Differential Equations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Notes on Calculus II Integral Calculus Miguel A. LermaNotes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
- 
												  Ordinary Differential EquationsOrdinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license is that You are free to: Share copy and redistribute the material in any medium or format • Adapt remix, transform, and build upon the material for any purpose, even commercially. • The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution You must give appropriate credit, provide a link to the license, and indicate if changes • were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Notices: You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material. For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to the web page below. To view a full copy of this license, visit https://creativecommons.org/licenses/by/4.0/legalcode.
- 
												  Bessel's Differential Equation Mathematical PhysicsR. I. Badran Bessel's Differential Equation Mathematical Physics Bessel's Differential Equation: 2 Recalling the DE y n y 0 which has a sinusoidal solution (i.e. sin nx and cos nx) and knowing that these solutions can be treated as power series, we can find a solution to the Bessel's DE which is written as: 2 2 2 x y xy (x p )y 0 . The solution is represented by a series. This series very much look like a damped sine or cosine. It is called a Bessel function. To solve the Bessel' DE, we apply the Frobenius method by mn assuming a series solution of the form y an x . n0 Substitute this solution into the DE equation and after some mathematical steps you may find that the indicial equation is 2 2 m p 0 where m= p. Also you may get a1=0 and hence all odd a's are zero as well. The recursion relation can be found as a a n n2 (n m 2)2 p 2 with (n=0, 1, 2, 3, ……etc.). Case (1): m= p (seeking the first solution of Bessel DE) We get the solution 2 4 p x x y a x 1 2(2p 2) 2 4(2p 2)(2p 4) This can be rewritten as: x p2n J (x) y a (1)n p 2n n0 2 n!( p n)! 1 Put a 2 p p! The Bessel function has the factorial form x p2n J (x) (1)n p 2n p , n0 n!( p n)!2 R.
- 
												  New Dirac Delta Function Based Methods with Applications ToNew Dirac Delta function based methods with applications to perturbative expansions in quantum field theory Achim Kempf1, David M. Jackson2, Alejandro H. Morales3 1Departments of Applied Mathematics and Physics 2Department of Combinatorics and Optimization University of Waterloo, Ontario N2L 3G1, Canada, 3Laboratoire de Combinatoire et d’Informatique Math´ematique (LaCIM) Universit´edu Qu´ebec `aMontr´eal, Canada Abstract. We derive new all-purpose methods that involve the Dirac Delta distribution. Some of the new methods use derivatives in the argument of the Dirac Delta. We highlight potential avenues for applications to quantum field theory and we also exhibit a connection to the problem of blurring/deblurring in signal processing. We find that blurring, which can be thought of as a result of multi-path evolution, is, in Euclidean quantum field theory without spontaneous symmetry breaking, the strong coupling dual of the usual small coupling expansion in terms of the sum over Feynman graphs. arXiv:1404.0747v3 [math-ph] 23 Sep 2014 2 1. A method for generating new representations of the Dirac Delta The Dirac Delta distribution, see e.g., [1, 2, 3], serves as a useful tool from physics to engineering. Our aim here is to develop new all-purpose methods involving the Dirac Delta distribution and to show possible avenues for applications, in particular, to quantum field theory. We begin by fixing the conventions for the Fourier transform: 1 1 g(y) := g(x) eixy dx, g(x)= g(y) e−ixy dy (1) √2π √2π Z Z To simplify the notation we denote integration over the real line by the absence of e e integration delimiters.
- 
												  The Standard Form of a Differential EquationFall 06 The Standard Form of a Differential Equation Format required to solve a differential equation or a system of differential equations using one of the command-line differential equation solvers such as rkfixed, Rkadapt, Radau, Stiffb, Stiffr or Bulstoer. For a numerical routine to solve a differential equation (DE), we must somehow pass the differential equation as an argument to the solver routine. A standard form for all DEs will allow us to do this. Basic idea: get rid of any second, third, fourth, etc. derivatives that appear, leaving only first derivatives. Example 1 2 d d 5 yx()+3 ⋅ yx()−5yx ⋅ () 4x⋅ 2 dx dx This DE contains a second derivative. How do we write a second derivative as a first derivative? A second derivative is a first derivative of a first derivative. d2 d d yx() yx() 2 dx dxxd Step 1: STANDARDIZATION d Let's define two functions y0(x) and y1(x) as y0()x yx() and y1()x y0()x dx Then this differential equation can be written as d 5 y1()x +3y ⋅ 1()x −5y ⋅ 0()x 4x dx This DE contains 2 functions instead of one, but there is a strong relationship between these two functions d y1()x y0()x dx So, the original DE is now a system of two DEs, d d 5 y1()x y0()x and y1()x +3y ⋅ 1()x −5y ⋅ 0()x 4x⋅ dx dx The convention is to write these equations with the derivatives alone on the left-hand side. d y0()x y1()x dx This is the first step in the standardization process.
- 
												  Notes Chapter 4(Integration) Definition of an Antiderivative1 Notes Chapter 4(Integration) Definition of an Antiderivative: A function F is an antiderivative of f on an interval I if for all x in I. Representation of Antiderivatives: If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form G(x) = F(x) + C, for all x in I where C is a constant. Sigma Notation: The sum of n terms a1,a2,a3,…,an is written as where I is the index of summation, ai is the ith term of the sum, and the upper and lower bounds of summation are n and 1. Summation Formulas: 1. 2. 3. 4. Limits of the Lower and Upper Sums: Let f be continuous and nonnegative on the interval [a,b]. The limits as n of both the lower and upper sums exist and are equal to each other. That is, where are the minimum and maximum values of f on the subinterval. Definition of the Area of a Region in the Plane: Let f be continuous and nonnegative on the interval [a,b]. The area if a region bounded by the graph of f, the x-axis and the vertical lines x=a and x=b is Area = where . Definition of a Riemann Sum: Let f be defined on the closed interval [a,b], and let be a partition of [a,b] given by a =x0<x1<x2<…<xn-1<xn=b where xi is the width of the ith subinterval.
- 
												  Calculus Formulas and TheoremsFormulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.
- 
												  Second Order Linear Differential Equations YSecond Order Linear Differential Equations Second order linear equations with constant coefficients; Fundamental solutions; Wronskian; Existence and Uniqueness of solutions; the characteristic equation; solutions of homogeneous linear equations; reduction of order; Euler equations In this chapter we will study ordinary differential equations of the standard form below, known as the second order linear equations : y″ + p(t) y′ + q(t) y = g(t). Homogeneous Equations : If g(t) = 0, then the equation above becomes y″ + p(t) y′ + q(t) y = 0. It is called a homogeneous equation. Otherwise, the equation is nonhomogeneous (or inhomogeneous ). Trivial Solution : For the homogeneous equation above, note that the function y(t) = 0 always satisfies the given equation, regardless what p(t) and q(t) are. This constant zero solution is called the trivial solution of such an equation. © 2008, 2016 Zachary S Tseng B-1 - 1 Second Order Linear Homogeneous Differential Equations with Constant Coefficients For the most part, we will only learn how to solve second order linear equation with constant coefficients (that is, when p(t) and q(t) are constants). Since a homogeneous equation is easier to solve compares to its nonhomogeneous counterpart, we start with second order linear homogeneous equations that contain constant coefficients only: a y″ + b y′ + c y = 0. Where a, b, and c are constants, a ≠ 0. A very simple instance of such type of equations is y″ − y = 0 . The equation’s solution is any function satisfying the equality t y″ = y. Obviously y1 = e is a solution, and so is any constant multiple t −t of it, C1 e .
- 
												  CORSO ESTIVO DI MATEMATICA Differential Equations OfCORSO ESTIVO DI MATEMATICA Differential Equations of Mathematical Physics G. Sweers http://go.to/sweers or http://fa.its.tudelft.nl/ sweers ∼ Perugia, July 28 - August 29, 2003 It is better to have failed and tried, To kick the groom and kiss the bride, Than not to try and stand aside, Sparing the coal as well as the guide. John O’Mill ii Contents 1Frommodelstodifferential equations 1 1.1Laundryonaline........................... 1 1.1.1 Alinearmodel........................ 1 1.1.2 Anonlinearmodel...................... 3 1.1.3 Comparingbothmodels................... 4 1.2Flowthroughareaandmore2d................... 5 1.3Problemsinvolvingtime....................... 11 1.3.1 Waveequation........................ 11 1.3.2 Heatequation......................... 12 1.4 Differentialequationsfromcalculusofvariations......... 15 1.5 Mathematical solutions are not always physically relevant . 19 2 Spaces, Traces and Imbeddings 23 2.1Functionspaces............................ 23 2.1.1 Hölderspaces......................... 23 2.1.2 Sobolevspaces........................ 24 2.2Restrictingandextending...................... 29 2.3Traces................................. 34 1,p 2.4 Zero trace and W0 (Ω) ....................... 36 2.5Gagliardo,Nirenberg,SobolevandMorrey............. 38 3 Some new and old solution methods I 43 3.1Directmethodsinthecalculusofvariations............ 43 3.2 Solutions in flavours......................... 48 3.3PreliminariesforCauchy-Kowalevski................ 52 3.3.1 Ordinary differentialequations............... 52 3.3.2 Partial differentialequations...............
- 
												  Differential Equations and Linear AlgebraChapter 1 First Order Equations 1.1 Four Examples : Linear versus Nonlinear A first order differential equation connects a function y.t/ to its derivative dy=dt. That rate of change in y is decided by y itself (and possibly also by the time t). Here are four examples. Example 1 is the most important differential equation of all. dy dy dy dy 1/ y 2/ y 3/ 2ty 4/ y2 dt D dt D dt D dt D Those examples illustrate three linear differential equations (1, 2, and 3) and a nonlinear differential equation. The unknown function y.t/ is squared in Example 4. The derivative y or y or 2ty is proportional to the function y in Examples 1, 2, 3. The graph of dy=dt versus y becomes a parabola in Example 4, because of y2. It is true that t multiplies y in Example 3. That equation is still linear in y and dy=dt. It has a variable coefficient 2t, changing with time. Examples 1 and 2 have constant coefficient (the coefficients of y are 1 and 1). Solutions to the Four Examples We can write down a solution to each example. This will be one solution but it is not the complete solution, because each equation has a family of solutions. Eventually there will be a constant C in the complete solution. This number C is decided by the starting value of y at t 0, exactly as in ordinary integration. The integral of f.t/ solves the simplest differentialD equation of all, with y.0/ C : D dy t 5/ f.t/ The complete solution is y.t/ f.s/ds C : dt D D C Z0 1 2 Chapter 1.
- 
												  5 Mar 2009 a Survey on the Inverse Integrating FactorA survey on the inverse integrating factor.∗ Isaac A. Garc´ıa (1) & Maite Grau (1) Abstract The relation between limit cycles of planar differential systems and the inverse integrating factor was first shown in an article of Giacomini, Llibre and Viano appeared in 1996. From that moment on, many research articles are devoted to the study of the properties of the inverse integrating factor and its relation with limit cycles and their bifurcations. This paper is a summary of all the results about this topic. We include a list of references together with the corresponding related results aiming at being as much exhaustive as possible. The paper is, nonetheless, self-contained in such a way that all the main results on the inverse integrating factor are stated and a complete overview of the subject is given. Each section contains a different issue to which the inverse integrating factor plays a role: the integrability problem, relation with Lie symmetries, the center problem, vanishing set of an inverse integrating factor, bifurcation of limit cycles from either a period annulus or from a monodromic ω-limit set and some generalizations. 2000 AMS Subject Classification: 34C07, 37G15, 34-02. Key words and phrases: inverse integrating factor, bifurcation, Poincar´emap, limit cycle, Lie symmetry, integrability, monodromic graphic. arXiv:0903.0941v1 [math.DS] 5 Mar 2009 1 The Euler integrating factor The method of integrating factors is, in principle, a means for solving ordinary differential equations of first order and it is theoretically important. The use of integrating factors goes back to Leonhard Euler. Let us consider a first order differential equation and write the equation in the Pfaffian form ω = P (x, y) dy Q(x, y) dx =0 .
- 
												  The Calculus of Trigonometric Functions the Calculus of Trigonometric Functions – a Guide for Teachers (Years 11–12)1 Supporting Australian Mathematics Project 2 3 4 5 6 12 11 7 10 8 9 A guide for teachers – Years 11 and 12 Calculus: Module 15 The calculus of trigonometric functions The calculus of trigonometric functions – A guide for teachers (Years 11–12) Principal author: Peter Brown, University of NSW Dr Michael Evans, AMSI Associate Professor David Hunt, University of NSW Dr Daniel Mathews, Monash University Editor: Dr Jane Pitkethly, La Trobe University Illustrations and web design: Catherine Tan, Michael Shaw Full bibliographic details are available from Education Services Australia. Published by Education Services Australia PO Box 177 Carlton South Vic 3053 Australia Tel: (03) 9207 9600 Fax: (03) 9910 9800 Email: [email protected] Website: www.esa.edu.au © 2013 Education Services Australia Ltd, except where indicated otherwise. You may copy, distribute and adapt this material free of charge for non-commercial educational purposes, provided you retain all copyright notices and acknowledgements. This publication is funded by the Australian Government Department of Education, Employment and Workplace Relations. Supporting Australian Mathematics Project Australian Mathematical Sciences Institute Building 161 The University of Melbourne VIC 3010 Email: [email protected] Website: www.amsi.org.au Assumed knowledge ..................................... 4 Motivation ........................................... 4 Content ............................................. 5 Review of radian measure ................................. 5 An important limit ....................................