Globular and Open Clusters in Our Galaxy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Star Clusters
Star Clusters • Eventually, photons and stellar winds clear out the remaining gas and dust and leave behind the stars. • Reflection nebulae provide evidence for remaining dust on the far side of the Pleiades Star Clusters • It may be that all stars are born in clusters. • A good question is therefore why are most stars we see in the Galaxy not members of obvious clusters? • The answer is that the majority of newly-formed clusters are very weakly gravitationally bound. Perturbations from passing molecular clouds, spiral arms or mass loss from the cluster stars `unbind’ most clusters. Star Cluster Ages • We can use the H-R Diagram of the stars in a cluster to determine the age of the cluster. • A cluster starts off with stars along the full main sequence. • Because stars with larger mass evolve more quickly, the hot, luminous end of the main sequence becomes depleted with time. • The `main-sequence turnoff’ moves to progressively lower mass, L and T with time. • Young clusters contain short-lived, massive stars in their main sequence • Other clusters are missing the high-mass MSTO stars and we can infer the cluster age is the main-sequence lifetime of the highest mass star still on the main- sequence. 25Mo 3million years 104 3Mo 500Myrs 102 1M 10Gyr L o 1 0.5Mo 200Gyr 10-2 30000 15000 7500 3750 Temperature Star Clusters Sidetrip • There are two basic types of clusters in the Galaxy. • Globular Clusters are mostly in the halo of the Galaxy, contain >100,000 stars and are very ancient. • Open clusters are in the disk, contain between several and a few thousand stars and range in age from 0 to 10Gyr Galaxy Ages • Deriving galaxy ages is much harder because most galaxies have a star formation history rather than a single-age population of stars. -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
How to Make $1000 with Your Telescope! – 4 Stargazers' Diary
Fort Worth Astronomical Society (Est. 1949) February 2010 : Astronomical League Member Club Calendar – 2 Opportunities & The Sky this Month – 3 How to Make $1000 with your Telescope! – 4 Astronaut Sally Ride to speak at UTA – 4 Aurgia the Charioteer – 5 Stargazers’ Diary – 6 Bode’s Galaxy by Steve Tuttle 1 February 2010 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 Algol at Minima Last Qtr Moon Æ 5:48 am 11:07 pm Top ten binocular deep-sky objects for February: M35, M41, M46, M47, M50, M93, NGC 2244, NGC 2264, NGC 2301, NGC 2360 Top ten deep-sky objects for February: M35, M41, M46, M47, M50, M93, NGC 2261, NGC 2362, NGC 2392, NGC 2403 7 8 9 10 11 12 13 Algol at Minima Morning sports a Moon at Apogee New Moon Æ super thin crescent (252,612 miles) 8:51 am 7:56 pm Moon 8:00 pm 3RF Star Party Make use of the New Moon Weekend for . better viewing at the Dark Sky Site See Notes Below New Moon New Moon Weekend Weekend 14 15 16 17 18 19 20 Presidents Day 3RF Star Party Valentine’s Day FWAS Traveler’s Guide Meeting to the Planets UTA’s Maverick Clyde Tombaugh Ranger 8 returns Normal Room premiers on Speakers Series discovered Pluto photographs and NatGeo 7pm Sally Ride “Fat Tuesday” Ash Wednesday 80 years ago. impacts Moon. 21 22 23 24 25 26 27 Algol at Minima First Qtr Moon Moon at Perigee Å (222,345 miles) 6:42 pm 12:52 am 4 pm {Low in the NW) Algol at Minima Æ 9:43 pm Challenge binary star for month: 15 Lyncis (Lynx) Challenge deep-sky object for month: IC 443 (Gemini) Notable carbon star for month: BL Orionis (Orion) 28 Notes: Full Moon Look for a very thin waning crescent moon perched just above and slightly right of tiny Mercury on the morning of 10:38 pm Feb. -
Feb BACK BAY 2019
Feb BACK BAY 2019 The official newsletter of the Back Bay Amateur Astronomers CONTENTS COMING UP Gamma Burst 2 Feb 7 BBAA Meeting Eclipse Collage 3 7:30-9PM TCC, Virginia Beach NSN Article 6 Heart Nebula 7 Feb 8 Silent Sky Club meeting 10 10-11PM Little Theatre of VB Winter DSOs 11 Contact info 16 Feb 8 Cornwatch Photo by Chuck Jagow Canon 60Da, various exposures, iOptron mount with an Orion 80ED Calendar 17 dusk-dawn The best 9 out of 3465 images taken from about 10:00 PM on the 20th Cornland Park through 2:20 AM on the 21st. Unprocessed images (only cropped). Feb 14 Garden Stars 7-8:30PM LOOKING UP! a message from the president Norfolk Botanical Gardens This month’s most talked about astronomy event has to be the total lunar Feb 16 Saturday Sun-day eclipse. The BBAA participated by supporting the Watch Party at the 10AM-1PM Chesapeake Planetarium. Anyone in attendance will tell you it was COLD, but Elizabeth River Park manageable if you wore layers, utilized the planetarium where Dr. Robert Hitt seemed to have the thermostat set to 100 degrees, and drank copious amounts Feb 23 Skywatch of the hot coffee that Kent Blackwell brewed in the back office. 6PM-10PM The event had a huge following on Facebook but with the cold Northwest River Park temperatures, we weren’t sure how many would come out. By Kent’s estimate there were between 100–200 people in attendance. Many club members set up telescopes, as well as a few members of the public too. -
Taurus Stars Membership in the Pleiades Open Cluster
Taurus stars membership in the Pleiades open cluster Tadross, A. L., Hanna, M. A., Awadalla, N. S. National Research Institute of Astronomy & Geophysics, NRIAG, 11421 Helwan, Cairo, Egypt ABSTRACT In this paper, we study the characteristics and physical properties of the young open cluster Pleiades using Near Infra-Red, JHK pass bands. Our results have been compared with those found in new optical UBV observations. The membership validity of some variable binary stars, which are Located in Taurus constellation, and their relation with Pleiades cluster have been achieved. 1. INTRODUCTION Pleiades and Hyades are the most famous star clusters in Northern Hemisphere which can be seen by the naked eye in the constellation Taurus the bull. The star cluster surrounding Aldebaran (the eye of the bull) is the Hyades. Pleiades (NGC 1432; M45; Melotte 22; Seven Sisters) is more famous than Hyades because it is more compact cluster and easy seen, higher in the sky (~ 10 degrees from Aldebaran), see Fig 1. Pleiades is located at J (2000) α = 03h: 47m: 24s; δ = +24o: 07’: 12’’; G. long. = 166.642o and G. lat. = -23.457o. The distance to the Pleiades is an important first step in the so- called cosmic distance ladder, a sequence of distance scales for the whole universe. The optical photometry catalogs of Webda and Dais refer to Pleiades as a rich young cluster located at 135-150 pcs away from Earth. In optically observations, Pleiades covers a diameter of about 110 arcmin on the sky; its core and tidal radii are about 33 and 330 arcmins respectively. -
February 14, 2015 7:00Pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, February 14, 2015 7:00pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho. Public Star Party Follows at the It’s that time of year when obstacles appear in the sky. In particular, this year is Centennial Obs. loaded with fog. It got in the way of letting us see the dance of the Jovian moons late last month, and it’s hindered our views of other unique shows. Still, members Club Officers reported finding enough of a clear sky to let us see Comet Lovejoy, and some great photos by members are popping up on the Facebook page. Robert Mayer, President This month, however, is a great opportunity to see the benefit of something [email protected] getting in the way. Our own Chris Anderson of the Herrett Center has been using 208-312-1203 the Centennial Observatory’s scope to do work on occultation’s, particularly with asteroids. This month’s MVAS meeting on Feb. 14th will give him the stage to Terry Wofford, Vice President show us just how this all works. [email protected] The following weekend may also be the time the weather allows us to resume 208-308-1821 MVAS-only star parties. Feb. 21 is a great window for a possible star party; we’ll announce the location if the weather permits. However, if we don’t get that Gary Leavitt, Secretary window, we’ll fall back on what has become a MVAS tradition: Planetarium night [email protected] at the Herrett Center. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Evolution of Star Clusters in Time-Variable Tidal Fields
Evolution of Star Clusters in Time-Variable Tidal Fields A Thesis Submitted to the Faculty of Drexel University by Ernest N. Mamikonyan in partial fulfillment of the requirement for the degree of Doctor of Philosophy December 12, 2013 Contents 1 Introduction 1 1.1 TypesofStarClusters............................ 2 1.1.1 GlobularClusters .......................... 3 1.1.2 OpenClusters............................ 4 1.2 Mass Function: From Young to Globular . 5 2 Arbitrary Tidal Acceleration 8 2.1 ApproximatingTidalEffects. 9 2.1.1 Tidal Acceleration Tensor . 10 2.2 Stellar Dynamics with KIRA ........................ 11 2.2.1 CircularOrbitinPoint-MassPotential . 14 2.3 GalaxyMergerSimulations . 16 2.3.1 TidalHistories............................ 19 2.4 N-BodySimulations ............................ 24 2.4.1 N-BodyUnits ............................ 26 2.4.2 Scaling ................................ 26 3 Mass Loss Model 30 i 3.1 Accelerated Two-Body Relaxation . 30 3.2 FluctuationsintheJacobiRadius. 34 3.3 Results .................................... 36 3.4 Discussion.................................. 37 3.4.1 Limitations ............................. 40 4 Globular Cluster Mass Functions 44 4.1 MassFunctionEvolution . 47 4.2 Results .................................... 48 4.2.1 SinkParticles ............................ 48 4.2.2 DiskParticles ............................ 50 4.2.3 HaloParticles ............................ 55 5 Conclusions and Future Work 57 Appendix A Implementation of Tidal Fields in KIRA 63 Appendix B Computing Tidal Acceleration from GADGET Output 66 ii List of Figures 1.1 Infrared image of the globular cluster Omega Centauri. It is the most massive cluster in the Galaxy and thought to be a remnant of a dwarf galaxy absorbed by the Milky Way. (NASA/JPL-Caltech/ NOAO/AURA/NSF)............................. 3 1.2 The Pleiades open cluster in the infrared. It is one of the most well- known and spectacular objects in the Galaxy. -
Andrea Possenti
UniversidadUniversidad dede ValenciaValencia 1515November November2010 2010 PulsarsPulsars asas probesprobes forfor thethe existenceexistence ofof IMBHsIMBHs ANDREA POSSENTI LayoutLayout ¾¾ KnownKnown BlackBlack HoleHole classesclasses ¾¾ FormationFormation scenariosscenarios forfor thethe IMBHsIMBHs ¾¾ IMBHIMBH candidatescandidates ¾¾ IMBHIMBH candidatescandidates (?)(?) fromfrom RadioRadio PulsarPulsar datadata analysisanalysis ¾¾ PerspectivesPerspectives forfor thethe directdirect observationobservation ofof IMBHsIMBHs fromfrom PulsarPulsar searchessearches ClassesClasses ofof BlackBlack HolesHoles Stellar mass Black Holes resulting from star evolution are supposed to be contained in many X-ray binaries: for solar metallicity, the max mass is of order few 10 Msun Massive Black Holes seen in the nucleus of the galaxies: 6 9 masses of order ≈ 10 Msun to ≈ 10 Msun AreAre IntermediateIntermediate Mass Black Holes ((IMBH)IMBH) ofof massesmasses ≈≈ 100100 -- 10,000 10,000 MMsunsun alsoalso partpart ofof thethe astronomicalastronomical landscapelandscape ?? N.B. ULX in the Globular Cluster RZ2109 of NGC 4472 may be a stellar mass BH likely in a triple system [ Maccarone et al. 2007 - 2010 ] FormationFormation mechanismsmechanisms forfor IMBHsIMBHs 11- - Mass Mass segregationsegregation ofof compactcompact remnantsremnants inin aa densedense starstar cluster 22– – Runaway Runaway collisionscollisions ofof massivemassive starsstars inin aa densedense starstar clustercluster In both cases, the seed IMBH can then grow by capturing other “ordinary” -
The Outermost Hii Regions of Nearby Galaxies
THE OUTERMOST HII REGIONS OF NEARBY GALAXIES by Jessica K. Werk A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy and Astrophysics) in The University of Michigan 2010 Doctoral Committee: Professor Mario L. Mateo, Co-Chair Associate Professor Mary E. Putman, Co-Chair, Columbia University Professor Fred C. Adams Professor Lee W. Hartmann Associate Professor Marion S. Oey Professor Gerhardt R. Meurer, University of Western Australia Jessica K. Werk Copyright c 2010 All Rights Reserved To Mom and Dad, for all your love and encouragement while I was taking up space. ii ACKNOWLEDGMENTS I owe a deep debt of gratitude to a long list of individuals, institutions, and substances that have seen me through the last six years of graduate school. My first undergraduate advisor in Astronomy, Kathryn Johnston, was also my first Astronomy Professor. She piqued my interest in the subject from day one with her enthusiasm and knowledge. I don’t doubt that I would be studying something far less interesting if it weren’t for her. John Salzer, my next and last undergraduate advisor, not only taught me so much about observing and organization, but also is responsible for convincing me to go on in Astronomy. Were it not for John, I’d probably be making a lot more money right now doing something totally mind-numbing and soul-crushing. And Laura Chomiuk, a fellow Wesleyan Astronomy Alumnus, has been there for me through everything − problem sets and personal heartbreak alike. To know her as a friend, goat-lover, and scientist has meant so much to me over the last 10 years, that confining my gratitude to these couple sentences just seems wrong. -
A Case Study of the Galactic H Ii Region M17 and Environs: Implications for the Galactic Star Formation Rate
A Case Study of the Galactic H ii Region M17 and Environs: Implications for the Galactic Star Formation Rate by Matthew Samuel Povich A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy) at the University of Wisconsin – Madison 2009 ii Abstract Determinations of star formation rates (SFRs) in the Milky Way and other galaxies are fundamentally based on diffuse emission tracers of ionized gas, such as optical/near-infrared recombination lines, far- infrared continuum, and thermal radio continuum, that are sensitive only to massive OB stars. OB stars dominate the ionization of H II regions, yet they make up <1% of young stellar populations. SFRs therefore depend upon large extrapolations over the stellar initial mass function (IMF). The primary goal of this Thesis is to obtain a detailed census of the young stellar population associated with a bright Galactic H II region and to compare the resulting star formation history with global SFR tracers. The main SFR tracer considered is infrared continuum, since it can be used to derive SFRs in both the Galactic and extragalactic cases. I focus this study on M17, one of the nearest giant H II regions to the Sun (d =2.1kpc),fortwo reasons: (1) M17 is bright enough to serve as an analog of observable extragalactic star formation regions, and (2) M17 is associated with a giant molecular cloud complex, ∼100 pc in extent. The M17 complex is a significant star-forming structure on the Galactic scale, with a complicated star formation history. This study is multiwavelength in nature, but it is based upon broadband mid-infrared images from the Spitzer/GLIMPSE survey and complementary infrared Galactic plane surveys. -
Observing List to Confirm Visibility
ASSA Deepsky 100 Observing List Evening of 2014 Jun 27 at VS Star Party - Gansvlei Sunset 17:33, Twilight ends 18:51, Twilight begins 05:43, Sunrise 07:01, Moon rise 07:32, Moon set 17:55 Completely dark from 18:51 to 05:43. New Moon. All times local (GMT+2). Listing All Deep Sky Objects visible above the perfect horizon and in complete darkness after 18:51 and before 05:43. Cls Primary ID Alternate ID Con Mag Size RA 2000 Dec 2000 Distance Begin Optimum End S.A. Ur. 2 PSA Difficulty Open NGC 2287 M 41 CMa 5.0 39.0' 06h46m01.0s -20°45'24" 2300 ly 18:34 18:42 18:53 19 154 27 detectable Open NGC 2362 Collinder 136 CMa 3.8 5.0' 07h18m41.0s -24°57'18" 4500 ly 18:24 18:48 19:34 19 154 27 obvious Open NGC 2437 M 46 Pup 6.6 20.0' 07h41m46.0s -14°48'36" 4500 ly 18:37 18:49 19:10 12 135 26 detectable Open NGC 2422 M 47 Pup 4.3 25.0' 07h36m35.0s -14°29'00" 1600 ly 18:33 18:49 19:16 12 135 26 easy Open NGC 2447 M 93 Pup 6.5 10.0' 07h44m30.0s -23°51'24" 3400 ly 18:34 18:50 19:32 19 153 26 easy Open NGC 2548 M 48 Hya 5.5 30.0' 08h13m43.0s -05°45'00" 2500 ly 18:37 18:51 19:19 12 134 26 detectable Open NGC 2477 Collinder 165 Pup 5.7 15.0' 07h52m10.0s -38°31'48" 4000 ly 18:33 18:52 20:01 19 171 28 easy Open NGC 2451 Collinder 161 Pup 3.7 45.0' 07h45m23.0s -37°57'21" 720 ly 18:34 18:52 19:55 19 171 28 easy Open NGC 2547 Collinder 177 Vel 5.0 25.0' 08h10m09.0s -49°12'54" 1500 ly 18:35 18:54 19:08 20 187 28 easy Open NGC 2516 Collinder 172 Car 3.3 30.0' 07h58m04.0s -60°45'12" 1300 ly 18:32 18:56 19:08 24 200 30 obvious Open IC 2391 Collinder 191 Vel 2.6