Genetic Diversity and Population Structure of Busseola Segeta Bowden (Lepidoptera; Noctuidae): a Case Study of Host Use Diversif

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Diversity and Population Structure of Busseola Segeta Bowden (Lepidoptera; Noctuidae): a Case Study of Host Use Diversif Insects 2012, 3, 1156-1170; doi:10.3390/insects3041156 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Genetic Diversity and Population Structure of Busseola segeta Bowden (Lepidoptera; Noctuidae): A Case Study of Host Use Diversification in Guineo-Congolian Rainforest Relic Area, Kenya *HRUJH22QJ¶DPR 1,*, Bruno P. Le Ru 2,3, Pascal Campagne 3, Antoine Branca 4, Paul-Andre Calatayud 2,3, Claire Capdevielle-Dulac 4 and Jean-Francois Silvain 4 1 School of Biological Science, College of Physical and Biological Sciences (Chiromo Campus), University of Nairobi, Nairobi 30197, Kenya 2 Unité de Recherche IRD 072, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi 30772, Kenya; E-Mails: [email protected] (B.P.L.R.); [email protected] (P.-A.C.) 3 Unité de Recherche IRD 072, International Centre of Insect Physiology and Ecology (ICIPE), Université Paris-Sud 11, Orsay cedex 91405, France; E-Mails: [email protected] 4 Unité de Recherche IRD 072, CNRS, Laboratoire Evolution, Génomes et spéciation, UPR 9034, 91198 Gif-sur-Yvette cedex, France et Université Paris-Sud 11, Orsay cedex 91405, France; E-Mails: [email protected] (A.B.); [email protected] (C.C.-D.); [email protected] (J.-F.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 27 July 2012; in revised form: 22 August 2012 / Accepted: 30 August 2012 / Published: 6 November 2012 Abstract: Habitat modification and fragmentation are considered as some of the factors that drive organism distribution and host use diversification. Indigenous African stem borer pests are thought to have diversified their host ranges to include maize [Zea mays L.] and sorghum [Sorghum bicolor (L.) Moench] in response to their increased availability through extensive cultivation. However, management efforts have been geared towards reducing pest populations in the cultivated fields with few attempts to understand possible evolution of "new" pest species. Recovery and growing persistence of Busseola segeta Bowden on maize (Zea mays L.) in Kakamega called for studies on the role of wild host plants on the invasion of crops by wild borer species. A two-year survey was carried out in a small agricultural landscape along the edge of Kakamega forest (Kenya) to assess host range and population genetic structure of B. segeta. The larvae of B. segeta were found on nine different plant species with the majority occurring on maize and sorghum. Of forty Insects 2012, 3 1157 cytochrome b haplotypes identified, twenty-three occurred in both wild and cultivated habitats. The moths appear to fly long distances across the habitats with genetic analyses revealing weak differentiation between hosts in different habitats (FST = 0.016; p = 0.015). However, there was strong evidence of variation in genetic composition between growing seasons in the wild habitat (FST = 0.060; p < 0.001) with emergence or disappearance of haplotypes between habitats. Busseola segeta is an example of a phytophagous insect that utilizes plants with a human induced distribution range, maize, but does not show evidence of host race formation or reduction of gene flow among populations using different hosts. However, B. segeta is capable of becoming an important pest in the area and the current low densities may be attributed to the general low infestation levels and presence of a wide range of alternative hosts in the area. Keywords: Cytochrome b; exchange; growing seasons; haplotypes; wild habitat; Zea mays 1. Introduction Natural ecosystems provide important habitats for a wide range of organisms. Unfortunately, these habitats have been subjected to diverse forms of modifications over the past half century resulting in significant loss and fragmentation of natural ecosystems [1±4]. Organisms exposed to these modifications, particularly phytophagous insects, exhibit a wide range of responses varying from host range expansion to local species extinction [5±8]. The ability of insects to utilize different host plants has been suggested to be a dynamic and transient phase [9]. During or after this phase, species can shift to novel host plants or re-specialize on ancestral ones. Expanding the range of host plants might also be a factor leading to higher net speciation rates. Lepidopteran stem borers are among the phytophagous insects that expanded their host ranges upon exposure to anthropogenic changes. In East Africa, stem borer pests, Busseola fusca Fuller and Sesamia calamistis Hampson, are examples of phytophagous insects that expanded their hosts and eventually specialised to feed on maize and sorghum where they remain important pests [10]. Though trade-offs associated with host use diversification have been evaluated in different contexts and applied in stem borer pest management (e.g., in the "Push-Pull" system, [11]), this study focused on the effects of fine scale host use diversification on genetic structure of a native phytophagous stem borer sub-species, Busseola segeta Bowden, and potential influence of natural habitats on its dynamics. Busseola segeta was for a long time known to infest wild Poaceae plants in Kenya [12] until 2005 when it was first reported on maize [Zea mays L.] in Kakamega and Kisii [13]. During the first recovery, authors thought that B. segeta eggs may have been accidentally oviposited by gravid moths from wild hosts growing in the adjacent forests. Since then, this species has persisted in maize and sorghum [Sorghum bicolor (L.) Moench] fields in Kakamega, where sometimes its population exceeds B. fusca - the native dominant pest species [14]. Despite this growing importance, B. segeta infests a wide range of non-cereal graminaceous plants in the vicinity, making it the only native stem borer species found in both wild and cultivated fields in this area [15]. Host use diversification remains important to agricultural entomologists as it may mark the beginning of an evolutionary process that Insects 2012, 3 1158 would result in a new pest. In addition to evolution of a new pest, host use diversification may sometimes result in adaptation to local conditions, or reduction in gene flow among populations using different hosts [16,17]. In this context, the source-sink role of cultivated and natural habitats in the life cycle and genetic composition of B. segeta has not been studied. Consequently, potential host use specialization and the reciprocal influence of populations from different habitats through exchange of individuals/genes are not known. The study of dispersal processes is a central problem in ecology, population genetics and conservation. For this reason, the estimation of dispersal rates has been one of the most investigated problems in population biology. Dispersal parameters can be directly estimated using ecological approaches such as mark-release-recapture methods but might not be applicable in studies involving sampling the propagules. In these cases, population genetics approaches provide a better alternative because the information contained in DNA can provide gene flow parameter estimates for different and complementary timescales [18,19]. Among molecular markers, mitochondrial markers, particularly the cytochrome b (Cyt. b) gene, has been applied in both phylogeographic studies [20] and estimation of long-standing historical host use differentiation [21]. In this study, the Cyt. b gene was used to examine host use diversification among B. segeta moths collected in the agricultural landscape along the Kakamega forest. 2. Experimental 2.1. Description of the Study Area Kakamega Forest is located in western Kenya about 40 km North West of Lake Victoria. It is the only remnant of Guineo-Congolian rainforest in Kenya and was gazetted in 1933 by the Forest Department to enhance its protection [22±24]. Despite the conservation measures, high human population density in the area (175 individuals/km2) has led to considerable long-term human influence on the forest and its environs [24]. The area is generally suitable for rain fed agriculture (temperature ranges from 12.7 °C to 27.1 °C and average rainfall is 1,650 mm), and parts of the forest have been excised for establishment of crop fields as demand for agricultural land increases. Surveyed landscape, 21.2 km2 along the forest edge, was originally part of the main forest block but was opened for cultivation of maize and sorghum due to human population pressure [23]. It is thus characterised by cultivated fields interspersed with uncultivated areas. The cultivated areas are covered by small farms, usually less than 2 ha, where maize, sorghum, finger millet and sugarcane are grown for domestic consumption. The uncultivated areas are covered by homes, forest edges and rivers. The natural habitats²hereafter referred to as wild habitats²support a wide range of plant species, some of which are potential hosts of stem borers [25]. The majority of the wild plants here that are considered as potential hosts of stem borers grow along the edge of the forest, around crop fields, and along the river banks. The area experiences a bimodal rainfall, which allows for two cropping seasons. The first season lasts from March to mid-July (long rain growing season, LR) and the second from mid-August to November (short rain growing season, SR). The area experiences light rain from the beginning of December to the end of February, hereafter referred to as non-cropping season. Insects 2012, 3 1159 2.2. Sampling, Rearing and Identification of Stem Borers Surveys were carried out in both wild and cultivated habitats in 2005±2007 growing seasons (SR, 2005 & 2006; LR, 2006 & 2007). A total of 32 maize fields were identified and surveyed for stem borer infestation during each sampling session. In each field, 100 maize plants were randomly selected and inspected for stem borer infestation symptoms five weeks after germination. During field sampling, only infested stems were dissected for larval recovery. Since stem borer infestations are usually low in wild habitats [13,26], we adopted two sampling approaches during each sampling session.
Recommended publications
  • The Role of Wild Host Plants in the Abundance of Lepidopteran Stem Borers Along Altitudinal Gradients in Kenya
    Ann. soc. enromol. Fr. (n.s.), 2006, 42 (3-4) : 363-370 ARTICLE The role ofwild host plants in the abundance oflepidopteran stem borers along altitudinal gradient in Kenya GEORGE O. ONG'AMO(I), BRUNO P. LE RD(I), STI~,PHANE DUPAS(l), PASCAL MOYAL(l), ERIC MUCHUGU(3), PAUL-ANDRE CALATAYUD(I) & JEAN-FRAN<;:OIS SILVAIN(2) (I) Nocruid Stem Borer Biodiversity Project (NSBB), Insrirur de Recherche pour le Developpernenr I International Cenrre of Insect Physiology and Ecology (IRD/ICIPE), P.O. Box 30772, Nairobi, Kenya (2) IRD, UR R072 clo CNRS, UPR 9034, Laboraroire Evolution, Genomes et Speciarion, avenue de la Terrasse, 91198 Gif/Yvene, France (31 Stem borer Biological Control Project (ICIPE), P.O. Box 30772, Nairobi, Kenya Abstract. Presence of wild host plants of stem borers in cereal-growing areas has been considered as reservoirs of lepidopteran stem borers, responsible for attack of crops during the growing season. Surveys to catalogue hosts and borers as well as to assess the abundance of the hosts were carried out during the cropping and non-cropping seasons in different agro-ecological zones along varying altitude gradient in Kenya. A total of 61 stem borer species belonging to families Noctuidae (25), Crambidae (14), Pyralidae (9), Tortricidae (11) and Cossidae (2) were recovered from 42 wild plant species. Two noctuids, Busseola fusca (Fuller), Sesamia calamistis Hampson, and two crambids, Chilo partellus (Swinhoe) and Chilo orichalcociliellus (Strand) were the four main borer species found associated with maize plants. In the wild, B. fusca was recovered from a limited number of host plant species and among them were Sorghum arundinaceum (Desvaux) Stapf, Setaria megaphylla (Steudel) 1.
    [Show full text]
  • Appendix 5.3 MON 810 Literature Review – List of All Hits (June 2016
    Appendix 5.3 MON 810 literature review – List of all hits (June 2016-May 2017) -Web of ScienceTM Core Collection database 12/8/2016 Web of Science [v.5.23] ­ Export Transfer Service Web of Science™ Page 1 (Records 1 ­­ 50) [ 1 ] Record 1 of 50 Title: Ground beetle acquisition of Cry1Ab from plant­ and residue­based food webs Author(s): Andow, DA (Andow, D. A.); Zwahlen, C (Zwahlen, C.) Source: BIOLOGICAL CONTROL Volume: 103 Pages: 204­209 DOI: 10.1016/j.biocontrol.2016.09.009 Published: DEC 2016 Abstract: Ground beetles are significant predators in agricultural habitats. While many studies have characterized effects of Bt maize on various carabid species, few have examined the potential acquisition of Cry toxins from live plants versus plant residue. In this study, we examined how live Bt maize and Bt maize residue affect acquisition of Cry1Ab in six species. Adult beetles were collected live from fields with either current­year Bt maize, one­year­old Bt maize residue, two­year­old Bt maize residue, or fields without any Bt crops or residue for the past two years, and specimens were analyzed using ELISA. Observed Cry1Ab concentrations in the beetles were similar to that reported in previously published studies. Only one specimen of Cyclotrachelus iowensis acquired Cry1Ab from two­year­old maize residue. Three species acquired Cry1Ab from fields with either live plants or plant residue (Cyclotrachelus iowensis, Poecilus lucublandus, Poecilus chalcites), implying participation in both live­plant and residue­based food webs. Two species acquired toxin from fields with live plants, but not from fields with residue (Bembidion quadrimaculatum, Elaphropus incurvus), suggesting participation only in live plant­based food webs.
    [Show full text]
  • ARTIGO / ARTÍCULO / ARTICLE Lepidópteros De O Courel (Lugo, Galicia, España, N.O
    ISSN: 1989-6581 Fernández Vidal (2018) www.aegaweb.com/arquivos_entomoloxicos ARQUIVOS ENTOMOLÓXICOS, 19: 87-132 ARTIGO / ARTÍCULO / ARTICLE Lepidópteros de O Courel (Lugo, Galicia, España, N.O. Península Ibérica) XVI: Noctuidae (sensu classico) [Nolidae, Erebidae (partim) y Noctuidae]. (Lepidoptera). Eliseo H. Fernández Vidal Plaza de Zalaeta, 2, 5ºA. E-15002 A Coruña (ESPAÑA). e-mail: [email protected] Resumen: Se elabora un listado comentado y puesto al día de los Noctuidae (sensu classico) [Nolidae, Erebidae (partim) y Noctuidae] (Lepidoptera) presentes en O Courel (Lugo, Galicia, España, N.O. Península Ibérica) recopilando los datos bibliográficos existentes (para 114 especies), a los que se añaden otros nuevos como resultado del trabajo de campo del autor, alcanzando un total de 246 especies. Entre los nuevos registros aportados se incluyen las primeras citas de tres especies para Galicia: Apamea epomidion (Haworth, 1809), Agrochola haematidea (Duponchel, 1827) y Xestia stigmatica (Hübner, [1813]); de otras 31 para la provincia de Lugo: Pechipogo strigilata (Linnaeus, 1758), Catocala electa (Vieweg, 1790), Acronicta cuspis (Hübner, [1813]), Acronicta megacephala ([Denis & Schiffermüller], 1775), Craniophora pontica (Staudinger, 1879), Cucullia tanaceti ([Denis & Schiffermüller], 1775), Cucullia verbasci (Linnaeus, 1758), Stilbia anomala (Haworth, 1812), Bryophila raptricula ([Denis & Schiffermüller], 1775), Caradrina noctivaga Bellier, 1863, Apamea crenata (Hufnagel, 1766), Apamea furva ([Denis & Schiffermüller], 1775), Apamea
    [Show full text]
  • Arthropod Faunal Diversity and Relevant Interrelationships of Critical Resources in Mt
    Arthropod Faunal Diversity and Relevant Interrelationships of Critical Resources in Mt. Malindang, Misamis Occidental Myrna G. Ballentes :: Alma B. Mohagan :: Victor P. Gapud Maria Catherine P. Espallardo :: Myrna O. Zarcilla Arthropod Faunal Diversity and Relevant Interrelationships of Critical Resources in Mt. Malindang, Misamis Occidental Myrna G. Ballentes, Alma B. Mohagan, Victor P. Gapud Maria Catherine P. Espallardo, Myrna O. Zarcilla Biodiversity Research Programme (BRP) for Development in Mindanao: Focus on Mt. Malindang and Environs The Biodiversity Research Programme (BRP) for Development in Mindanao is a collaborative research programme on biodiversity management and conservation jointly undertaken by Filipino and Dutch researchers in Mt. Malindang and its environs, Misamis Occidental, Philippines. It is committed to undertake and promote participatory and interdisciplinary research that will promote sustainable use of biological resources, and effective decision-making on biodiversity conservation to improve livelihood and cultural opportunities. BRP aims to make biodiversity research more responsive to real-life problems and development needs of the local communities, by introducing a new mode of knowledge generation for biodiversity management and conservation, and to strengthen capacity for biodiversity research and decision-making by empowering the local research partners and other local stakeholders. Philippine Copyright 2006 by Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) Biodiversity Research Programme for Development in Mindanao: Focus on Mt. Malindang and Environs ISBN 971-560-125-1 Wildlife Gratuitous Permit No. 2005-01 for the collection of wild faunal specimens for taxonomic purposes, issued by DENR-Region X, Cagayan de Oro City on 4 January 2005. Any views presented in this publication are solely of the authors and do not necessarily represent those of SEARCA, SEAMEO, or any of the member governments of SEAMEO.
    [Show full text]
  • Dr. Frank G. Zalom
    Award Category: Lifetime Achievement The Lifetime Achievement in IPM Award goes to an individual who has devoted his or her career to implementing IPM in a specific environment. The awardee must have devoted their career to enhancing integrated pest management in implementation, team building, and integration across pests, commodities, systems, and disciplines. New for the 9th International IPM Symposium The Lifetime Achievement winner will be invited to present his or other invited to present his or her own success story as the closing plenary speaker. At the same time, the winner will also be invited to publish one article on their success of their program in the Journal of IPM, with no fee for submission. Nominator Name: Steve Nadler Nominator Company/Affiliation: Department of Entomology and Nematology, University of California, Davis Nominator Title: Professor and Chair Nominator Phone: 530-752-2121 Nominator Email: [email protected] Nominee Name of Individual: Frank Zalom Nominee Affiliation (if applicable): University of California, Davis Nominee Title (if applicable): Distinguished Professor and IPM specialist, Department of Entomology and Nematology, University of California, Davis Nominee Phone: 530-752-3687 Nominee Email: [email protected] Attachments: Please include the Nominee's Vita (Nominator you can either provide a direct link to nominee's Vita or send email to Janet Hurley at [email protected] with subject line "IPM Lifetime Achievement Award Vita include nominee name".) Summary of nominee’s accomplishments (500 words or less): Describe the goals of the nominee’s program being nominated; why was the program conducted? What condition does this activity address? (250 words or less): Describe the level of integration across pests, commodities, systems and/or disciplines that were involved.
    [Show full text]
  • Biosearch 2004 Report
    Biosearch Nyika: Malawi 2004 Edited by Marianne J Overton FOREWORD Peter Overton It is ten years since the Biosearch Nyika project was first mooted and agreement with the Director of National Parks and Wildlife obtained for our exploration of the remoter parts of the Nyika National Park. Over this period the teams have focused mainly on the northern part of the park where patrolling has been very limited and our gathering of intelligence has been most helpful to the Nyika management. In 2004 we undertook the most challenging expedition to date, launched from the extreme north of the park at Uledi, a four-hour drive from Thazima. The team‟s first challenge was to cross the unbridged North Rukuru River with all their supplies. They then had to climb up the western escarpment of the Mpanda ridge to a point on the Mpero River, where they set up a Base Camp, from which to launch out on their surveys. The greatest achievement was to climb both Mpanda and Kawozya and discover the remote Bleak House, now derelict but offering stunning views over Lake Malawi and far beyond. At this point they could certainly claim to be in remote country since this old site is much talked about but very rarely seen by visitors. We have yet to have clear information about who built it, when and why. Perhaps it was a holiday „retreat‟ for Livingstonia or a staging post for missionaries who conducted business on the west of the Nyika National Park and into Zambia. In many ways this expedition was the pinnacle of logistical achievement.
    [Show full text]
  • V)Oü)Va ('Sc /Sf/Óz
    Cf *3 Zöi V)Oü)Va ('sc THE COCOA MOTH PODBORER (Acrocercops cramerella Sn.) REVIEW AND TRANSLATION OF RESEARCH IN INDONESIA 1900 - 1918 Ir. P.C. Wessel - Riemens Bibl. Trop. Plantenteelt Postbus 341 6700 AH WAGENINGEN 0000 0445 8028 /Sf/óz - O/ TABLE OF CONTENTS Page Preface 1. Introduction 1-2 2. Life cycle of the insect 3 - 6 3. Behaviour in captivity 7 - 9 4. Building up of the moth population 10 5. Description of the damage 11 - 12 6. Symptoms and early detection 13 7. Infestation and pod size 14 8. Susceptibility 15 - 16 9. Effect of environmental conditions on the incidence of moth damage 17 10. Alternate host plants 18 - 22 11. Control 23 - 28 12. Parasites 29 - 33 References 34 - 36 I PREFACE Suddenly the cocoa moth podborer* has broken out of its traditional confinement of the Philippines, Sulawesi (Celebes), Maluku (the Moluccas), Central Java, and was recently found firmly established in the very heart of Sabah's (Malaysia) flourishing cocoa industry. A "sword of Damocles" has fallen, catching Malay­ sian cocoa producers unprepared; little can be done about a pest as long as it is not there. The moth: Acrocercops cramerella was the subject of intensive investigation by entomologists and producers in Central Java in the period 1900-1920. Wardojo (1980) has given an excellent review of this and other work done in Indonesia up to the present. The pest was (and still is) recognized as the main limiting factor to economic cocoa production in Java. The efforts resulted in a sanitary method of control referred to as "rampasan" which amounted to re­ moving all pods in the plantations during the period of lowest production in the year, thus breaking the life cycle of the insect.
    [Show full text]
  • Chilo Partellus
    CAPS Pest Datasheets provide pest-specific information to support planning and completing early detection surveys. Chilo partellus Scientific Name Chilo partellus (Swinhoe, 1886) Synonyms: Chilo zonellus (Swinhoe, 1884) Crambus zonellus Swinhoe, 1885 Crambus partellus Swinhoe, 1885 Argyria lutulentalis Tams, 1932 Chilo lutulentalis Tams, 1932 Common Name Spotted stem borer, spotted stemborer, Figure 1. Adult female Chilo partellus moth. maize and jowar borer, maize stem borer, Photo by Paul-Andre Calatayud, IRD-ICIPE, Nairobi. Used with permission. durra stalk borer, spotted stalk borer, spotted sorghum stem borer, pink borer Type of Pest Moth, stem borer Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Crambidae Reason for Inclusion in Manual Priority pest for Corn Commodity Survey, 2017 - present Pest Description Eggs: Eggs are flat, scale-like, and cream colored (Whittle and Ferguson, 1988). They are laid in clusters of 10 to 80 (Harris, 1990) and darken in color as they develop (Fig. 2). Larvae: Caterpillars are cream-colored with four longitudinal stripes (Meijerman and Ulenberg, 1998) (Fig. 3). Diapausing larvae may not have Figure 2. Stages of egg development: i. stripes. Larvae have obvious dark brown spots newly laid. ii. brownheads. iii. blackheads. on their backs (Meijerman and Ulenberg, 1998). Photo by Dr. K. V. Seshu Reddy. Used The head capsule, prothoracic shield, and anal with permission. Version 1 June 14, 2019 1 shield are brown. The crochets1 on the prolegs2 form a circle with three alternating lengths in some parts. Spiracles are black and oval-shaped (Meijerman and Ulenberg, 1998). Pupae: The edges of abdominal segments 5, 6, and 7 have rough patches (Whittle and Ferguson, 1988) and the last segment of the abdomen has eight to nine prominent points (Whittle and Ferguson, 1988).
    [Show full text]
  • To Refer to Or to Cite This Work, Please Use the Citation to the Published Version
    biblio.ugent.be The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access. This item is the archived peer-reviewed author-version of: Growth and Production of Maize: Traditional Low-Input Cultivation. Verheye, W. In: Verheye, W. (ed.), Land Use, Land Cover and Soil Sciences. Encyclopedia of Life Support Systems (EOLSS), UNESCO-EOLSS Publishers, Oxford, UK. http://www.eolss.net To refer to or to cite this work, please use the citation to the published version: Verheye, W. (2010). Growth and Production of Maize: Traditional Low-Input Cultivation . In: Verheye, W. (ed.), Land Use, Land Cover and Soil Sciences . Encyclopedia of Life Support Systems (EOLSS), UNESCO-EOLSS Publishers, Oxford, UK . http://www.eolss.net GROWTH AND PRODUCTION OF MAIZE: TRADITIONAL LOW-INPUT CULTIVATION Willy Verheye, National Science Foundation Flanders and Geography Department, University of Gent, Belgium Key words: Crop rotation, dent maize, endosperm, flint maize , hybrids, intercropping, mixed farming, mono-cropping, popcorn, sweet corn, starch. Content 1. Introduction 2. Origin and Distribution 3. Botany 4. Taxonomy and Classification 4.1. Taxonomy 4.2. Classification 4.3. Maize Types in Traditional Low-Input Cultivation in Africa 5. Ecology and Growing Conditions 5.1. Climate 5.2. Soil 5.3. Natural Land Suitability 6. Land Husbandry 6.1. Cropping Systems 6.2. Land Preparation 6.3. Planting Methods 6.4.
    [Show full text]
  • Diversité, Systématique Et Ecologie Des Noctuelles Foreuses De Graminées En Afrique Sub-Saharienne
    UR072 NSBB Project Diversité, Systématique et Ecologie des noctuelles foreuses de graminées en Afrique sub-saharienne Le Ru B., Calatayud P.-A., Kergoat G., Barbut, J., Capdevielle-Dulac C., Silvain J.-F……. Zea Pennisetum Sorghum Cotesia Sesamia Busseola PLAN • Les lépidoptères foreurs de graminées en Afrique sub-saharienne • Systématique, diversité et écologie des Sesamiina en Afrique sub-saharienne • Mécanismes de recherche et d’acceptation de la plante-hôte par les noctuelles Sesamiina • Origines et patrons de diversification des Apameini • Perspectives Les lépppidoptères de g raminées en Afrique sub-saharienne Différents types de phytochories (mosaïques) Afromontagnarde Somalie-Masaï Guineo-congolaise Bushland Est Africain Miombo zambezien Quelques plantes-hôtes de foreurs Setaria megaphylla Panicum maximum Echinochloa pyramidalis Typha domingensis Cyperus atroviridisJuncus effusus Prionium serratum Comment trouver les foreurs de graminées? Localités échantillonnées entre 2002-2012 1157 localités, 15 pays, 0-3100 alt 55681 chenilles, >291 espèces de foreurs >188 plantes-hôtes Récoltes de lépidoptères foreurs de graminées dans les habitats naturels en Afrique sub-saharienne(2002-2012) Plantes hôtes Foreurs 291 300 250 188 200 150 100 36 50 22 0 <2002 2003 2005 2006 2007 2008 2009 2010 2011 2012 4446 55681 Abondance et diversité des différentes familles de lépidoptères foreurs de graminées en Afrique sub-Saharienne (2002-2012) 55681 chenilles, 291 espèces % de spécimens % d’espèces 5%1% 2% 12% Noctuidae 2% 15% Crambidae 14% 44% Pyralidae
    [Show full text]
  • Guidelines on Prevention and Management of Pesticide Resistance
    International Code of Conduct on the Distribution and Use of Pesticides Guidelines on Prevention and Management of Pesticide Resistance September 2012 The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The participating organizations are the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organization (ILO), the Organisation for Economic Co-operation and Development (OECD), the United Nations Environment Programme (UNEP), the United Nations Industrial Development Organization (UNIDO), the United Nations Institute for Training and Research (UNITAR) and the World Health Organization (WHO). The World Bank and the United Nations Development Programme (UNDP) are observers. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the participating organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC participating organizations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Forest Health Technology Enterprise Team
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control September 12-16, 2005 Mark S. Hoddle, Compiler University of California, Riverside U.S.A. Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2005-08 Department of Service September 2005 Agriculture Volume I Papers were submitted in an electronic format, and were edited to achieve a uniform format and typeface. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside of the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture of any product or service to the exclusion of others that may be suitable. Any references to pesticides appearing in these papers does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by state and federal laws. Applicable regulations must be obtained from the appropriate regulatory agency prior to their use. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife if they are not handled and applied properly. Use all pesticides selectively and carefully. Follow recommended practices given on the label for use and disposal of pesticides and pesticide containers. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status.
    [Show full text]