An Automated Method for the Layup of Fiberglass Fabric
Total Page:16
File Type:pdf, Size:1020Kb
An automated method for the layup of fiberglass fabric by Siqi Zhu A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Industrial Engineering Program of Study Committee: Matthew Frank, Major Professor Vinay Dayal John Jackman Frank Peters Stephen Vardeman Iowa State University Ames, Iowa 2015 Copyright © Siqi Zhu, 2015. All rights reserved. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................................................................... iv ABSTRACT .................................................................................................................................... v CHAPTER 1 GENERAL INTRODUCTION ................................................................................ 1 1.1 Background ........................................................................................................................... 1 1.2 Motivation ............................................................................................................................. 2 1.3 Research Problem and Objectives ......................................................................................... 6 1.4 Dissertation Organization ...................................................................................................... 7 1.5 References ............................................................................................................................. 7 CHAPTER 2 LITERATURE REVIEW ......................................................................................... 9 2.1 Fabric Draping in Composites Manufacturing ...................................................................... 9 2.2 Automated Fabric Layup Techniques ................................................................................. 10 2.3 Composite Material Testing and Meso-Scale Measurement ............................................... 13 2.4 References ........................................................................................................................... 16 CHAPTER 3 AUTOMATED COMPOSITE FABRIC LAYUP FOR WIND TURBINE BLADES ....................................................................................................................................... 19 Abstract ..................................................................................................................................... 19 3.1 Introduction ......................................................................................................................... 20 3.2 General Solution Method .................................................................................................... 22 3.3 Implementation of the Automated Shifting Machine .......................................................... 26 3.4 Experimentation .................................................................................................................. 30 3.5 Conclusions ......................................................................................................................... 42 3.6 Future Work ........................................................................................................................ 43 3.7 Acknowledgement ............................................................................................................... 43 3.8 References ........................................................................................................................... 43 CHAPTER 4 COMPUTER-AIDED PROCESS PLANNING FOR AN AUTOMATED COMPOSITE FABRIC LAYUP SYSTEM ................................................................................. 45 iii Abstract ..................................................................................................................................... 45 4.1 Introduction ......................................................................................................................... 46 4.2 Literature Review ................................................................................................................ 47 4.3 Kinematic Modeling of the Fabric Shifting Machine ......................................................... 51 4.4 Path Planning Method ......................................................................................................... 56 4.5 Machine Control Method .................................................................................................... 63 4.6 Experiment on the Trailing Edge Layup ............................................................................. 66 4.7 Conclusion and Future Work .............................................................................................. 72 4.8 References ........................................................................................................................... 72 CHAPTER 5 VALIDATION OF THE SHIFTING DEFORMATION ....................................... 74 Abstract ..................................................................................................................................... 74 Nomenclature ............................................................................................................................ 75 5.1 Introduction ......................................................................................................................... 75 5.2 Literature Review ................................................................................................................ 78 5.3 Experimental Design ........................................................................................................... 81 5.4 Results and Discussion ........................................................................................................ 85 5.6 Conclusion ........................................................................................................................... 90 5.7 References ........................................................................................................................... 91 CHAPTER 6 GENERAL CONCLUSION ................................................................................... 93 6.1 Conclusion ........................................................................................................................... 93 6.2 Future Work ........................................................................................................................ 94 iv ACKNOWLEDGEMENTS I would like to take this opportunity to thank my major professor, Dr. Frank who was always constructive and patient to me during my whole graduate study process. I would like to thank my committee members, Dr. Dayal, Dr. Jackman, Dr. Peters and Dr. Vardeman for their professional guidance along the way. I would like to thank the REU (Research Experience for Undergraduates) student assistants, David, Sam, Hannah and Emily for their dedication and contribution in this research project. I would like to thank all my colleagues in the Wind Energy Manufacturing Laboratory and the Rapid Manufacturing and Prototyping Laboratory who are always ready to help me with everything they have. I would like to express my gratitude to my parents and family who have been encouraging me to follow my heart and pursue my dreams since I was a little boy. v ABSTRACT This dissertation presents an automated composite fabric layup solution based on a new method to deform fiberglass fabric referred to as shifting. A layup system was designed and implemented using a large robotic gantry and custom end-effector for shifting. Layup tests proved that the system can deposit fabric onto two-dimensional and three-dimensional tooling surfaces accurately and repeatedly while avoiding out-of-plane deformation. A process planning method was developed to generate tool paths for the layup system based on a geometric model of the tooling surface. The approach is analogous to Computer Numerical Controlled (CNC) machining, where Numerical Control (NC) code from a Computer-Aided Design (CAD) model is generated to drive the milling machine. Layup experiments utilizing the proposed method were conducted to validate the performance. The results show that the process planning software requires minimal time or human intervention and can generate tool paths leading to accurate composite fabric layups. Fiberglass fabric samples processed with shifting deformation were observed for meso-scale deformation. Tow thinning, bending and spacing was observed and measured. Overall, shifting did not create flaws in amounts that would disqualify the method from use in industry. This suggests that shifting is a viable method for use in automated manufacturing. The work of this dissertation provides a new method for the automated layup of broad width composite fabric that is not possible with any available composite automation systems to date. 1 CHAPTER 1 GENERAL INTRODUCTION 1.1 Background Composite materials, also known as composites, are materials that consist of two or more materials with different physical or chemical properties. For example, concrete is a composite material that consists of cement, aggregate and optional rebar. A wide range of materials including wood and bamboo can also be considered as composites. The material combination makes it possible to take advantage of different properties of the constituent materials. The resulting composite material can often have more favorable properties than the individual