequence homolog of eukaryotic expression of target genes at the transcriptional or posttran- AGOs that act in the small interfering RNA (siRNA) and miR- scriptional level (1, 2). The targets to be silenced are selected NA pathways [e.g., sequence identities with Hs AGO2 and Dm through base-pairing interactions between the loaded small RNA AGO1 are 30% and 29.7%, respectively (Fig. S1) (22, 23)]. We (also known as the guide RNA) and an mRNA target containing obtained diffracting crystals of a QDE-2 fragment containing the partially or fully complementary sequences (1–3). MID and PIWI domains (amino acids 506–938) and determined Thus far, structural information on full-length AGOs has been the structure at 3.65 Å resolution (crystal form I; Table S1). The available only for the homologous proteins from Archaea and structure revealed a disordered loop (loop L3, Fig. 1A, and Eubacteria, which preferentially use DNA as a guide (4–10). Fig. S1) including amino acids K786–A840 of the PIWI domain, These studies revealed that AGOs consist of four domains: the which we replaced with a Gly-Ser (GSG) linker to generate crys- N-terminal domain; the PAZ domain, which binds the 3′ end tals of a MID-PIWI ΔL3 protein that diffracted to 1.85 Å resolu- R of guide RNAs/DNAs; the MID domain, which provides a bind- tion. This structure (crystal form II) was refined to an work of ′ R ¼ 23 6% R ing pocket for the 5 phosphate of guide RNAs/DNAs; and the 19.6% ( free . ), whereas crystal form I yielded an work R ¼ 25 2% PIWI domain, which adopts an RNase H fold and has endonu- of 23.3% ( free . )(Table S1). cleolytic activity in some, but not all, AGOs (4–11). This structure reveals the details of a eukaryotic AGO MID- For the eukaryotic AGO clade of Argonaute proteins, structural PIWI lobe. The individual MID and PIWI domains superimpose information is available only for the isolated PAZ domains of well with the structures of previously determined archaeal and Drosophila melanogaster (Dm) AGO1 and AGO2, human AGO1 eubacterial AGO MID and PIWI domains (Fig. 1A vs. 1B and (12–16) and the MID domains of human AGO2 and Neurospora crassa (Nc) QDE-2 (17, 18). Structural information is also avail- able for PAZ domains of the PIWI clade of AGOs (19, 20). These Author contributions: A.B., E.I., and O.W. designed research; A.B., E.H., and O.W. performed research; A.B., E.H., S.S., E.I., and O.W. analyzed data; and A.B., E.I., and studies showed that the PAZ and MID domains of eukaryotic O.W. wrote the paper. AGOs adopt folds similar to the prokaryotic homologs and recog- The authors declare no conflict of interest. nize the 3′-and5′-terminal nucleotides of the guide strand, respec- This article is a PNAS Direct Submission. tively, in a similar manner to their prokaryotic counterparts (12–18). Our previous structure of the isolated Nc QDE-2 MID domain Freely available online through the PNAS open access option. revealed that the 5′-nucleotide binding site shares residues with a Data deposition: The accession codes and coordinates of the QDE-2 MID-PIWI lobe and ′ MID-PIWI ΔL3 have been deposited in the Protein Data Bank, www.pdb.org (PDB ID codes second, adjacent sulfate ion-binding site, suggesting that the 5 - 2yhb and 2yha). terminal nucleotide of the guide RNA and a second ligand may bind 1To whom correspondence may be addressed. E-mail: [email protected] cooperatively to the MID domain of eukaryotic AGOs (17). These or [email protected]. findings supported the observation of Djuranovic et al. (21) that This article contains supporting information online at www.pnas.org/lookup/suppl/ the isolated MID domains of certain eukaryotic AGOs [i.e., those doi:10.1073/pnas.1103946108/-/DCSupplemental. 10466–10471 ∣ PNAS ∣ June 28, 2011 ∣ vol. 108 ∣ no. 26 www.pnas.org/cgi/doi/10.1073/pnas.1103946108 Downloaded by guest on September 27, 2021 here to the AGO clade, which contains Nc QDE-2 and eukaryotic AGOs involved in the siRNA and miRNA pathways. The PIWI Domain and the Interaction with Target mRNA. The PIWI domain of Nc QDE-2 (residues H644–I938) adopts an RNase H fold with a catalytically active DDD motif, which is less common than the DDH motif present in most eukaryotic AGOs (Fig. S1). A structure-based alignment (Fig. S1) identified a series of loops on the putative nucleic acid-binding surface of the PIWI domain [Fig. 1A, loops L1 (H667–P681), L2 (G746–Q751), L3 (K788– A840), and L4 (F873–I882)]. Their significance is best under- stood in the context of a double stranded nucleic acid substrate that can be placed on the QDE-2 MID-PIWI lobe by the struc- tural superposition with Thermus thermophilus AGO-nucleic acid complex [Fig. 1 B and C; Protein Data Bank (PDB) ID code 3HJF; ref. 10]. In this particular model substrate, the 3′ end of the guide DNA strand is not anchored in the PAZ domain. Instead, nucleotides 2 to 15 of the guide DNA are base-paired to an RNA target strand, forming a duplex extending beyond the seed sequence (see Fig. 1D for a numbering of the respective nucleotides), which is typical for siRNA targets but rather rare for animal miRNA targets (3). The scissile bond of the model target strand (between nucleo- tides 10′ and 11′) fits nicely in the catalytic site (Fig. 2 A and B), and loop L2 is perfectly positioned to probe the minor groove of the duplex (base pair 13) with S748 (Fig. 2 C and D). Loop L2 is highly conserved in all eukaryotic AGOs and likely fixes the phos- phodiester backbone of the target strand (nucleotides 12′ and 13′) via E749 and nucleotide 14 from the guide strand via Q751 (Fig. 2 C and D) in cases where the downstream duplex is formed (e.g., in the case of fully complementary targets). Loop L3 is disordered in crystal form I and was deleted in crys- tal form II. Judging from the prokaryotic AGO structures, the central parts of this loop likely organize the missing lobe (contain- ing the N-term and PAZ domains) of the AGO protein (Fig. S2B), whereas the N-terminal residues of loop L3 [including the con- served K786 (Fig.
Recommended publications
  • Epigenetic Roles of PIWI‑Interacting Rnas (Pirnas) in Cancer Metastasis (Review)
    ONCOLOGY REPORTS 40: 2423-2434, 2018 Epigenetic roles of PIWI‑interacting RNAs (piRNAs) in cancer metastasis (Review) JIA LIU1, SHUJUN ZHANG2 and BINGLIN CHENG1 1Department of Integrated Traditional Chinese and Western Medicine Oncology, The First Affiliated Hospital of Harbin Medical University; 2Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China Received March 19, 2018; Accepted September 3, 2018 DOI: 10.3892/or.2018.6684 Abstract. P-element-induced wimpy testis (PIWI)-interacting 7. Epigenetics of ncRNAs in cancer RNAs (piRNAs) are epigenetic-related short ncRNAs that 8. Discussion participate in chromatin regulation, transposon silencing, and modification of specific gene sites. These epigenetic factors or alterations are also involved in the growth of a variety 1. Introduction of human cancers, including lung, breast, and colon cancer. Accumulating evidence has revealed that tumor metastasis P-element-induced wimpy testis (PIWI)-interacting RNAs and invasion involve genetic and epigenetic factors. Cancer (piRNAs) belong to a new class of ncRNAs that have been asso- metastasis is characterized by epigenetic alterations including ciated with many cancers (1). piRNAs are involved in the gene DNA methylation and histone modification. Changes in DNA regulation process in which certain nucleotides bind coding methylation, H3K9me3 heterochromatin and transposable regions in gene promoters (2). piRNAs function in the epigen- elements have been detected in several cancers. piRNAs may etic regulation of DNA methylation (3), transposable silencing function in gene silencing and gene modification upstream and chromatin modification (4). PIWI is a type of Argonaute or downstream of oncogenes in cancer cell lines or cancer protein that binds to piRNAs and carries out unique functions tissues.
    [Show full text]
  • Piwi-Interacting Rnas and PIWI Genes As Novel Prognostic Markers for Breast Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 25 Research Paper Piwi-interacting RNAs and PIWI genes as novel prognostic markers for breast cancer Preethi Krishnan1, Sunita Ghosh2,3, Kathryn Graham2,3, John R. Mackey2,3, Olga Kovalchuk4, Sambasivarao Damaraju1,3 1Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada 2Department of Oncology, University of Alberta, Edmonton, Alberta, Canada 3Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada 4Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada Correspondence to: Sambasivarao Damaraju, email: [email protected] Keywords: piRNA, PIWI, breast cancer, prognostic marker, TCGA Received: January 13, 2016 Accepted: April 28, 2016 Published: May 10, 2016 ABSTRACT Piwi-interacting RNAs (piRNAs), whose role in germline maintenance has been established, are now also being classified as post-transcriptional regulators of gene expression in somatic cells. PIWI proteins, central to piRNA biogenesis, have been identified as genetic and epigenetic regulators of gene expression. piRNAs/PIWIs have emerged as potential biomarkers for cancer but their relevance to breast cancer has not been comprehensively studied. piRNAs and mRNAs were profiled from normal and breast tumor tissues using next generation sequencing and Agilent platforms, respectively. Gene targets for differentially expressed piRNAs were identified from mRNA expression dataset. piRNAs and PIWI genes were independently assessed for their prognostic significance (outcomes: Overall Survival, OS and Recurrence Free Survival, RFS). We discovered eight piRNAs as novel independent prognostic markers and their association with OS was confirmed in an external dataset (The Cancer Genome Atlas). Further, PIWIL3 and PIWIL4 genes showed prognostic relevance. 306 gene targets exhibited reciprocal relationship with piRNA expression.
    [Show full text]
  • The Other Face of Piwi Plant Gene Editing Improved
    RESEARCH HIGHLIGHTS NON-CODING RNA The other face of PIWI Spermiogenesis involves gradual with 3ʹUTRs of the target mRNAs; Credit: S. Bradbrook/Springer Nature Limited chromatin compaction and trans- reporter protein levels but not cription shut-down. mRNAs that mRNA levels increased, implicating activation. Translation of hundreds are transcribed in spermatocytes translation in reporter activation. of mRNAs co-targeted by piRNA and early-round spermatids are Activation of the target-mRNA and HuR was dependent on MIWI, stored as translationally inactive reporters required piRNA–3ʹUTR indicating that they are direct targets ribonucleoproteins until later during base-pairing and 3ʹUTR binding by of this selective mechanism of spermiogenesis, when their trans- functional MIWI. Screening for translation activation. lation is activated, but how this MIWI-interacting proteins revealed The proteins encoded by activation occurs is largely unknown. that eukaryotic translation initiation two of the five original target PIWI proteins and PIWI-interacting factor 3f (eIF3f) directly interacted mRNAs are essential for sperm RNAs (piRNAs) are essential for with MIWI and was also required MIWI– acrosome formation. Indeed, gametogenesis as they suppress for reporter activation. The activated piRNAs severe acrosome defects were found the expression of transposons and 3ʹUTRs included AU-rich elements … in MIWI-depleted spermatids mRNAs. Dai et al. now show that (AREs) that are bound by HuR, interact with owing to considerable decrease in mouse PIWI (MIWI)–piRNAs which is an RNA-binding protein eIF3f–HuR and the levels of the two proteins. are the core of a complex required known to interact with another other proteins Thus, although MIWI–piRNAs for selective mRNA translation translation factor, eIF4G3, for trans- are mostly known for gene silencing, in spermatids.
    [Show full text]
  • The PIWI Protein Aubergine Recruits Eif3 to Activate Translation in the Germ Plasm
    www.nature.com/cr www.cell-research.com ARTICLE OPEN The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm Anne Ramat1, Maria-Rosa Garcia-Silva1, Camille Jahan1, Rima Naït-Saïdi1, Jérémy Dufourt 1,5, Céline Garret1, Aymeric Chartier1, Julie Cremaschi1, Vipul Patel1, Mathilde Decourcelle 2, Amandine Bastide3, François Juge 4 and Martine Simonelig 1 Piwi-interacting RNAs (piRNAs) and PIWI proteins are essential in germ cells to repress transposons and regulate mRNAs. In Drosophila, piRNAs bound to the PIWI protein Aubergine (Aub) are transferred maternally to the embryo and regulate maternal mRNA stability through two opposite roles. They target mRNAs by incomplete base pairing, leading to their destabilization in the soma and stabilization in the germ plasm. Here, we report a function of Aub in translation. Aub is required for translational activation of nanos mRNA, a key determinant of the germ plasm. Aub physically interacts with the poly(A)-binding protein (PABP) and the translation initiation factor eIF3. Polysome gradient profiling reveals the role of Aub at the initiation step of translation. In the germ plasm, PABP and eIF3d assemble in foci that surround Aub-containing germ granules, and Aub acts with eIF3d to promote nanos translation. These results identify translational activation as a new mode of mRNA regulation by Aub, highlighting the versatility of PIWI proteins in mRNA regulation. Cell Research (2020) 30:421–435; https://doi.org/10.1038/s41422-020-0294-9 1234567890();,: INTRODUCTION directly interacts with the Oskar (Osk) protein that is specifically Translational control is a widespread mechanism to regulate synthesized at the posterior pole of oocytes and embryos and gene expression in many biological contexts.
    [Show full text]
  • Argonaute Proteins at a Glance Christine Ender and Gunter Meister
    Cell Science at a Glance 1819 Argonaute proteins at a RNAs) – ncRNAs that are characteristically Biogenesis of miRNAs and siRNAs ~20-35 nucleotides long – are required for miRNAs glance the regulation of gene expression in many Generally, miRNAs are transcribed by RNA different organisms. Most small RNA species polymerase II or III to form stem-loop-structured Christine Ender1 and Gunter fall into one of the following three classes: primary miRNA transcripts (pri-miRNAs). pri- Meister1,2,* microRNAs (miRNAs), short-interfering RNAs miRNAs are processed in the nucleus by the 1 Center for Integrated Protein Science Munich (siRNAs) and Piwi-interacting RNAs (piRNAs) microprocessor complex, which contains (CIPSM), Laboratory of RNA Biology, Max-Planck- Institute of Biochemistry, Am Klopferspitz 18, 82152 (Carthew and Sontheimer, 2009). Although the RNAse III enzyme Drosha and its DiGeorge Martinsried, Germany different small RNA classes have different syndrome critical region gene 8 (DGCR8) 2University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany bio genesis pathways and exert different cofactor. The transcripts are cleaved at the stem *Author for correspondence functions, all of them must associate with a of the hairpin to produce a stem-loop- ([email protected]) member of the Argonaute protein family for structured miRNA precursor (pre-miRNA) of Journal of Cell Science 123, 1819-1823 activity. This article and its accompanying ~70 nucleotides. After this first processing step, © 2010. Published by The Company of Biologists Ltd poster provide an overview of the different pre-miRNAs are exported into the cytoplasm by doi:10.1242/jcs.055210 classes of small RNAs and the manner in which exportin-5, where they are further processed they interact with Argonaute protein family by the RNAse III enzyme Dicer and its TRBP Although a large portion of the human genome members during small-RNA-guided gene (HIV transactivating response RNA-binding is actively transcribed into RNA, less than 2% silencing.
    [Show full text]
  • Genetic Insight Into the Domain Structure and Functions of Dicer-Type Ribonucleases
    International Journal of Molecular Sciences Review Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases Kinga Ciechanowska, Maria Pokornowska and Anna Kurzy ´nska-Kokorniak* Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; [email protected] (K.C.); [email protected] (M.P.) * Correspondence: [email protected]; Tel.: +48-61-852-85-03 (ext. 1264) Abstract: Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
    [Show full text]
  • Function of Piwi, a Nuclear Piwi/Argonaute Protein, Is Independent of Its Slicer Activity
    Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity Nicole Darricarrère, Na Liu, Toshiaki Watanabe, and Haifan Lin1 Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06509 Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved December 11, 2012 (received for review August 1, 2012) The Piwi protein subfamily is essential for Piwi-interacting RNA classical epigenetic phenotypes in Drosophila (15, 17, 18). These (piRNA) biogenesis, transposon silencing, and germ-line develop- observations led us to propose that piRNA molecules can guide ment, all of which have been proposed to require Piwi endonuclease Piwi to specific genomic loci by sequence complementarity, activity, as validated for two cytoplasmic Piwi proteins in mice. where Piwi recruits epigenetic modifiers (17–19). In this epige- However, recent evidence has led to questioning of the generality netic model, the slicer activity of Piwi seems superfluous. Indeed, of this mechanism for the Piwi members that reside in the nucleus. the involvement of the slicer activity of Piwi has been questioned Drosophila offers a distinct opportunity to study the function of recently based on experiments performed in an ovarian somatic nuclear Piwi proteins because, among three Drosophila Piwi pro- cell line (20). However, this analysis was not definitive. It was teins—called Piwi, Aubergine, and Argonaute 3—Piwi is the only based on a single cultured cell type, relied on RNAi that only member of this subfamily that is localized in the nucleus and incompletely reduced endogenous levels of Piwi and tested only expressed in both germ-line and somatic cells in the gonad, where one transposon element.
    [Show full text]
  • Aberrant Expression of Select Pirna-Pathway Genes Does Not
    Aberrant expression of select piRNA-pathway genes BRIEF REPORT does not reactivate piRNA silencing in cancer cells Pavol Genzora, Seth C. Cordtsa, Neha V. Bokila, and Astrid D. Haasea,1 aNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 Edited by Brigid L. M. Hogan, Duke University Medical Center, Durham, NC, and approved April 30, 2019 (received for review March 15, 2019) Germline genes that are aberrantly expressed in nongermline the slicer activity of PIWIL2 (HILI) and the RNA helicase DDX4/ cancer cells have the potential to be ideal targets for diagnosis and VASA (13) (Fig. 1E). We did not observe aberrant expression of therapy due to their restricted physiological expression, their DDX4/VASA in any nongermline cancer (Fig. 1 B–D), eliminating the broad reactivation in various cancer types, and their immunogenic possibility of reactivated ping-pong processing, and thus focused our properties. Among such cancer/testis genes, components of the analysis on potential PLD6/ZUC-dependent piRNA production. Be- PIWI-interacting small RNA (piRNA) pathway are of particular inter- cause of high sequence diversity and lack of sequence conservation, est, as they control mobile genetic elements (transposons) in germ piRNAs are best defined by their interaction with PIWI proteins, cells and thus hold great potential to counteract genome instability according to their initial definition as PIWI-interacting RNAs (11, 14). in cancer. Here, we systematically investigate the potential reac- Echoing the phenomenon of cancer/germline gene-expression in pri- mary tumor samples [The Cancer Genome Atlas (TCGA)], some tivation of functional piRNA-silencing mechanisms in the aberrant cancer cell lines exhibit aberrant expression of piRNA-pathway com- context.
    [Show full text]
  • PIWI Proteins and Cancer Survival: a Meta-Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/663468; this version posted June 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PIWI proteins as prognostic markers in cancer: a systematic review and meta-analysis Running title: PIWI proteins and cancer survival: a meta-analysis Alexios-Fotios A. Mentis1,2, #, Efthimios Dardiotis3, #, Athanassios G. Papavassiliou4, * 1 Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece 2 Department of Microbiology, University Hospital of Thessaly, Larissa, Greece 3 Department of Neurology, University Hospital of Thessaly, Larissa, Greece 4 Department of Biological Chemistry, National and Kapodistrian University of Athens Medical School, Athens, Greece # Equal contribution *Corresponding author: Prof. Athanasios G. Papavassiliou, M.D., Ph.D. Professor, Department of Biological Chemistry National and Kapodistrian University of Athens Medical School 115 21 Athens, Greece Telephone: +30-210-7462508; E-mail: [email protected] Financial support: None Conflict of Interest: None Word count: 6,166 words Total number of figures: 8 (and 4 supplementary figures) Total number of Tables: 3 (and 1 supplementary table) bioRxiv preprint doi: https://doi.org/10.1101/663468; this version posted June 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Background: PIWI proteins, which interact with piRNAs, are implicated in stem cell and germ cell regulation, but have been detected in various cancers, as well. Objectives: In this systematic review, we explored, for the first time in the literature (to our knowledge), the association between prognosis in patients with cancer and intratumoral expression of PIWI proteins.
    [Show full text]
  • Title Comprehensive Classification of the Rnase H-Like Domain-Containing Proteins in Plants
    bioRxiv preprint doi: https://doi.org/10.1101/572842; this version posted January 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title Comprehensive Classification of the RNase H-like domain-containing Proteins in Plants Shuai Li, Kunpeng Liu, and Qianwen Sun# Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China # Corresponding author Qianwen Sun: [email protected]. Abstract Background R-loop is a nucleic acid structure containing an RNA-DNA hybrid and a displaced single-stranded DNA. Recently, accumulated evidence showed that R-loops widely present in various organisms’ genomes and are involved in many physiological processes, including DNA replication, RNA transcription, and DNA repair. RNase H-like superfamily (RNHLS) domain-containing proteins, such as RNase H enzymes, are essential in restricting R-loop levels. However, little is known about the function and relationship of other RNHLS proteins on R-loop regulation, especially in plants. Results In this study, we characterized 6193 RNHLS proteins from 13 representative plant species and clustered these proteins into 27 clusters, among which reverse transcriptases and exonucleases are the two largest groups. Moreover, we found 691 RNHLS proteins in Arabidopsis with a conserved catalytic alpha-helix and beta-sheet motif. Interestingly, each of the Arabidopsis RNHLS proteins is composed of not only an RNHLS domain but also another different protein domain.
    [Show full text]
  • Abundant Primary Pirnas, Endo-Sirnas, and Micrornas in a Drosophila Ovary Cell Line
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line Nelson C. Lau,1,2,6,7,8 Nicolas Robine,3,6 Raquel Martin,3 Wei-Jen Chung,3 Yuzo Niki,4 Eugene Berezikov,5 and Eric C. Lai3,8 1Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; 2Department of Genetics, Harvard Medical School. Boston, Massachusetts 02115, USA; 3Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA; 4Department of Sciences, Ibaraki University, Mito 310-8512, Japan; 5Hubrecht Institute and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands Piwi proteins, a subclass of Argonaute-family proteins, carry ;24–30-nt Piwi-interacting RNAs (piRNAs) that mediate gonadal defense against transposable elements (TEs). We analyzed the Drosophila ovary somatic sheet (OSS) cell line and found that it expresses miRNAs, endogenous small interfering RNAs (endo-siRNAs), and piRNAs in abundance. In contrast to intact gonads, which contain mixtures of germline and somatic cell types that express different Piwi-class proteins, OSS cells are a homogenous somatic cell population that expresses only PIWI and primary piRNAs. Detailed examination of its TE-derived piRNAs and endo-siRNAs revealed aspects of TE defense that do not rely upon ping-pong amplification. In particular, we provide evidence that a subset of piRNA master clusters, including flamenco, are specifically expressed in OSS and ovarian follicle cells. These data indicate that the restriction of certain TEs in somatic gonadal cells is largely mediated by a primary piRNA pathway.
    [Show full text]
  • S Nap S Hot: S Ma Ll
    SnapShot: Small RNA-Mediated RNA-Mediated SnapShot: Small Modifications Epigenetic Carthew and Richard Bei, Sigal Pressman, Yanxia Evanston, IL 60208, USA Northwestern University, Molecular Biology and Cell Biology, Department of Biochemistry, 756 Cell 130, August 24, 2007 ©2007 Elsevier Inc. DOI 10.1016/j.cell.2007.08.015 See online version for legend, abbreviations, and references. SnapShot: Small RNA-Mediated Epigenetic Modifications Yanxia Bei, Sigal Pressman, and Richard Carthew Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA (A) Heterochromatin Formation Although heterochromatin formation occurs in the nucleus, it is not clear in which cellular compartment the events leading up to small RNA-directed heterochromatin formation occur. A1: Heterochromatin Formation in Schizosaccharomyces pombe. DNA repeats produce double-stranded (ds)RNAs through bidirectional transcription or RNA- dependent RNA synthesis. dsRNAs are cut into small-interfering (si)RNAs that are loaded into an RNA-induced transcriptional silencing complex (RITS) that consists of Ago, Tas3, an S. pombe specific protein, and Chp1, a chromodomain containing protein. RITS finds the DNA repeats through siRNA base pairing with the nascent transcript and recruits the RNA-directed RNA polymerase complex (RDRC) and Clr4, a histone methyltransferase that methylates histone H3 at lysine 9 (H3K9me). RdRP in RDRC uses the Ago-cut nascent RNA as template to synthesize more dsRNA, which in turn will be cut into siRNAs to reinforce heterochromatin formation. Chp1 in the RITS complex binds to H3K9me, resulting in stable interaction of RITS and heterochromatic DNA. H3K9me also binds to another chromodomain protein, Swi6, an HP1 homolog, leading to the spreading of heterochromatin.
    [Show full text]