Dr Bruce Elmegreen CHAPTER 16

Total Page:16

File Type:pdf, Size:1020Kb

Dr Bruce Elmegreen CHAPTER 16 n Epilogue – Dr Bruce Elmegreen CHAPTER 16 There is what seems to be, and there is what is. We look but we cannot see what is. We build instruments that do our looking and still these instruments cannot see everything. There is no limitless gaze. The horizon curves, the fog muffl es, the lights and structures get fainter and fuzzier with distance. The redshift dims. Peeling back one layer leads only to another. This is the reality of the Universe in which we live. When we think we have it just right, we see an unimagined new rightness beneath. David Block and Kenneth Freeman have been looking and measuring, classifying and pon- dering the Universe for a long time. We are fortunate they shared their story with us. This is a story about the avalanche of insight that follows the discovery of new techniques: of giant telescopes built by hand all around the globe and of the mysteries the builders solved and revealed through their drawings; of the photographic process and the replacement of vision by chemical images; of electronic antennae, cameras, telescopes, and satellites that are sensi- tive to radio, infrared, ultraviolet, x-ray, and gamma ray light. It is a story of the shrouds of the night that were slowly peeled back, of galaxies viewed both inside and out, like the x-ray fi sh in Collette Archer’s painting below. The Universe around us is rich with structure in both density and temperature. Some of this structure reveals itself by the light it radiates, the long or the short wavelengths depending on temperature and extinction, the bright or the dim light depending on dis- tance, opacity, and power. Other structures emit no light at all, but show their presence only through gravity. Perhaps still others show their presence only through feeling. This is a very different Universe close to us than the Universe long ago and far away, which had much less structure, much more uniformity in temperature and density, and many fewer types of objects. It had no stars, no carbon or oxygen or other heavy nuclei, no galaxies An Epilogue – just elementary particles and their mutual forces. How that Universe, now mapped and 401 measured with modern instruments, turned into the Universe around us, is a story being told by countless pixels of digital data, month-long simulations on the largest comput- ers, and atom smashers that probe Big Bang energy densities. How that Universe sprung forth life that ponders and questions as we do is a story that still lies behind the thickest shroud. Dr Bruce Elmegreen is a senior research scientist at the IBM TJ Watson Research Center in New York. He completed his doctorate at Princeton University; his supervisor was the late Lyman Spitzer Jr, one of the fathers of modern astrophysics after whom the Spitzer Space Telescope is named. Dr Elmegreen then spent three years as a Junior Fellow in the Society of Fellows at Harvard University and joined IBM in 1984, after holding a Shrouds of the Night 402 faculty position at Columbia University. Dr Elmegreen was awarded the Dannie Hein- eman Prize in 2001 for theoretical studies of the interstellar medium, starbursts and the dynamics of spiral arms and bars in galaxies. A previous recipient of this prize was coauthor Kenneth Freeman. Dr Elmegreen has served on all three of the international Scientifi c Organizing Steering Committees for conferences on galaxy morphology and cosmic dust held on South African soil. Dr Elmegreen’s winning design for a medal to commemorate the Transit of Venus in 2004 was struck in both gold and silver. A gold medal was awarded to Dr Elmegreen by the Governor of the Reserve Bank of South Africa, Tito Mboweni. An Epilogue 403 Figure Captions CHAPTER 1 Figure 1 A view of Galileo’s town of birth, Pisa, as depicted in a leaf from Figure 6 In Middle-Age Europe, the Northern Lights were thought to the Nuremberg Chronicle published over 500 years ago, in 1493. The be refl ections of heavenly warriors. According to legend, soldiers who Nurmberg Chronicle (Liber Chronicarum) was written by the Nuremberg gave their lives for their king and country were allowed to battle on the physician Hartmann Schedel and was printed by Anton Koberger. skies forever, as a posthumous reward. (Reproduced from Photographic Atlas of Auroral Forms published by the International Geodetic and Figure 2 Papua New Guinea: the land of dancing masks. A photograph Geophysical Union, Oslo, 1930.) of an Asaro Mudman seen wearing his mask, in the Eastern Highlands of Papua New Guinea. Just as masks cover or shroud the human face, Figure 7 The grandeur of the Milky Way Galaxy celebrated by a group so too is our perception of the night sky inextricably intertwined by the of Aboriginals in Australia during a “walkabout.” Writes Aboriginal art- presence of cosmic masks. (Photograph: David L. Block.) ist Collette Archer: “Our people always use the stars to fi nd their way on walkabouts during the nights … Our people celebrate the full moon Figure 3 Customs in Papua New Guinea have remained unchanged for and dance with happiness. They always admire the stars as do myself.” centuries. Photographed near the town of Goroka is a group of Asaro (Artwork: Collette Archer, of the tribe Djunban in Far Northern Mudmen, wearing their haunting masks. In astronomy, cosmic dust grains Queensland, Australia.) act as enormously effective masks – much like a fog on Earth. An awesome new view of the cosmos unfolds as these cosmic masks are “penetrated” Figure 8 A stellar nursery, the Rosette Nebula, in our Milky Way Galaxy. using state-of-the-art infrared technology. (Photograph: David L. Block.) Young stars born toward the central regions of the Rosette Nebula have evacuated a grand cosmic cavity or “hole.” Seen silhouetted in the Figure 4 From the land of Papua New Guinea where masks still dance, a Rosette are numerous dark and imposing “elephant trunk” structures of human face is partially covered in a painted mask. The full moon itself is a cosmic dust. (Photograph: David L. Block.) mask, for it masks (or hides) myriads of fainter stars. In its brilliant light, only the very brightest of stars are seen. (Photograph: David L. Block.) Figure 9 Another view of the Rosette Nebula, secured at the European Southern Observatory on a mountain in the Atacama desert in north- Figure 5 What a foreboding sight the dancing Northern Lights, the ern Chile. The image has been photographically enhanced, to reveal Aurora Borealis, must have been, in an era when no scientifi c explana- features of exceptionally low surface brightness which are not appar- tion was known. (Reproduced from Photographic Atlas of Auroral Forms ent upon inspection by eye of the original glass negative. The Rosette published by the International Geodetic and Geophysical Union, Oslo, Nebula presents myriads of globules of cosmic dust. (Photograph: David 1930.) L. Block.) Figure Captions 405 Figure 10 The Seagull Nebula. Towering dynamics are at work here; a grains in interstellar space and photons from young, energetic stars gradu- veritable cosmic sculpture in the making. Bright rims of gas form ridges ally eroding the dark, dusty clouds. (Photograph: David L. Block.) upon dark clouds of dust. The Seagull’s head is located on the border of the constellations of Monoceros and Canis Majoris and it, too, is char- Figure 16 Resembling a seahorse, the Horsehead Nebula in the con- acterized by a prominent dark ridge of cosmic dust. (Photograph: David stellation of Orion is not a mere hole or chasm in the sky, but rather a L. Block.) distinct physical entity of swirling gas and cosmic dust. The Horsehead Nebula (of approximate dimensions 2.7 × 1.8 light years) is gradually Figure 11 The dark Universe. The dusty Universe. An area of star for- being eroded by the intense radiation of an energetic, nearby star; its mation in the constellation of Carina, spawning dark, opaque globules estimated lifetime is about 5 million years. (Photograph: European of cosmic dust. Dark globules are often the sites for protostars – stars in Southern Observatory.) the process of being born. Some globules may have grotesque shapes whereas others are almost spherical. The latter may have diameters less Figure 17 Shrouds of the Night: The enigmatic spiral galaxy known than 10 000 times the Earth–Sun distance; others may span diameters of as the “Sleeping Beauty,” struts its dark lanes of cosmic dust in a most a few light years. (Photograph: David L. Block.) dramatic fashion. Our challenge was to penetrate these dusty shrouds or masks and unveil cold (minus 210 degrees Centigrade) and very cold Figure 12 A spectacular star-forming region in the constellation of (minus 250 degrees Centigrade) cosmic dust grains in galaxies beyond Carina, known as NGC 3576 (object number 3576 in the “New General the Milky Way. (Photograph: John Kormendy.) Catalogue”). Gargantuan arcs of glowing hydrogen gas are evident. This object was discovered by Sir John Herschel during his visit to the Cape Figure 18 Shrouds of the Morning: Early morning mists in Canberra, as of Good Hope, South Africa. He recorded it as “Faint; oval.” The image photographed from the slopes of Mount Stromlo. The obscuring effects has been photographically enhanced to reveal the intricate beauty of the of the mist are extremely pronounced – hiding much of the valley below arcs as well as the dark globules of cosmic dust. (Photograph: David L. – even though the mist itself may be of negligible mass. (Photograph: Block.) David L. Block.) Figure 13 Clouds of dust lie sprawling across this wide-fi eld image of Figure 19 A bushfi re in Australia.
Recommended publications
  • OBSIDIAN: an INTERDISCIPLINARY Bffiliography
    OBSIDIAN: AN INTERDISCIPLINARY BffiLIOGRAPHY Craig E. Skinner Kim J. Tremaine International Association for Obsidian Studies Occasional Paper No. 1 1993 \ \ Obsidian: An Interdisciplinary Bibliography by Craig E. Skinner Kim J. Tremaine • 1993 by Craig Skinner and Kim Tremaine International Association for Obsidian Studies Department of Anthropology San Jose State University San Jose, CA 95192-0113 International Association for Obsidian Studies Occasional Paper No. 1 1993 Magmas cooled to freezing temperature and crystallized to a solid have to lose heat of crystallization. A glass, since it never crystallizes to form a solid, never changes phase and never has to lose heat of crystallization. Obsidian, supercooled below the crystallization point, remained a liquid. Glasses form when some physical property of a lava restricts ion mobility enough to prevent them from binding together into an ordered crystalline pattern. Aa the viscosity ofthe lava increases, fewer particles arrive at positions of order until no particle arrangement occurs before solidification. In a glaas, the ions must remain randomly arranged; therefore, a magma forming a glass must be extremely viscous yet fluid enough to reach the surface. 1he modem rational explanation for obsidian petrogenesis (Bakken, 1977:88) Some people called a time at the flat named Tok'. They were going to hunt deer. They set snares on the runway at Blood Gap. Adder bad real obsidian. The others made their arrows out of just anything. They did not know about obsidian. When deer were caught in snares, Adder shot and ran as fast as he could to the deer, pulled out the obsidian and hid it in his quiver.
    [Show full text]
  • SPHERE: the Exoplanet Imager for the Very Large Telescope J.-L
    Astronomy & Astrophysics manuscript no. paper c ESO 2019 October 4, 2019 SPHERE: the exoplanet imager for the Very Large Telescope J.-L. Beuzit1; 2, A. Vigan2, D. Mouillet1, K. Dohlen2, R. Gratton3, A. Boccaletti4, J.-F. Sauvage2; 7, H. M. Schmid5, M. Langlois2; 8, C. Petit7, A. Baruffolo3, M. Feldt6, J. Milli13, Z. Wahhaj13, L. Abe11, U. Anselmi3, J. Antichi3, R. Barette2, J. Baudrand4, P. Baudoz4, A. Bazzon5, P. Bernardi4, P. Blanchard2, R. Brast12, P. Bruno18, T. Buey4, M. Carbillet11, M. Carle2, E. Cascone17, F. Chapron4, J. Charton1, G. Chauvin1; 23, R. Claudi3, A. Costille2, V. De Caprio17, J. de Boer9, A. Delboulbé1, S. Desidera3, C. Dominik15, M. Downing12, O. Dupuis4, C. Fabron2, D. Fantinel3, G. Farisato3, P. Feautrier1, E. Fedrigo12, T. Fusco7; 2, P. Gigan4, C. Ginski15; 9, J. Girard1; 14, E. Giro19, D. Gisler5, L. Gluck1, C. Gry2, T. Henning6, N. Hubin12, E. Hugot2, S. Incorvaia19, M. Jaquet2, M. Kasper12, E. Lagadec11, A.-M. Lagrange1, H. Le Coroller2, D. Le Mignant2, B. Le Ruyet4, G. Lessio3, J.-L. Lizon12, M. Llored2, L. Lundin12, F. Madec2, Y. Magnard1, M. Marteaud4, P. Martinez11, D. Maurel1, F. Ménard1, D. Mesa3, O. Möller-Nilsson6, T. Moulin1, C. Moutou2, A. Origné2, J. Parisot4, A. Pavlov6, D. Perret4, J. Pragt16, P. Puget1, P. Rabou1, J. Ramos6, J.-M. Reess4, F. Rigal16, S. Rochat1, R. Roelfsema16, G. Rousset4, A. Roux1, M. Saisse2, B. Salasnich3, E. Santambrogio19, S. Scuderi18, D. Segransan10, A. Sevin4, R. Siebenmorgen12 C. Soenke12, E. Stadler1, M. Suarez12, D. Tiphène4, M. Turatto3, S. Udry10, F. Vakili11, L. B. F. M. Waters20; 15, L.
    [Show full text]
  • Review Section
    CSIRO PUBLISHING www.publish.csiro.au/journals/hras Historical Records of Australian Science, 2004, 15, 121–138 Review Section Compiled by Libby Robin Centre for Resource and Environmental Studies (CRES), Australian National University, Canberra, ACT, 0200, Australia. Email: [email protected] Tom Frame and Don Faulkner: Stromlo: loss of what he described as a ‘national an Australian observatory. Allen & Unwin: icon’. Sydney, 2003. xix + 363 pp., illus., ISBN 1 Institutional histories are often suffused 86508 659 2 (PB), $35. with a sense of inevitability. Looking back from the security of a firmly grounded present, the road seems straight and well marked. The journey that is reconstructed is one where the end point is always known, where uncertainties and diversions are forgotten — a journey that lands neatly on the institution’s front doorstep. Institu- tional histories are often burdened, too, by the expectation that they will not merely tell a story, but provide a record of achieve- ment. Written for the institution’s staff, as well as broader public, they can become bogged down in the details of personnel and projects. In this case, the fires of January 2003 add an unexpected final act Few institutional histories could boast such to what is a fairly traditional story of a dramatic conclusion as Stromlo: an Aus- growth and success. The force of nature tralian observatory. The manuscript was intervenes to remind us of the limits of substantially complete when a savage fire- inevitability, to fashion from the end point storm swept through the pine plantations another beginning. flanking Mount Stromlo, destroying all the The book is roughly divided into halves.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • General Index
    General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d.
    [Show full text]
  • A Walk with Dr Allan Sandage—Changing the History of Galaxy Morphology, Forever
    Lessons from the Local Group Kenneth Freeman • Bruce Elmegreen David Block • Matthew Woolway Editors Lessons from the Local Group A Conference in honour of David Block and Bruce Elmegreen 2123 Editors Kenneth Freeman David Block Australian National University University of the Witwatersrand Canberra Johannesburg Australia South Africa Bruce Elmegreen Matthew Woolway IBM T.J. Watson Research Center University of the Witwatersrand Yorktown Heights, New York Johannesburg United States South Africa Cover Photo: Set within 120 hectares of land with luxuriant and rare vegetation in the Seychelles Archipelago, the Constance Ephelia Hotel was selected as the venue for the Block-Elmegreen Conference held in May 2014. Seen in our cover photograph are one of the restaurants frequented by delegates - the Corossol Restaurant. The restaurant is surrounded by pools of tranquil waters; lamps blaze forth before dinner, and their reflections in the sur- rounding waters are breathtaking. The color blue is everywhere: from the azure blue skies above, to the waters below. Above the Corossol Restaurant is placed a schematic of a spiral galaxy. From macrocosm to microcosm. Never before has an astronomy group of this size met in the Seychelles. The cover montage was especially designed for the Conference, by the IT-Department at the Constance Ephelia Hotel. ISBN 978-3-319-10613-7 ISBN 978-3-319-10614-4 (eBook) DOI 10.1007/978-3-319-10614-4 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014953222 © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]
  • 12 Strong Gravitational Lenses
    12 Strong Gravitational Lenses Phil Marshall, MaruˇsaBradaˇc,George Chartas, Gregory Dobler, Ard´ısEl´ıasd´ottir,´ Emilio Falco, Chris Fassnacht, James Jee, Charles Keeton, Masamune Oguri, Anthony Tyson LSST will contain more strong gravitational lensing events than any other survey preceding it, and will monitor them all at a cadence of a few days to a few weeks. Concurrent space-based optical or perhaps ground-based surveys may provide higher resolution imaging: the biggest advances in strong lensing science made with LSST will be in those areas that benefit most from the large volume and the high accuracy, multi-filter time series. In this chapter we propose an array of science projects that fit this bill. We first provide a brief introduction to the basic physics of gravitational lensing, focusing on the formation of multiple images: the strong lensing regime. Further description of lensing phenomena will be provided as they arise throughout the chapter. We then make some predictions for the properties of samples of lenses of various kinds we can expect to discover with LSST: their numbers and distributions in redshift, image separation, and so on. This is important, since the principal step forward provided by LSST will be one of lens sample size, and the extent to which new lensing science projects will be enabled depends very much on the samples generated. From § 12.3 onwards we introduce the proposed LSST science projects. This is by no means an exhaustive list, but should serve as a good starting point for investigators looking to exploit the strong lensing phenomenon with LSST.
    [Show full text]
  • Magellanic Type Galaxies Throughout the Universe Eric M
    The Magellanic System: Stars, Gas, and Galaxies Proceedings IAU Symposium No. 256, 2008 c 2009 International Astronomical Union Jacco Th. van Loon & Joana M. Oliveira, eds. doi:10.1017/S1743921308028871 Magellanic type galaxies throughout the Universe Eric M. Wilcots Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 USA email: [email protected] Abstract. The Magellanic Clouds are often characterized as “irregular” galaxies, a term that implies an overall lack of organized structure. While this may be a fitting description of the Small Cloud, the Large Magellanic Cloud, contrary to popular opinion, should not be considered an irregular galaxy. It is characterized by a distinctive morphology of having an offset stellar bar and single spiral arm. Such morphology is relatively common in galaxies of similar mass throughout the local Universe, although explaining the origin of these features has proven challenging. Through a number of recent studies we are beginning to get a better grasp on what it means to be a Magellanic spiral. One key result of these works is that we now recognize that the most unique aspect of the Magellanic Clouds is not their structure, but, rather, their proximity to a larger spiral such as the Milky Way. Keywords. galaxies: dwarf, galaxies: evolution, galaxies: interactions, Magellanic Clouds, galax- ies: structure 1. Introduction While the Small Magellanic Cloud can properly be thought of as an irregular galaxy, the Large Magellanic Cloud shares a number of key morphological properties with a population of galaxies classified as Barred Magellanic Spirals (SBm). These properties include a stellar bar, the center of which may or may not be coincident with the dynamical center of the galaxy, a single, looping spiral arm, and often a large star-forming complex at one end of the bar.
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment
    EM AD IA C S A C I A E PONTIFICIAE ACADEMIAE SCIENTIARVM ACTA 24 I N C T I I F A I R T V N Edited by Werner Arber M O P Joachim von Braun Marcelo Sánchez Sorondo SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment Plenary Session | 25-29 November 2016 Casina Pio IV | Vatican City LIBRERIA EDITRICE VATICANA VATICAN CITY 2020 Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment Pontificiae Academiae Scientiarvm Acta 24 The Proceedings of the Plenary Session on Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment 25-29 November 2016 Edited by Werner Arber Joachim von Braun Marcelo Sánchez Sorondo EX AEDIBVS ACADEMICIS IN CIVITATE VATICANA • MMXX The Pontifical Academy of Sciences Casina Pio IV, 00120 Vatican City Tel: +39 0669883195 • Fax: +39 0669885218 Email: [email protected] • Website: www.pas.va The opinions expressed with absolute freedom during the presentation of the papers of this meeting, although published by the Academy, represent only the points of view of the participants and not those of the Academy. ISBN 978-88-7761-113-0 © Copyright 2020 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, recording, pho- tocopying or otherwise without the expressed written permission of the publisher. PONTIFICIA ACADEMIA SCIENTIARVM LIBRERIA EDITRICE VATICANA VATICAN CITY The climate is a common good, belonging to all and meant for all.
    [Show full text]
  • Thursday, December 22Nd Swap Meet & Potluck Get-Together Next First
    Io – December 2011 p.1 IO - December 2011 Issue 2011-12 PO Box 7264 Eugene Astronomical Society Annual Club Dues $25 Springfield, OR 97475 President: Sam Pitts - 688-7330 www.eugeneastro.org Secretary: Jerry Oltion - 343-4758 Additional Board members: EAS is a proud member of: Jacob Strandlien, Tony Dandurand, John Loper. Next Meeting: Thursday, December 22nd Swap Meet & Potluck Get-Together Our December meeting will be a chance to visit and share a potluck dinner with fellow amateur astronomers, plus swap extra gear for new and exciting equipment from somebody else’s stash. Bring some food to share and any astronomy gear you’d like to sell, trade, or give away. We will have on hand some of the gear that was donated to the club this summer, including mirrors, lenses, blanks, telescope parts, and even entire telescopes. Come check out the bargains and visit with your fellow amateur astronomers in a relaxed evening before Christmas. We also encourage people to bring any new gear or projects they would like to show the rest of the club. The meeting is at 7:00 on December 22nd at EWEB’s Community Room, 500 E. 4th in Eugene. Next First Quarter Fridays: December 2nd and 30th Our November star party was clouded out, along with a good deal of the month afterward. If that sounds familiar, that’s because it is: I changed the date in the previous sentence from October to November and left the rest of the sentence intact. Yes, our autumn weather is predictable. Here’s hoping for a lucky break in the weather for our two December star parties.
    [Show full text]
  • Telescope Proposals 21218 2014 the Burst of the Century - HST[Co-I]
    Rebekah Hounsell Astrophysicist Space Telescope Science Institute Research Positions 3700 San Martin Drive Baltimore Postdoctoral Researcher Space Telescope Science Institute. Maryland 21218 Education [email protected] 10/08 - 05/12 Doctor of Philosophy (PhD) ARI, John Moores University Liverpool, UK. rebekahhounsell.yolasite.com Doctoral Thesis: On the Outbursts and Environments of Classical and Recurrent Novae. Data Analysis & Supervisors: Prof. Michael Bode & Dr. Matthew Darnley. Modeling 09/04 - 07/08 Masters Degree in Astrophysics 1st class with Hons. (MPhys) Gnuplot The University of Liverpool, UK. Python Masters Thesis: A Catalogue of the Variable Population of the Excel Andromeda Galaxy. Shape Supervisor: Dr. Matthew Darnley. XS5 09/02 - 07/04 A-Levels The Sixth Form College Colchester, Colchester Essex, UK. Starlink Subjects: Physics, Mathematics, Further Mathematics (AS), Chemistry, Splat-VO Art (AS). Awarded grade A in each. Galfit IMFIT Grants & Awards Drizzlepac 2011 Royal Astronomical Society grant: Support to continue collaborations Tiny Tim with UCSD on data from the Solar Mass Ejection Imager (SMEI) - £450 (grant applicant) Photometry IRAF 2011 Royal Astronomical Society grant: Support to attend IAU symposium “New Horizons in Time Domain Astronomy” - £332 (grant applicant) PyRAF SExtractor 2010 Presentation Award: Post Graduate Research Day Oral - £500. ISIS Liverpool John Moores University, UK. Starlink 2010 Travel Grant: Funded a one month visit to San Diego (USA) to work with the solar physics group at the University of California San Diego and Spectroscopy the nova research group at San Diego State University. Research was IRAF conducted using data from the Solar Mass Ejection Imager (SMEI). Splat-VO Liverpool John Moores University, UK.
    [Show full text]