MTHE / MATH 237 Differential Equations for Engineering Science

Total Page:16

File Type:pdf, Size:1020Kb

MTHE / MATH 237 Differential Equations for Engineering Science i Queen’s University Mathematics and Engineering and Mathematics and Statistics MTHE / MATH 237 Differential Equations for Engineering Science Supplemental Course Notes Serdar Y¨uksel November 26, 2015 ii This document is a collection of supplemental lecture notes used for MTHE / MATH 237: Differential Equations for Engineering Science. Serdar Y¨uksel Contents 1 Introduction to Differential Equations ................................................... .......... 1 1.1 Introduction.................................... ............................................ 1 1.2 Classification of DifferentialEquations ............ ............................................. 1 1.2.1 OrdinaryDifferentialEquations ................. ........................................ 2 1.2.2 PartialDifferentialEquations .................. ......................................... 2 1.2.3 HomogeneousDifferentialEquations .............. ...................................... 2 1.2.4 N-thorderDifferentialEquations................ ........................................ 2 1.2.5 LinearDifferentialEquations ................... ........................................ 2 1.3 SolutionsofDifferentialequations ................ ............................................. 3 1.4 DirectionFields................................. ............................................ 3 1.5 Fundamental Questions on First-Order Differential Equations ...................................... 4 2 First-Order Ordinary Differential Equations ................................................... .... 5 2.1 Introduction.................................... ............................................ 5 2.2 ExactDifferentialEquations ...................... ............................................ 5 2.3 MethodofIntegratingFactors ...................... ........................................... 6 2.4 SeparableDifferentialEquations.................. ............................................. 7 2.5 Differential Equations with Homogenous Coefficients . ........................................... 7 2.6 First-Order Linear Differential Equations. .............................................. 8 2.7 Applications.................................... ............................................ 8 3 Higher-Order Ordinary Linear Differential Equations .............................................. 9 3.1 Introduction.................................... ............................................ 9 3.2 Higher-OrderDifferentialEquations............... ............................................. 9 3.2.1 LinearIndependence ............................ ...................................... 10 3.2.2 WronskianofasetofSolutions .................... ..................................... 10 iv Contents 3.2.3 Non-HomogeneousProblem........................ .................................... 11 4 Higher-Order Ordinary Linear Differential Equations .............................................. 13 4.1 Introduction.................................... ............................................ 13 4.2 Homogeneous Linear Equations with Constant Coefficients ........................................ 13 4.2.1 L(m) withdistinctRealroots.............................. ............................. 13 4.2.2 L(m) withrepeatedRealroots.............................. ............................ 14 4.2.3 L(m) withComplexroots................................... ........................... 14 4.3 Non-Homogeneous Equations and the Principle of Superposition ................................... 14 4.3.1 MethodofUndeterminedCoefficients............... ..................................... 15 4.3.2 VariationofParameters ......................... ....................................... 16 4.3.3 ReductionofOrder.............................. ...................................... 17 4.4 Applicationsof Second-OrderEquations ............. ........................................... 18 4.4.1 Resonance..................................... ...................................... 19 5 Systems of First-Order Linear Differential Equations ............................................... 21 5.1 Introduction.................................... ............................................ 21 5.1.1 Higher-Order Linear Differential Equations can be reducedtoFirst-OrderSystems .............. 22 5.2 TheoryofFirst-OrderSystems ...................... .......................................... 23 6 Systems of First-Order Constant Coefficient Differential Equations ................................... 25 6.1 Introduction.................................... ............................................ 25 6.2 HomogeneousCase................................. ......................................... 25 6.3 HowtoComputetheMatrixExponential................ ........................................ 26 6.4 Non-HomogeneousCase ............................. ........................................ 27 6.5 RemarksontheTime-VaryingCase .................... ........................................ 28 7 Stability and Lyapunov’s Method ................................................... .............. 29 7.1 Introduction.................................... ............................................ 29 7.2 Stability ....................................... ............................................ 29 7.2.1 LinearSystems................................. ...................................... 29 7.2.2 Non-LinearSystems............................. ...................................... 30 7.3 Lyapunov’sMethod................................ .......................................... 30 8 Laplace Transform Method ................................................... ................... 33 8.1 Introduction.................................... ............................................ 33 Contents v 8.2 Transformations................................. ............................................ 33 8.2.1 LaplaceTransform.............................. ...................................... 33 8.2.2 PropertiesoftheLaplaceTransform ............... ...................................... 34 8.2.3 Laplace Transform Method for solving Initial Value Problems................................ 34 8.2.4 InverseLaplaceTransform ....................... ...................................... 35 8.2.5 Convolution:.................................. ....................................... 35 8.2.6 StepFunction .................................. ...................................... 35 8.2.7 Impulseresponse ............................... ...................................... 35 9 On Partial Differential Equations and Separation of Variables ....................................... 37 10 Series Method ................................................... ............................... 39 10.1 Introduction................................... ............................................. 39 10.2 TaylorSeriesExpansions ......................... ............................................ 39 11 Numerical Methods ................................................... .......................... 41 11.1 Introduction................................... ............................................. 41 11.2 NumericalMethods............................... ........................................... 41 11.2.1 Euler’sMethod................................ ....................................... 41 11.2.2 ImprovedEuler’sMethod ........................ ...................................... 42 11.2.3 Including the Second Order Term in Taylor’s Expansion..................................... 42 11.2.4 OtherMethods ................................. ...................................... 42 A Brief Review of Complex Numbers ................................................... ............. 43 A.1 Introduction.................................... ............................................ 43 A.2 Euler’s Formula and Exponential Representation . ........................................... 43 B Similarity Transformation and the Jordan Canonical Form .......................................... 47 B.1 SimilarityTransformation ........................ ............................................ 47 B.2 Diagonalization................................. ............................................ 47 B.3 JordanForm...................................... .......................................... 47 1 Introduction to Differential Equations 1.1 Introduction Many phenomena in engineering, physics and broad areas of applied mathematics involve entities which change as a function of one or more variables. The movement of a car along a road, the propagation of sound and waves, the path an airplane takes, the amount of charge in a capacitor in an electrical circuit, the way a cake taken out from a hot oven and left in room temperature cools down and many such processes can all be modeled and described as differential equations. In class we discussed a number of examples such as the swinging pendulum, a falling object with drag and an electrical circuit involving resistors and capacitors. Let us make a definition. Definition 1.1.1 A differential equation is an equation that relates an unknown function and one or more of its derivatives of with respect to one or more independent variables. For instance, the equation dy = 5x dx − relates the first derivative of y with respect to x, with x. Here x is the independent variable and y is the unknown function (dependent variable). In this course, we will learn how to solve and analyze
Recommended publications
  • Bessel's Differential Equation Mathematical Physics
    R. I. Badran Bessel's Differential Equation Mathematical Physics Bessel's Differential Equation: 2 Recalling the DE y n y 0 which has a sinusoidal solution (i.e. sin nx and cos nx) and knowing that these solutions can be treated as power series, we can find a solution to the Bessel's DE which is written as: 2 2 2 x y xy (x p )y 0 . The solution is represented by a series. This series very much look like a damped sine or cosine. It is called a Bessel function. To solve the Bessel' DE, we apply the Frobenius method by mn assuming a series solution of the form y an x . n0 Substitute this solution into the DE equation and after some mathematical steps you may find that the indicial equation is 2 2 m p 0 where m= p. Also you may get a1=0 and hence all odd a's are zero as well. The recursion relation can be found as a a n n2 (n m 2)2 p 2 with (n=0, 1, 2, 3, ……etc.). Case (1): m= p (seeking the first solution of Bessel DE) We get the solution 2 4 p x x y a x 1 2(2p 2) 2 4(2p 2)(2p 4) This can be rewritten as: x p2n J (x) y a (1)n p 2n n0 2 n!( p n)! 1 Put a 2 p p! The Bessel function has the factorial form x p2n J (x) (1)n p 2n p , n0 n!( p n)!2 R.
    [Show full text]
  • Modifications of the Method of Variation of Parameters
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector International Joumal Available online at www.sciencedirect.com computers & oc,-.c~ ~°..-cT- mathematics with applications Computers and Mathematics with Applications 51 (2006) 451-466 www.elsevier.com/locate/camwa Modifications of the Method of Variation of Parameters ROBERTO BARRIO* GME, Depto. Matem~tica Aplicada Facultad de Ciencias Universidad de Zaragoza E-50009 Zaragoza, Spain rbarrio@unizar, es SERGIO SERRANO GME, Depto. MatemAtica Aplicada Centro Politdcnico Superior Universidad de Zaragoza Maria de Luna 3, E-50015 Zaragoza, Spain sserrano©unizar, es (Received February PO05; revised and accepted October 2005) Abstract--ln spite of being a classical method for solving differential equations, the method of variation of parameters continues having a great interest in theoretical and practical applications, as in astrodynamics. In this paper we analyse this method providing some modifications and generalised theoretical results. Finally, we present an application to the determination of the ephemeris of an artificial satellite, showing the benefits of the method of variation of parameters for this kind of problems. ~) 2006 Elsevier Ltd. All rights reserved. Keywords--Variation of parameters, Lagrange equations, Gauss equations, Satellite orbits, Dif- ferential equations. 1. INTRODUCTION The method of variation of parameters was developed by Leonhard Euler in the middle of XVIII century to describe the mutual perturbations of Jupiter and Saturn. However, his results were not absolutely correct because he did not consider the orbital elements varying simultaneously. In 1766, Lagrange improved the method developed by Euler, although he kept considering some of the orbital elements as constants, which caused some of his equations to be incorrect.
    [Show full text]
  • The Standard Form of a Differential Equation
    Fall 06 The Standard Form of a Differential Equation Format required to solve a differential equation or a system of differential equations using one of the command-line differential equation solvers such as rkfixed, Rkadapt, Radau, Stiffb, Stiffr or Bulstoer. For a numerical routine to solve a differential equation (DE), we must somehow pass the differential equation as an argument to the solver routine. A standard form for all DEs will allow us to do this. Basic idea: get rid of any second, third, fourth, etc. derivatives that appear, leaving only first derivatives. Example 1 2 d d 5 yx()+3 ⋅ yx()−5yx ⋅ () 4x⋅ 2 dx dx This DE contains a second derivative. How do we write a second derivative as a first derivative? A second derivative is a first derivative of a first derivative. d2 d d yx() yx() 2 dx dxxd Step 1: STANDARDIZATION d Let's define two functions y0(x) and y1(x) as y0()x yx() and y1()x y0()x dx Then this differential equation can be written as d 5 y1()x +3y ⋅ 1()x −5y ⋅ 0()x 4x dx This DE contains 2 functions instead of one, but there is a strong relationship between these two functions d y1()x y0()x dx So, the original DE is now a system of two DEs, d d 5 y1()x y0()x and y1()x +3y ⋅ 1()x −5y ⋅ 0()x 4x⋅ dx dx The convention is to write these equations with the derivatives alone on the left-hand side. d y0()x y1()x dx This is the first step in the standardization process.
    [Show full text]
  • CORSO ESTIVO DI MATEMATICA Differential Equations Of
    CORSO ESTIVO DI MATEMATICA Differential Equations of Mathematical Physics G. Sweers http://go.to/sweers or http://fa.its.tudelft.nl/ sweers ∼ Perugia, July 28 - August 29, 2003 It is better to have failed and tried, To kick the groom and kiss the bride, Than not to try and stand aside, Sparing the coal as well as the guide. John O’Mill ii Contents 1Frommodelstodifferential equations 1 1.1Laundryonaline........................... 1 1.1.1 Alinearmodel........................ 1 1.1.2 Anonlinearmodel...................... 3 1.1.3 Comparingbothmodels................... 4 1.2Flowthroughareaandmore2d................... 5 1.3Problemsinvolvingtime....................... 11 1.3.1 Waveequation........................ 11 1.3.2 Heatequation......................... 12 1.4 Differentialequationsfromcalculusofvariations......... 15 1.5 Mathematical solutions are not always physically relevant . 19 2 Spaces, Traces and Imbeddings 23 2.1Functionspaces............................ 23 2.1.1 Hölderspaces......................... 23 2.1.2 Sobolevspaces........................ 24 2.2Restrictingandextending...................... 29 2.3Traces................................. 34 1,p 2.4 Zero trace and W0 (Ω) ....................... 36 2.5Gagliardo,Nirenberg,SobolevandMorrey............. 38 3 Some new and old solution methods I 43 3.1Directmethodsinthecalculusofvariations............ 43 3.2 Solutions in flavours......................... 48 3.3PreliminariesforCauchy-Kowalevski................ 52 3.3.1 Ordinary differentialequations............... 52 3.3.2 Partial differentialequations...............
    [Show full text]
  • Differential Equations and Linear Algebra
    Chapter 1 First Order Equations 1.1 Four Examples : Linear versus Nonlinear A first order differential equation connects a function y.t/ to its derivative dy=dt. That rate of change in y is decided by y itself (and possibly also by the time t). Here are four examples. Example 1 is the most important differential equation of all. dy dy dy dy 1/ y 2/ y 3/ 2ty 4/ y2 dt D dt D dt D dt D Those examples illustrate three linear differential equations (1, 2, and 3) and a nonlinear differential equation. The unknown function y.t/ is squared in Example 4. The derivative y or y or 2ty is proportional to the function y in Examples 1, 2, 3. The graph of dy=dt versus y becomes a parabola in Example 4, because of y2. It is true that t multiplies y in Example 3. That equation is still linear in y and dy=dt. It has a variable coefficient 2t, changing with time. Examples 1 and 2 have constant coefficient (the coefficients of y are 1 and 1). Solutions to the Four Examples We can write down a solution to each example. This will be one solution but it is not the complete solution, because each equation has a family of solutions. Eventually there will be a constant C in the complete solution. This number C is decided by the starting value of y at t 0, exactly as in ordinary integration. The integral of f.t/ solves the simplest differentialD equation of all, with y.0/ C : D dy t 5/ f.t/ The complete solution is y.t/ f.s/ds C : dt D D C Z0 1 2 Chapter 1.
    [Show full text]
  • The Calculus of Trigonometric Functions the Calculus of Trigonometric Functions – a Guide for Teachers (Years 11–12)
    1 Supporting Australian Mathematics Project 2 3 4 5 6 12 11 7 10 8 9 A guide for teachers – Years 11 and 12 Calculus: Module 15 The calculus of trigonometric functions The calculus of trigonometric functions – A guide for teachers (Years 11–12) Principal author: Peter Brown, University of NSW Dr Michael Evans, AMSI Associate Professor David Hunt, University of NSW Dr Daniel Mathews, Monash University Editor: Dr Jane Pitkethly, La Trobe University Illustrations and web design: Catherine Tan, Michael Shaw Full bibliographic details are available from Education Services Australia. Published by Education Services Australia PO Box 177 Carlton South Vic 3053 Australia Tel: (03) 9207 9600 Fax: (03) 9910 9800 Email: [email protected] Website: www.esa.edu.au © 2013 Education Services Australia Ltd, except where indicated otherwise. You may copy, distribute and adapt this material free of charge for non-commercial educational purposes, provided you retain all copyright notices and acknowledgements. This publication is funded by the Australian Government Department of Education, Employment and Workplace Relations. Supporting Australian Mathematics Project Australian Mathematical Sciences Institute Building 161 The University of Melbourne VIC 3010 Email: [email protected] Website: www.amsi.org.au Assumed knowledge ..................................... 4 Motivation ........................................... 4 Content ............................................. 5 Review of radian measure ................................. 5 An important limit ....................................
    [Show full text]
  • Linear Differential Equations Math 130 Linear Algebra
    where A and B are arbitrary constants. Both of these equations are homogeneous linear differential equations with constant coefficients. An nth-order linear differential equation is of the form Linear Differential Equations n 00 0 Math 130 Linear Algebra anf (t) + ··· + a2f (t) + a1f (t) + a0f(t) = b: D Joyce, Fall 2013 that is, some linear combination of the derivatives It's important to know some of the applications up through the nth derivative is equal to b. In gen- of linear algebra, and one of those applications is eral, the coefficients an; : : : ; a1; a0, and b can be any to homogeneous linear differential equations with functions of t, but when they're all scalars (either constant coefficients. real or complex numbers), then it's a linear differ- ential equation with constant coefficients. When b What is a differential equation? It's an equa- is 0, then it's homogeneous. tion where the unknown is a function and the equa- For the rest of this discussion, we'll only consider tion is a statement about how the derivatives of the at homogeneous linear differential equations with function are related. constant coefficients. The two example equations 0 Perhaps the most important differential equation are such; the first being f −kf = 0, and the second 00 is the exponential differential equation. That's the being f + f = 0. one that says a quantity is proportional to its rate of change. If we let t be the independent variable, f(t) What do they have to do with linear alge- the quantity that depends on t, and k the constant bra? Their solutions form vector spaces, and the of proportionality, then the differential equation is dimension of the vector space is the order n of the equation.
    [Show full text]
  • Math 6730 : Asymptotic and Perturbation Methods Hyunjoong
    Math 6730 : Asymptotic and Perturbation Methods Hyunjoong Kim and Chee-Han Tan Last modified : January 13, 2018 2 Contents Preface 5 1 Introduction to Asymptotic Approximation7 1.1 Asymptotic Expansion................................8 1.1.1 Order symbols.................................9 1.1.2 Accuracy vs convergence........................... 10 1.1.3 Manipulating asymptotic expansions.................... 10 1.2 Algebraic and Transcendental Equations...................... 11 1.2.1 Singular quadratic equation......................... 11 1.2.2 Exponential equation............................. 14 1.2.3 Trigonometric equation............................ 15 1.3 Differential Equations: Regular Perturbation Theory............... 16 1.3.1 Projectile motion............................... 16 1.3.2 Nonlinear potential problem......................... 17 1.3.3 Fredholm alternative............................. 19 1.4 Problems........................................ 20 2 Matched Asymptotic Expansions 31 2.1 Introductory example................................. 31 2.1.1 Outer solution by regular perturbation................... 31 2.1.2 Boundary layer................................ 32 2.1.3 Matching................................... 33 2.1.4 Composite expression............................. 33 2.2 Extensions: multiple boundary layers, etc...................... 34 2.2.1 Multiple boundary layers........................... 34 2.2.2 Interior layers................................. 35 2.3 Partial differential equations............................. 36 2.4 Strongly
    [Show full text]
  • THE DYNAMICAL SYSTEMS APPROACH to DIFFERENTIAL EQUATIONS INTRODUCTION the Mathematical Subject We Call Dynamical Systems Was
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 11, Number 1, July 1984 THE DYNAMICAL SYSTEMS APPROACH TO DIFFERENTIAL EQUATIONS BY MORRIS W. HIRSCH1 This harmony that human intelligence believes it discovers in nature —does it exist apart from that intelligence? No, without doubt, a reality completely independent of the spirit which conceives it, sees it or feels it, is an impossibility. A world so exterior as that, even if it existed, would be forever inaccessible to us. But what we call objective reality is, in the last analysis, that which is common to several thinking beings, and could be common to all; this common part, we will see, can be nothing but the harmony expressed by mathematical laws. H. Poincaré, La valeur de la science, p. 9 ... ignorance of the roots of the subject has its price—no one denies that modern formulations are clear, elegant and precise; it's just that it's impossible to comprehend how any one ever thought of them. M. Spivak, A comprehensive introduction to differential geometry INTRODUCTION The mathematical subject we call dynamical systems was fathered by Poin­ caré, developed sturdily under Birkhoff, and has enjoyed a vigorous new growth for the last twenty years. As I try to show in Chapter I, it is interesting to look at this mathematical development as the natural outcome of a much broader theme which is as old as science itself: the universe is a sytem which changes in time. Every mathematician has a particular way of thinking about mathematics, but rarely makes it explicit.
    [Show full text]
  • 1 Introduction
    1 Introduction 1.1 Basic Definitions and Examples Let u be a function of several variables, u(x1; : : : ; xn). We denote its partial derivative with respect to xi as @u uxi = : @xi @ For short-hand notation, we will sometimes write the partial differential operator as @x . @xi i With this notation, we can also express higher-order derivatives of a function u. For example, for a function u = u(x; y; z), we can express the second partial derivative with respect to x and then y as @2u uxy = = @y@xu: @y@x As you will recall, for “nice” functions u, mixed partial derivatives are equal. That is, uxy = uyx, etc. See Clairaut’s Theorem. In order to express higher-order derivatives more efficiently, we introduce the following multi-index notation. A multi-index is a vector ® = (®1; : : : ; ®n) where each ®i is a nonnegative integer. The order of the multi-index is j®j = ®1 + ::: + ®n. Given a multi-index ®, we define @j®ju D®u = = @®1 ¢ ¢ ¢ @®n u: (1.1) ®1 ®n x1 xn @x1 ¢ ¢ ¢ @xn Example 1. Let u = u(x; y) be a function of two real variables. Let ® = (1; 2). Then ® is a multi-index of order 3 and ® 2 D u = @x@y u = uxyy: If k is a nonnegative integer, we define Dku = fD®u : j®j = kg; (1.2) the collection of all partial derivatives of order k. 1 Example 2. If u = u(x1; : : : ; xn), then D u = fuxi : i = 1; : : : ; ng. With this notation, we are now ready to define a partial differential equation.
    [Show full text]
  • Modified Variation of Parameters Method for Differential Equations
    World Applied Sciences Journal 6 (10): 1372-1376, 2009 ISSN 1818-4952 © IDOSI Publications, 2009 Modified Variation of Parameters Method for Differential Equations 1Syed Tauseef Mohyud-Din, 2Muhammad Aslam Noor and 2Khalida Inayat Noor 1HITEC University, Taxila Cantt, Pakistan 2Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan Abstract: In this paper, we apply the Modified Variation of Parameters Method (MVPM) for solving nonlinear differential equations which are associated with oscillators. The proposed modification is made by the elegant coupling of traditional Variation of Parameters Method (VPM) and He’s polynomials. The suggested algorithm is more efficient and easier to handle as compare to decomposition method. Numerical results show the efficiency of the proposed algorithm. Key words: Variation of parameters method • He’s polynomials • nonlinear oscillator INTRODUCTION the inbuilt deficiencies of various existing techniques. Numerical results show the complete reliability of the The nonlinear oscillators appear in various proposed technique. physical phenomena related to physics, applied and engineering sciences [1-6] and the references therein. VARIATION OF Several techniques including variational iteration, PARAMETERS METHOD (VPM) homotopy perturbation and expansion of parameters have been applied for solving such problems [1-6]. Consider the following second-order partial He [2-9] developed the homotopy perturbation differential equation: method for solving various physical problems. This reliable technique has been applied to a wide range of ytt = f(t,x,y,z,y,y,y,yxyzxx ,yyy ,y)zz (1) diversified physical problems [1-23] and the references therein. Recently, Ghorbani et al. [10, 11] introduced He’s polynomials by splitting the nonlinear term into a where t such that (-∞<t<∞) is time and f is linear or non series of polynomials.
    [Show full text]
  • Differential Equations
    Chapter 5 Differential equations 5.1 Ordinary and partial differential equations A differential equation is a relation between an unknown function and its derivatives. Such equations are extremely important in all branches of science; mathematics, physics, chemistry, biochemistry, economics,. Typical example are • Newton’s law of cooling which states that the rate of change of temperature is proportional to the temperature difference between it and that of its surroundings. This is formulated in mathematical terms as the differential equation dT = k(T − T ), dt 0 where T (t) is the temperature of the body at time t, T0 the temperature of the surroundings (a constant) and k a constant of proportionality, • the wave equation, ∂2u ∂2u = c2 , ∂t2 ∂x2 where u(x, t) is the displacement (from a rest position) of the point x at time t and c is the wave speed. The first example has unknown function T depending on one variable t and the relation involves the first dT order (ordinary) derivative . This is a ordinary differential equation, abbreviated to ODE. dt The second example has unknown function u depending on two variables x and t and the relation involves ∂2u ∂2u the second order partial derivatives and . This is a partial differential equation, abbreviated to PDE. ∂x2 ∂t2 The order of a differential equation is the order of the highest derivative that appears in the relation. The unknown function is called the dependent variable and the variable or variables on which it depend are the independent variables. A solution of a differential equation is an expression for the dependent variable in terms of the independent one(s) which satisfies the relation.
    [Show full text]