Terrestrial Biodiversity Impact Assessment for the Proposed Mutsho Power Project Near Makhado, Limpopo Province©

Total Page:16

File Type:pdf, Size:1020Kb

Terrestrial Biodiversity Impact Assessment for the Proposed Mutsho Power Project Near Makhado, Limpopo Province© BEC Report Reference: SVE - MPS - 2018/07 Cell: +27 (0)82 3765 933 Report Version: 2018.04.12.03 Email: [email protected] Report Status: FINAL REPORT Tel: +27 (0)12 658 5579 TERRESTRIAL BIODIVERSITY IMPACT ASSESSMENT FOR THE PROPOSED MUTSHO POWER PROJECT NEAR MAKHADO, LIMPOPO PROVINCE© Bathusi Environmental Consulting (Botanical Assessment) In collaboration with Ecocheck Environmental Services cc Pachnoda Consulting cc (Faunal Assessment) (Avifaunal Assessment) This report was produced for Terrestrial Biodiversity EIA Assessment for Mutsho Power Project, Limpopo Province© SECTION A – ADMINISTRATION, PROJECT DETAILS & INTRODUCTARY COMMENTS This report is compartmentalised as follows: Section A Project introduction and administrative details, specialist introduction, report navigation, introductory section, Specialist Executive Summaries; Section B The biophysical environment and available biophysical information and background; Section C Botanical aspects of the receiving environment, botanical impact assessment, mitigation recommendations and EMPr contributions; Section D Mammalian, Invertebrate & Herpetofaunal aspects of the receiving environment, faunal impact assessment, mitigation recommendations and EMPr contributions; and Section E Avifaunal aspects of the receiving environment, avifaunal impact assessment, mitigation recommendations and EMPr contributions. Report: SVE - MPS - 2018/07 FINAL REPORT Version 2018.04.12.03 April 2018 i Terrestrial Biodiversity EIA Assessment for Mutsho Power Project, Limpopo Province© I REPORT NAVIGATION Section A – Administration, Project Details & Introductary Comments...................... i I Report Navigation ................................................................................................. ii II List of Figures ....................................................................................................... v III List of Tables ....................................................................................................... vi IV Project Details .................................................................................................... viii V Savannah Environmental Contact Minutiae ............................................................. viii VI Report Citation ................................................................................................... viii VII Reserved Copyright ............................................................................................. viii VIII Contributing Specialists ........................................................................................ ix IX Declaration of Independence .................................................................................. x X Indemnity ........................................................................................................... xi XI Executive Summary – Biophysical Background ......................................................... xii XII Executive Summary – Botanical Assessment .......................................................... xiii XIII Executive Summary – Faunal Assessment .............................................................. xvi XIV Executive Summary – Avifaunal Assessment ........................................................ xviii XV Acronyms & Abbreviations.................................................................................... xx XVI Glossary of Terms ............................................................................................... xxi XVII Introduction ...................................................................................................... xxii XVIII Project Synopsis ............................................................................................... xxiii XIX Project SIte Locations ........................................................................................ xxvi Section B – Biophysical Attributes of the Recieving Environment .............................. 1 SectionA 1 Land Cover & Land Use of the Region ...................................................................... 2 2 Declared Conservation Areas .................................................................................. 2 3 Land Types & geology ............................................................................................ 5 4 Surface Water ...................................................................................................... 5 5 Topography, Relief & Slopes ................................................................................... 6 6 Regional Conservation Planning .............................................................................. 7 7 Background to the Savanna Ecology ........................................................................ 9 8 Broad Weather Statistics ...................................................................................... 10 Section C – Botanical Attributes of the Recieving Environment ............................... 12 9 Abridged Method Statement ................................................................................. 13 9.1 Baseline Survey ......................................................................................... 13 9.2 Sampling Approach .................................................................................... 13 9.3 Phytodiversity Measurements ...................................................................... 14 9.4 Data Processing ......................................................................................... 14 10 Regional Floristic Attributes .................................................................................. 15 10.1 Regional Floristic Traits ............................................................................... 15 10.2 Regional Phytodiversity .............................................................................. 18 10.3 Plants of Conservation Importance ............................................................... 18 10.3.1 2018 Survey Results ............................................................................... 19 10.3.2 The age of Adansonia digitata trees .......................................................... 20 10.4 Recorded Phytodiversity (2018) ................................................................... 21 10.4.1 Species Richness – Alpha Diversity ........................................................... 21 10.4.2 Estimate-S Analysis ................................................................................ 23 Report: SVE - MPS - 2018/07 FINAL REPORT Version 2018.04.12.03 April 2018 ii Terrestrial Biodiversity EIA Assessment for Mutsho Power Project, Limpopo Province© 10.4.3 Shannon-Weiner Index (H’) ..................................................................... 30 10.4.4 Evenness Index ...................................................................................... 30 10.4.5 Simpson’s Diversity Index ....................................................................... 31 10.5 Plants with traditional and medicinal uses/ properties ..................................... 32 11 Vegetation Development Drivers ........................................................................... 34 12 TWINSPAN Results .............................................................................................. 35 13 Floristic Communities and Variations ..................................................................... 40 13.1 Combretum imberbe – Phyllanthus reticulatus ephemeral pans........................ 41 13.2 Vachellia grandicornuta – Boscia foetida eroded watercourses and calcareous plains/ washes ....................................................................................................... 41 13.3 Combretum apiculatum Grewia flavescens – Colophospermum mopane Woodland 43 13.4 Vachellia tortilis – Cienfuegosia – digitata old fields ........................................ 45 13.5 Artificial dams ........................................................................................... 45 13.6 Farming Infrastructure ............................................................................... 45 13.7 Photographic examples of various habitat types and pertinent aspects ............. 46 14 Floristic Sensitivity .............................................................................................. 54 15 Potential and Likely Impacts on The Floristic Receiving Environment ......................... 58 15.1 Nature of Potential and Likely Impacts – Direct and Indirect Impacts ............... 58 15.1.1 Quantification of Direct and Indirect Impacts on the Floristic Environment ..... 59 15.2 Nature of Potential and Likely Cumulative Impacts ......................................... 63 15.2.1 Quantification of Cumulative Impacts on the Floristic Environment ............... 63 15.3 Summary of Impact Quantification on the Floristic Environment ...................... 64 16 Analysis of Proposed Project Alternatives ............................................................... 65 16.1 Alternative 1 ............................................................................................. 65 16.2 Alternative 2 ............................................................................................. 66 16.3 Alternative 3 ............................................................................................. 66 16.4 Synthesis .................................................................................................. 66 17 Mitigation
Recommended publications
  • Determination of Nutritional Composition of Encosternum Delegorguei Caught in Nerumedzo Community of Bikita, Zimbabwe
    International Journal of Biology; Vol. 7, No. 4; 2015 ISSN 1916-9671 E-ISSN 1916-968X Published by Canadian Center of Science and Education Determination of Nutritional Composition of Encosternum delegorguei Caught in Nerumedzo Community of Bikita, Zimbabwe Tendai A. Makore1, Penina Garamumhango1, Tinofirei Chirikure1 & Sherpherd D. Chikambi2 1 Department of BTECH Food Science and Technology, Masvingo Polytechnic, Masvingo, Zimbabwe 2 Department of Animal Science, University of Zimbabwe, Harare, Zimbabwe Correspondence: Tendai A. Makore, Department of BTECH Food Science and Technology, Masvingo Polytechnic, P.O.Box 800, Masvingo, Zimbabwe. Tel: 263-252-305. E-mail: [email protected] Received: July 20, 2015 Accepted: August 10, 2015 Online Published: August 14, 2015 doi:10.5539/ijb.v7n4p13 URL: http://dx.doi.org/10.5539/ijb.v7n4p13 Abstract Three forms of Encosternum delegorguei consumed in Nerumedzo community, Bikita, Zimbabwe were analysed for their nutritional composition. Protein, fat, ash and mineral content were determined for the preprocessed, well prepared and spoiled bugs. The proximate composition and minerals of the insects were determined using standard methods. One Way Analysis of Variance (ANOVA) was used in analyzing data. They were found to contain 30-36% protein; 51-53% fat and 1-1.5% ash respectively. Spoiled bugs contained the lowest protein content of 30.76±0.98% and highest amount of magnesium of 120±2.2 mg/100g while the preprocessed and well processed contained 110±2.5 mg/100g and 112±2.4 mg/100g respectively. Phosphorous was the most abundant in all forms with a value of 570-575 mg/100g. Calcium levels for all the three forms showed an overall mean of 85-89 mg/100g.
    [Show full text]
  • Multiple Polyploidy Events in the Early Radiation of Nodulating And
    Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes Steven B. Cannon,*,y,1 Michael R. McKain,y,2,3 Alex Harkess,y,2 Matthew N. Nelson,4,5 Sudhansu Dash,6 Michael K. Deyholos,7 Yanhui Peng,8 Blake Joyce,8 Charles N. Stewart Jr,8 Megan Rolf,3 Toni Kutchan,3 Xuemei Tan,9 Cui Chen,9 Yong Zhang,9 Eric Carpenter,7 Gane Ka-Shu Wong,7,9,10 Jeff J. Doyle,11 and Jim Leebens-Mack2 1USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 2Department of Plant Biology, University of Georgia 3Donald Danforth Plant Sciences Center, St Louis, MO 4The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia 5The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia 6Virtual Reality Application Center, Iowa State University 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 8Department of Plant Sciences, The University of Tennessee Downloaded from 9BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China 10Department of Medicine, University of Alberta, Edmonton, AB, Canada 11L. H. Bailey Hortorium, Department of Plant Biology, Cornell University yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]. http://mbe.oxfordjournals.org/ Associate editor:BrandonGaut Abstract Unresolved questions about evolution of the large and diverselegumefamilyincludethetiming of polyploidy (whole- genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown.
    [Show full text]
  • Apidae:Meliponini) in a BIODIVERSE HOTSPOT of KENYA
    ECOLOGICAL, BEHAVIOURAL AND BIOCHEMICAL TRAITS OF AFRICAN MELIPONINE BEE SPECIES (Apidae:Meliponini) IN A BIODIVERSE HOTSPOT OF KENYA. BY BRIDGET OBHAGIAGIE AITO-BOBADOYE. B.Tech. (LAUTECH), M.Sc. (UNIVERSITY OF IBADAN) NIGERIA. Reg. No.: I80/95388/2014 A THESIS SUBMITTED FOR EXAMINATION IN FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN ENTOMOLOGY. SCHOOL OF BIOLOGICAL SCIENCES UNIVERSITY OF NAIROBI NOVEMBER, 2017. i DECLARATION Candidate This thesis is my original work and has not been presented for a degree in any other university or any other award. Name……………………………………………………………………………. Signature……………………………….. Date………………………………. Supervisors We confirm that the work reported in this thesis was carried out by the candidate under our supervision and the thesis has been submitted for examination with our approval. Prof. Paul N. Ndegwa School of Biological Sciences, University of Nairobi. Signature……………………………. Date………………………………… Prof. Lucy W. Irungu School of Biological Sciences, University of Nairobi. Signature……………………………. Date………………………………… Prof. Baldwyn Torto Behavioral and Chemical Ecology Department (BCED), International Centre for Insect Physiology and Ecology (ICIPE), P. O. Box 30772-00100, Nairobi, Kenya Signature …………………………… Date ………………………………….. Dr. Ayuka T. Fombong Behavioral and Chemical Ecology Department (BCED), International Centre for Insect Physiology and Ecology (ICIPE), P. O. Box 30772-00100, Nairobi, Kenya Signature …………………………… Date …………………………………… ii DEDICATION This work is dedicated to Almighty God, my ever present help, my constantly supportive parents (Mr. Sunday and Mrs. Cecilia Aitokhuehi) for their continous prayers, help and huge encouragement, my husband (Ayodotun Bobadoye), and finally my blessed child (Oluwasindara Ofure Osemobor Benedicta Bobadoye). iii ACKNOWLEDGEMENT I am extremely grateful to my supervisors, Professors Lucy Irungu, Paul Ndegwa, Baldwyn Torto and Dr.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Consumption of Insects As Food in Three Villages Of
    e- ISSN: 2394 -5532 p- ISSN: 2394 -823X Scientific Journal Impact Factor: 3.762 International Journal of Applied And Pure Science and Agriculture www.ijapsa.com CONSUMPTIO N OF INSECTS AS FOOD IN THREE VILLAGES OF NORTH WEST DISTRICT ,BOTSWANA John Cassius Moreki 1 and Sethunya Obatre 2 1Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources , Private Ba g 0027, Gaborone, Botswana. 2Department of Agricultural Economics, Education and ExtensExtensionion , BotswanaUniversity of Agriculture and Natural Resources , Private Bag 0027, Gaborone, Botswana . Abstract This study investigated the consumption of ed ible insects in Nxaraga, Sehithwa and Shorobe villages of the North West district of Botswana. Information was gathered using a structured questionnaire which was administered to 60 respondents across the three villages and also through direct observation. A total of six insect species were identified belonging to six families and four orders (i.e., Coleoptera, Isoptera, Lepidoptera and Orthoptera) with t he two most consumed orders being Lepidoptera and Coleoptera. Carebara vidua F. Smith (33.3%) was the most consumed followed by Sternocera orissa Buq. (21.7%), Agrius convolvuli L. (15.0%), Oryctes boas Fabr.(13.3%), Imbrasia belina Westwood (10.0%) and Lo custa migratoria (6.7%). The study revealed that insects were abundant during and/or immediately after the rainy season. This implies that insects can be harvested and preserved during the time of abundan ce to maximize their utilization in meeting the human protein needs. The common methods of collecting insects were hand picking, trapping and digging. Insects were prepared for consumption by boiling, frying or roasting.
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • Malelane Safari Lodge, Kruger National Park
    INVERTEBRATE SPECIALIST REPORT Prepared For: Malelane Safari Lodge, Kruger National Park Dalerwa Ventures for Wildlife cc P. O. Box 1424 Hoedspruit 1380 Fax: 086 212 6424 Cell (Elize) 074 834 1977 Cell (Ian): 084 722 1988 E-mail: [email protected] [email protected] Table of Contents 1. EXECUTIVE SUMMARY ............................................................................................................................ 3 2. INTRODUCTION ........................................................................................................................................... 5 2.1 DESCRIPTION OF PROPOSED PROJECT .................................................................................................................... 5 2.1.1 Safari Lodge Development .................................................................................................................... 5 2.1.2 Invertebrate Specialist Report ............................................................................................................... 5 2.2 TERMS OF REFERENCE ......................................................................................................................................... 6 2.3 DESCRIPTION OF SITE AND SURROUNDING ENVIRONMENT ......................................................................................... 8 3. BACKGROUND ............................................................................................................................................. 9 3.1 LEGISLATIVE FRAMEWORK ..................................................................................................................................
    [Show full text]
  • Ivermectin Residues Disrupt Dung Beetle Diversity, Soil Properties and Ecosystem Functioning: an Interdisciplinary field Study
    Science of the Total Environment 618 (2018) 219–228 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study José R. Verdú a,⁎, Jorge M. Lobo b, Francisco Sánchez-Piñero c, Belén Gallego a, Catherine Numa d, Jean-Pierre Lumaret e, Vieyle Cortez a, Antonio J. Ortiz f,MattiaTonellia, Juan P. García-Teba a, Ana Rey b, Alexandra Rodríguez g, Jorge Durán g a I.U.I. CIBIO, Universidad de Alicante, Alicante E-03690, Spain b Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales-CSIC, José Abascal 2, Madrid E-28006, Spain c Departamento de Zoología, Universidad de Granada, Granada E-18071, Spain d IUCN-Centre for Mediterranean Cooperation, Marie Curie 22, Campanillas, Málaga E-29590, Spain e UMR 5175 CEFE, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier 3 – EPHE, Université Paul-Valéry Laboratoire Zoogéographie, Route de Mende, 34199 cedex 5 Montpellier, France f Departamento de Química Inorgánica y Química Orgánica, Universidad de Jaén, Campus Las Lagunillas, Jaén E-23071, Spain g Center for Functional Ecology (CEF), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal HIGHLIGHTS GRAPHICAL ABSTRACT • At the short term, ivermectin residues cause a strong decrease in dung reloca- tion and dung spreading by dung beetles. • Conventional use of ivermectin disrupts diversity by affecting species richness, abundance and biomass of dung beetles. • Reduction in the functional efficiency of dung degradation resulted in the long- term accumulation of manure.
    [Show full text]
  • Section 6 - Open Space Residential Design (Osrd)
    SECTION 6 - OPEN SPACE RESIDENTIAL DESIGN (OSRD) 6.100 PURPOSE An Open Space Residential Design (OSRD) is a residential development in which the buildings or lots are clustered together with reduced lot area, frontage, setback and lot coverage requirements. The total number of allowed residential units is based on the number of units that could be permitted for conventional development. The land not included in the building lots is preserved as open space. Open Space Residential Design is the preferred form of residential development in the Town of Dartmouth. The purpose of Open Space Residential Design (OSRD) is: To encourage a more efficient form of development that consumes less open land and conforms to existing topography and natural features better than a conventional subdivision. To allow for greater flexibility and creativity in the design of residential developments. To encourage the preservation of open space, agricultural and forestry land, plant and wildlife habitat, other natural resources including aquifers, waterbodies, wetlands, historical and archeological resources. To protect existing and potential municipal water supplies. To preserve and enhance Dartmouth’s traditional New England landscape. To protect scenic vistas as viewed from the Town’s roadways and other public places. To reduce the construction cost and maintenance of streets, utilities and public services in a more economical and efficient manner in harmony with the site and neighborhood. To protect the value of real property. To minimize the total amount of disturbance on the site. To preserve open space areas for active and passive recreational use, including the provision of neighborhood parks and trails. To encourage the provision of diverse housing opportunities especially housing that is affordable to Town residents and the integration of a variety of housing types.
    [Show full text]
  • Residential High-Rise Clusters As a Contemporary Planning Challenge in Manama by Florian Wiedmann Frankfurt University of Applied Sciences Dr
    Revista Gremium® | Volumen 2 | Número 04 | Agosto - Diciembre 2015 | ISSN 2007-8773 | México, D. F. Residential High-Rise Clusters as a Contemporary Planning Challenge in Manama by Florian Wiedmann Frankfurt University of Applied Sciences Dr. Florian Wiedmann is a Senior Urban Planner and part-time Lecturer at Frankfurt University of Applied Sciences. He holds a PhD in urban planning and his recent research efforts are focused on the urbanization in the Gulf region. In addition to his academic occupation he is co-founder and principal of ARRUS, an urban planning consultancy located in Frankfurt and Chicago. Email: [email protected] Received: 29 April 29 2015 Accepted: 05 July 2015 Abstract Available online: 01 August 2015 This paper analyzes the different roots of current residential high-rise clusters emerging in new city districts along the coast of Bahrain’s capital city Manama, and the resulting urban planning and design challenges. Since the local real-estate markets were liberalized in Bahrain in 2003, the population grew rapidly to more than one million inhabitants. Consequently, the housing demand increased rapidly due to extensive immigration. Many residential developments were however constructed for the upper spectrum of the real-estate market, due to speculative tendencies causing a raise in land value. The emerging high-rise clusters are developed along the various waterfronts of Manama on newly reclaimed land. This paper explores the spatial consequences of the recent boom in construction boom and the various challenges for architects and urban planners to enhance urban qualities. Keywords: high-rise, cluster development, housing, urban planning, Bahrain, Manama Introduction gaining national independence during 1970, the urban transformation process was dominated Since the end of the 20th century, a new vision by the welfare state mechanisms and a car- in urban development has been introduced based model of town planning (imported by in the case of the cities in the gulf, in order to Western architects and planners).
    [Show full text]
  • Avibase Page 1Of 6
    Avibase Page 1of 6 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Bwindi Impenetrable National Park 2 Number of species: 588 3 Number of endemics: 0 4 Number of breeding endemics: 0 5 Number of introduced species: 1 Recommended citation: Lepage, D. 2021. Checklist of the birds of Bwindi Impenetrable National Park. Avibase, the world bird database. Retrieved from .https://avibase.bsc- eoc.org/checklist.jsp?lang=EN&region=ug04uu01&list=howardmoore&format=2 [12/05/2021]. Make your observations count! Submit your data to ebird.org - Legend: [x] accidental [ex] extirpated [EX] extinct [EW] extinct in the wild [E] endemic [e] endemic (country/region) Egyptian Goose Tambourine Dove Black Cuckoo Hottentot Teal Namaqua Dove African Cuckoo African Black Duck Montane Nightjar African Crake Red-billed Teal Mottled Spinetailed Swift Black Crake Comb Duck Cassin's Spinetailed Swift White-spotted Flufftail Helmeted Guineafowl Scarce Swift Buff-spotted Flufftail Crested Guineafowl African Palm Swift Red-chested Flufftail Blue Quail Alpine Swift African Finfoot Scaly Francolin Mottled Swift Grey Crowned Crane Red-necked Spurfowl White-rumped Swift Great Blue Turaco Handsome Francolin Horus Swift Eastern Grey Plantain-eater Crested Francolin Little Swift Bare-faced Go-away-bird Ring-necked Francolin African Swift Ruwenzori Turaco Little Grebe Common Swift Black-billed Turaco Speckled Pigeon Blue-headed Coucal Ross's Turaco Afep Pigeon White-browed Coucal Marabou African Olive Pigeon African Black
    [Show full text]
  • Kiatoko N..Pdf
    DISTRIBUTION, BEHAVIOURAL BIOLOGY, REARING AND POLLINATION EFFICIENCY OF FIVE STINGLESS BEE SPECIES (APIDAE: MELIPONINAE) IN KAKAMEGA FOREST, KENYA BY KIATOKO NKOBA Reg No. I84F/11631/08 A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D) in Agricultural Entomology in the School of Pure and Applied Sciences of Kenyatta University AUGUST 2012 i DECLARATION This thesis is my original work and has not been presented for a degree in any other University or any other award. Kiatoko Nkoba Department of Zoological Science Signature:…………………… Date:……………… We confirm that the work reported in this thesis was carried out by the candidate under our supervision. We have read and approved this thesis for examination. Professor J. M. Mueke Department of Zoological Sciences Kenyatta University Signature:…………………… Date:……………… Professor K. Suresh Raina Commercial Insects Programme, icipe African Insect Science for Food and Health Signature:…………………… Date:……………… Dr. Elliud Muli Department of Biological Sciences South Eastern University College (A Constituent College of the University of Nairobi) Signature:…………………… Date:……………… ii DEDICATION This thesis is dedicated to The All Mighty God, My parents Prefessor Kiatoko Mangeye Honore and Madame Kialungila Mundengi Cecile, My lovely daughters Kiatoko Makuzayi Emile and Kiatoko Mangeye Pongelle and to my wife Luntonda Buyakala Nicole. Thank you for your love and support. iii ACKNOWLEDGEMENTS I am grateful to Prof Jones Mueke for having accepted to be my University supervisor and for providing me high quality scientific assistance. The pleasure and a great honour are for me having you as my supervisor. You have always motivated me throughout the study period and will always remember the patience you had in reading my writing expressed in French.
    [Show full text]