Biological Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Biological Assessment BIOLOGICAL ASSESSMENT BETA UNIT GEOPHYSICAL SURVEY OFFSHORE HUNTINGTON BEACH, CALIFORNIA Project No. 1602-1681 Prepared for: Beta Operating Company, LLC 111 W. Ocean Blvd., Suite 1240 Long Beach, CA 90802 Prepared by: Padre Associates, Inc. 1861 Knoll Drive Ventura, California 93003 SEPTEMBER 2017 Beta Unit Geophysical Survey Biological Assessment 1602-1681 TABLE OF CONTENTS Page 1.0 EXECUTIVE SUMMARY ................................................................................... 1 2.0 PROJECT DESCRIPTION ................................................................................. 3 2.1 LOCATION ............................................................................................ 3 2.2 PROPOSED ACTION ........................................................................... 3 2.2.1 Project Vessel Configuration and Mobilization .......................... 3 2.2.2 Offshore Survey Operations ...................................................... 6 2.3 PROJECT SCHEDULE ......................................................................... 13 3.0 SPECIES ACCOUNTS AND STATUS OF THE SPECIES IN THE ACTION AREA 15 3.1 INVERTEBRATES ................................................................................ 16 3.1.1 White Abalone (Haliotis sorenseni) ............................................ 16 3.2 FISH ...................................................................................................... 17 3.2.1 Steelhead (Oncorhynchus mykiss) ............................................ 17 3.3 MARINE BIRDS .................................................................................... 18 3.3.1 California Least Tern (Sternula antillarum) ................................ 18 3.3.2 Marbled Murrelet (Brachyramphus marmoratus) ....................... 19 3.3.3 Short-tailed Albatross (Diomedea albatrus) ............................... 19 3.4 TURTLES .............................................................................................. 20 3.4.1 Green Turtle (Chelonia mydas) ................................................. 20 3.4.2 Loggerhead Turtle (Caretta caretta) .......................................... 21 3.4.3 Leatherback Turtle (Dermochelys coriacea) .............................. 22 3.4.4 Olive Ridley Turtle (Lepidochelys olivacea) ............................... 23 3.5 MARINE MAMMALS (MYSTICETI) ....................................................... 24 3.5.1 Blue Whale (Balaenoptera musculus) ....................................... 24 3.5.2 Fin Whale (Balaenoptera physalus) ........................................... 24 3.5.3 Humpback Whale (Megaptera novaeangliae) ........................... 25 3.5.4 North Pacific Right Whale (Eubalaena japonica) ....................... 26 3.5.5 Sei Whale (Balaenoptera borealis) ............................................ 27 3.6 MARINE MAMMALS (ODONTECETI) .................................................. 28 3.6.1 Sperm Whale (Physeter macrocephalus) .................................. 28 3.7 MARINE MAMMALS (PINNIPEDS) ....................................................... 29 3.7.1 Guadalupe Fur Seal (Arctocephalus townsendi) ....................... 29 4.0 IMPACT ASSESSMENT .................................................................................... 30 4.1 NOISE IMPACTS OF GEOPHYSICAL SURVEY ON MARINE WILDLIFE 31 4.1.1 Invertebrates .............................................................................. 31 4.1.2 Fish ............................................................................................ 32 4.1.3 Marine Birds............................................................................... 34 4.1.4 Turtles ........................................................................................ 35 4.1.5 Marine Mammals ....................................................................... 38 - i - Beta Unit Geophysical Survey Biological Assessment 1602-1681 TABLE OF CONTENTS (Continued) Page 4.2 DAMAGE OR DISTURBANCE TO SEAFLOOR HABITATS FROM PLACEMENT OF AUTONOMOUS NODES .......................................... 51 4.3 LIGHTING IMPACTS ............................................................................ 51 4.4 VESSEL COLLISION ............................................................................ 53 4.5 OIL SPILL POTENTIAL ......................................................................... 54 4.5.1 Marine Invertebrates .................................................................. 54 4.5.2 Turtles ........................................................................................ 55 4.5.3 Marine Birds............................................................................... 55 4.5.4 Marine Mammals (Cetaceans) ................................................... 56 4.5.5 Marine Mammals (Pinnipeds) .................................................... 57 5.0 APPLICANT PROPOSED MITIGATION MEASURES ....................................... 59 5.1 APPLICANT PROPOSED MEASURES TO REDUCE POTENTIAL NOISE IMPACTS ON MARINE WILDLIFE ........................................... 59 5.1.1 Scheduling ................................................................................. 59 5.1.2 Pre-Activity Environmental Orientation ...................................... 59 5.1.3 Reducing Sound Source ............................................................ 61 5.1.4 Sound Source Verification ......................................................... 61 5.1.5 Exclusion and Buffer Zones ....................................................... 61 5.1.6 Equipment Shut Downs ............................................................. 62 5.1.7 Special Shut-Down Provisions ................................................... 62 5.1.8 Speed and Course Alterations ................................................... 63 5.1.9 Ramp Up of Equipment ............................................................. 64 5.1.10 Entanglement............................................................................. 65 5.1.11 Marine Wildlife Carcasses ......................................................... 65 5.1.12 Monitoring .................................................................................. 66 5.1.13 Data Recording .......................................................................... 70 5.1.14 Reporting ................................................................................... 71 5.2 MEASURES TO REDUCE SEAFLOOR IMPACTS FROM NODE PLACEMENT ........................................................................................ 71 5.2.1 Pre-Project Seafloor Clearance ................................................. 71 5.2.2 Post-Project Seafloor Clearance ............................................... 71 5.3 MEASURE TO REDUCE LIGHTING IMPACTS TO MARINE BIRD ..... 71 5.4 MEASURES TO REDUCE POTENTIAL VESSEL COLLISION IMPACTS ON MARINE WILDLIFE ........................................................ 72 5.5 MEASURES TO REDUCE POTENTIAL OIL SPILL IMPACTS ............. 74 6.0 CUMULATIVE EFFECTS ................................................................................... 75 6.1 COMPLETED PROJECTS .................................................................... 75 6.2 PROPOSED PROJECTS ...................................................................... 75 6.3 CUMULATIVE ANALYSES ................................................................... 75 - ii - Beta Unit Geophysical Survey Biological Assessment 1602-1681 TABLE OF CONTENTS (Continued) Page 6.3.1 Cumulative Effects on Marine Fish, Sea Turtles, and Seabirds 76 6.3.2 Cumulative Effects on Cetaceans and Pinnipeds ...................... 76 7.0 CONCLUSION AND DETERMINATION ............................................................ 79 7.1 POTENTIAL NUMBER OF “TAKES BY HARASSMENT” ..................... 79 8.0 REFERENCES ................................................................................................... 86 LIST OF TABLES 2.1-1 Coordinates of Offshore Survey Area ............................................................... 3 2.2-1 Node Specifications .......................................................................................... 10 2.2-2 Typical Node Specifications (FairfieldNodal, 2016) .......................................... 12 3.0-1 Special Status and Protected Species Within or Near the Project Area and Their Likelihood of Occurrence within the Project Area ............................. 15 4.1-1 Marine Mammal Hearing Groups ...................................................................... 45 4.2-1 TTS Thresholds for Impulsive Sound Sources .................................................. 46 4.2-2 PTS Thresholds for Impulsive Sound Sources ................................................. 48 5.1-1 Marine Wildlife Species and Periods of Occurrence ......................................... 60 5.5-1 Collision Contact Information ............................................................................ 73 7.0-1 Potential Effects Matrix for Protected Species .................................................. 81 7.1-1 Estimated Number of Marine Mammals by Species in Proposed Safety Radius ............................................................................................................... 84 LIST OF FIGURES 2.1-1 Project Location ................................................................................................ 4 2.1-2 Source Vessel Track Map of Beta Unit Proposed Geophysical Survey Area ... 5 2.2-1 Illustration of the Nodal Marine Geophysical Subsurface Survey ....................
Recommended publications
  • Abstracts of Technical Papers, Presented at the 104Th Annual Meeting, National Shellfisheries Association, Seattle, Ashingtw On, March 24–29, 2012
    W&M ScholarWorks VIMS Articles 4-2012 Abstracts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012 National Shellfisheries Association Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation National Shellfisheries Association, Abstr" acts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012" (2012). VIMS Articles. 524. https://scholarworks.wm.edu/vimsarticles/524 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 31, No. 1, 231, 2012. ABSTRACTS OF TECHNICAL PAPERS Presented at the 104th Annual Meeting NATIONAL SHELLFISHERIES ASSOCIATION Seattle, Washington March 24–29, 2012 231 National Shellfisheries Association, Seattle, Washington Abstracts 104th Annual Meeting, March 24–29, 2012 233 CONTENTS Alisha Aagesen, Chris Langdon, Claudia Hase AN ANALYSIS OF TYPE IV PILI IN VIBRIO PARAHAEMOLYTICUS AND THEIR INVOLVEMENT IN PACIFICOYSTERCOLONIZATION........................................................... 257 Cathryn L. Abbott, Nicolas Corradi, Gary Meyer, Fabien Burki, Stewart C. Johnson, Patrick Keeling MULTIPLE GENE SEGMENTS ISOLATED BY NEXT-GENERATION SEQUENCING
    [Show full text]
  • Specimen Record of a Long-Billed Murrelet from Eastern Washington, with Notes on Plumage and Morphometric Differences Between Long-Billed and Marbled Murrelets
    SPECIMEN RECORD OF A LONG-BILLED MURRELET FROM EASTERN WASHINGTON, WITH NOTES ON PLUMAGE AND MORPHOMETRIC DIFFERENCES BETWEEN LONG-BILLED AND MARBLED MURRELETS CHRISTOPER W. THOMPSON, WashingtonDepartment of Fish and Wildlife, 16018 Mill Creek Blvd., Mill Creek, Washington98012, and Burke Museum,Box 353100, Universityof Washington,Seattle, Washington 98195 KEVIN J. PULLEN, ConnerMuseum, Washington State University, Pullman, Wash- ington 99164 RICHARD E. JOHNSON, Conner Museumand School of BiologicalSciences, WashingtonState University,Pullman, Washington 99164 ERICB. CUMMINS, WashingtonDepartment of Fishand Wildlife, 600 CapitolWay North, Olympia,Washington 98501 ABSTRACT:On 14 August2001, RobertDice found a Brachyramphusmurrelet approximately12 mileseast of Pomeroyin easternWashington state more than 200 milesfrom the nearestmarine waters. The bird died later that day. It had begun definitiveprebasic body molt, but not flightfeather molt. Necropsy indicated that the birdwas a female,probably in her secondcalendar year. Johnson and Thompson identifiedthe birdas a Long-billedMurrelet, Brachyramphus perdix, on the basisof plumageand measurements;it is the firstspecimen of thisspecies for Washington state. Contrary to many recent publicationsstating that Long-billedand Marbled Murreletshave white and brownunder wing coverts, respectively, we confirmedthat bothspecies typically have white under wing coverts prior to definitiveprebasic molt andbrown under wing coverts after this molt. Absence of anyextensive storm systems in the North Pacificin
    [Show full text]
  • A Review of the Fossil Seabirds from the Tertiary of the North Pacific
    Paleobiology,18(4), 1992, pp. 401-424 A review of the fossil seabirds fromthe Tertiaryof the North Pacific: plate tectonics,paleoceanography, and faunal change Kenneth I. Warheit Abstract.-Ecologists attempt to explain species diversitywithin Recent seabird communities in termsof Recent oceanographic and ecological phenomena. However, many of the principal ocean- ographic processes that are thoughtto structureRecent seabird systemsare functionsof geological processes operating at many temporal and spatial scales. For example, major oceanic currents,such as the North Pacific Gyre, are functionsof the relative positions of continentsand Antarcticgla- ciation,whereas regional air masses,submarine topography, and coastline shape affectlocal processes such as upwelling. I hypothesize that the long-termdevelopment of these abiotic processes has influencedthe relative diversityand communitycomposition of North Pacific seabirds. To explore this hypothesis,I divided the historyof North Pacific seabirds into seven intervalsof time. Using published descriptions,I summarized the tectonicand oceanographic events that occurred during each of these time intervals,and related changes in species diversityto changes in the physical environment.Over the past 95 years,at least 94 species of fossil seabirds have been described from marine deposits of the North Pacific. Most of these species are from Middle Miocene through Pliocene (16.0-1.6 Ma) sediments of southern California, although species from Eocene to Early Miocene (52.0-22.0 Ma) deposits are fromJapan,
    [Show full text]
  • Status Review of the Pinto Abalone - Decision
    Status Review of the Pinto Abalone - Decision TABLE OF CONTENTS Page Summary Sheet ............................................................................................................. 1 of 42 CR-102 ......................................................................................................................... 3 of 42 WAC 220-330-090 Crawfish, ((abalone,)) sea urchins, sea cucumbers, goose barnacles—Areas and seasons, personal-use fishery ........................................ 6 of 42 WAC 220-320-010 Shellfish—Classification .................................................................. 7 of 42 WAC 220-610-010 Wildlife classified as endangered species ....................................... 9 of 42 Status Report for the Pinto Abalone in Washington .................................................... 10 of 42 Summary Sheet Meeting dates: May 31, 2019 Agenda item: Status Review of the Pinto Abalone (Decision) Presenter(s): Chris Eardley, Puget Sound Shellfish Policy Coordinator Henry Carson, Fish & Wildlife Research Scientist Background summary: Pinto abalone are iconic marine snails prized as food and for their beautiful shells. Initially a state recreational fishery started in 1959; the pinto abalone fishery closed in 1994 due to signs of overharvest. Populations have continued to decline since the closure, most likely due to illegal harvest and densities too low for reproduction to occur. Populations at monitoring sites declined 97% from 1992 – 2017. These ten sites originally held 359 individuals and now hold 12. The average size of the remnant individuals continues to increase and wild juveniles have not been sighted in ten years, indicating an aging population with little reproduction in the wild. The species is under active restoration by the department and its partners to prevent local extinction. Since 2009 we have placed over 15,000 hatchery-raised juvenile abalone on sites in the San Juan Islands. Federal listing under the Endangered Species Act (ESA) was evaluated in 2014 but retained the “species of concern” designation only.
    [Show full text]
  • Status Review of the Marbled Murrelet (Brachyramphus Marmoratus)
    Final Report DRAFT for Public and Peer Review Status Review of the Marbled Murrelet (Brachyramphus marmoratus) in Oregon and Evaluation of Criteria to Reclassify the Species from Threatened to Endangered under the Oregon Endangered Species Act Oregon Department of Fish and Wildlife September January 20187 Foreword The Oregon Department of Fish and Wildlife is investigating the status of the Marbled Murrelet (Brachyramphus marmoratus) in Oregon in response to a petition from several conservation groups. The petition requests that the seabird be reclassified from threatened to endangered (uplisted) under the Oregon Endangered Species Act. This draft report has been prepared by the Department for the Oregon Fish and Wildlife Commission, as a guide to the requirements of the Oregon Endangered Species Act and, as an draft assessment of the biological status of the species, and as a document for public and peer review. Prior Marbled Murrelet status reviews by the Department (ODFW 1995, 2013) served as the starting point for this report, and new or updated information was incorporated wherever possible. A draft of this document A final report will beunderwent peer and public review in fall 2017 produced following completion of the public comment and peer review processes. All comments received were considered in the preparation of this final report.. The Department expects to present the final status review and reclassification analysis to the Commission in February 2018. Cover Photo: Martin Raphael, U.S. Forest Service. Available from Flickr. Suggested Citation: ODFW. 20187. Draft sStatus review of the Marbled Murrelet (Brachyramphus marmoratus) in Oregon and evaluation of criteria to reclassify the species from threatened to endangered under the Oregon Endangered Species Act.
    [Show full text]
  • White Abalone (Haliotis Sorenseni)
    White Abalone (Haliotis sorenseni) Five-Year Status Review: Summary and Evaluation Photo credits: Joshua Asel (left and top right photos); David Witting, NOAA Restoration Center (bottom right photo) National Marine Fisheries Service West Coast Region Long Beach, CA July 2018 White Abalone 5- Year Status Review July 2018 Table of Contents EXECUTIVE SUMMARY ............................................................................................................. i 1.0 GENERAL INFORMATION .............................................................................................. 1 1.1 Reviewers ......................................................................................................................... 1 1.2 Methodology used to complete the review ...................................................................... 1 1.3 Background ...................................................................................................................... 1 2.0 RECOVERY IMPLEMENTATION ................................................................................... 3 2.2 Biological Opinions.......................................................................................................... 3 2.3 Addressing Key Threats ................................................................................................... 4 2.4 Outreach Partners ............................................................................................................. 5 2.5 Recovery Coordination ...................................................................................................
    [Show full text]
  • Marbled Murrelet Fact Sheet
    Marbled Murrelet Fact Sheet Marbled Murrelet – Brachyramphus marmoratus Listing status: Federally listed threatened species in Washington, Oregon, and California Marbled murrelets are pigeon-sized seabirds that live along the Pacific coast of North America from California to Alaska. The marbled murrelet is a secretive seabird that nests in older forests and forages in nearby marine waters. They are adapted for both underwater (to pursue prey) and aerial flights. In Washington, they have been seen up to 50 miles from marine waters but primarily use suitable habitat within 40 miles of the coast. Washington’s populations occur mainly in the northern Puget Sound, the Strait of Juan de Fuca, and along the northern Pacific Coast. While at-sea distribution varies Marbled murrelet with winter plumage. Photo: Rich MacIntosh over time and location, there is a general shift in winter abundance eastward from the Strait of Juan de Fuca to the Puget Sound and the San Juan Islands. In fall and winter, British Columbia's populations move south to the Puget Sound. Breeding plumage. Photo: Aaron Barna Juvenile (hatch-year) marbled murrelet just before fledging from nest. Photo: Tom Hamer Marbled Murrelet Plumage and Breeding Season Males and females have identical plumage that varies seasonally. When breeding, they have a dark upper body with rust-color tips on the back feathers, and are heavily mottled on the lower body. This “marbled” pattern is thought to protect breeding birds from detection by predators in forested habitats. In winter, adults have a brown-grey upper body, and white lower body. Juvenile and adult birds only can be distinguished from each other for a brief period in late summer and early fall.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • 3 Abalones, Haliotidae
    3 Abalones, Haliotidae Red abalone, Haliotis rufescens, clinging to a boulder. Photo credit: D Stein, CDFW. History of the Fishery The nearshore waters of California are home to seven species of abalone, five of which have historically supported commercial or recreational fisheries: red abalone (Haliotis rufescens), pink abalone (H. corrugata), green abalone (H. fulgens), black abalone (H. cracherodii), and white abalone (H. sorenseni). Pinto abalone (H. kamtschatkana) and flat abalone (H. walallensis) occur in numbers too low to support fishing. Dating back to the early 1900s, central and southern California supported commercial fisheries for red, pink, green, black, and white abalone, with red abalone dominating the landings from 1916 through 1943. Landings increased rapidly beginning in the 1940s and began a steady decline in the late 1960s which continued until the 1997 moratorium on all abalone fishing south of San Francisco (Figure 3-1). Fishing depleted the stocks by species and area, with sea otter predation in central California, withering syndrome and pollution adding to the decline. Serial depletion of species (sequential decline in landings) was initially masked in the combined landings data, which suggested a stable fishery until the late 1960s. In fact, declining pink abalone landings were replaced by landings of red abalone and then green abalone, which were then supplemented with white abalone and black abalone landings before the eventual decline of the abalone species complex. Low population numbers and disease triggered the closure of the commercial black abalone fishery in 1993 and was followed by closures of the commercial pink, green, and white abalone fisheries in 1996.
    [Show full text]
  • Haliotis Sorenseni)
    HISTORIC GENETIC DIVERSITY OF THE ENDANGERED WHITE ABALONE (HALIOTIS SORENSENI) A Thesis Presented to the Division of Science and Environmental Policy California State University Monterey Bay In Partial Fulfillment of the Requirements for the degree Master of Science in Marine Science by Heather L. Hawk December 2010 Copyright © 2010 Heather L. Hawk All Rights Reserved CALIFORNIA STATE UNIVERSITY MONTEREY BAY The Undersigned Faculty Committee Approves the Thesis of Heather L. Hawk: HISTORIC GENETIC DIVERSITY OF THE ENDANGERED WHITE ABALONE (HALIOTIS SORENSENI) _____________________________________________ Jonathan Geller, Chair Moss Landing Marine Laboratories _____________________________________________ Michael Graham Moss Landing Marine Laboratories _____________________________________________ Ronald Burton SCRIPPS Institution of Oceanography _____________________________________________ Marsha Moroh, Dean College of Science, Media Arts, and Technology ______________________________ Approval Date ABSTRACT HISTORIC GENETIC DIVERSITY OF THE ENDANGERED WHITE ABALONE (HALIOTIS SORENSENI) by Heather L. Hawk Master of Science in Marine Science California State University Monterey Bay, 2010 In the 1970’s, white abalone populations in California suffered catastrophic declines due to over-fishing, and the species has been listed under the Endangered Species Act since 2001. Genetic diversity of a modern population of white abalone was estimated to be significantly lower than similar Haliotis species, but the effect of the recent fishery crash on the species throughout its range was unknown. In this investigation, DNA was extracted from 39 historic and 27 recent dry abalone shells from California, and 18 historic dry shells from Baja California, Mexico. The DNA from the shells was of sufficient quality for the reproducible amplification of 580 bp of the mitochondrial COI gene and 219 bp of the nuclear Histone H3 gene.
    [Show full text]
  • Marbled Murrelet (Brachyramphus Marmoratus) 5-Year Review
    Marbled Murrelet (Brachyramphus marmoratus) 5-Year Review U.S. Fish and Wildlife Service Washington Fish and Wildlife Office Lacey, WA June 12, 2009 FINAL Final 2009 5-Year Review for the Marbled Murrelet June 12, 2009 5-YEAR REVIEW Species reviewed: Marbled murrelet (Brachyramphus marmoratus) TABLE OF CONTENTS 1.0 GENERAL INFORMATION............................................................................................. 1 2.0 REVIEW ANALYSIS........................................................................................................ 3 2.1 Application of the 1996 Distinct Population Segment (DPS) policy ......... 3 2.2 Recovery Criteria...................................................................................... 12 2.2.1 Does the species have a final, approved recovery plan containing objective, measurable criteria? ........................................................................................... 12 2.2.2 Adequacy of recovery criteria.............................................................................. 12 2.3 Updated Information and Current Species Status..................................... 14 2.3.1 Biology and Habitat ............................................................................................. 14 2.3.1.1 New information on the species’ biology and life history:...................... 14 2.3.1.2 Abundance, population trends (e.g. increasing, decreasing, stable), demographic features (e.g., age structure, sex ratio, family size, birth rate, age at mortality, mortality rate, etc.),
    [Show full text]
  • The Importance and Persistence of Abalone (Haliotis Spp.) Along the California
    The Importance and Persistence of Abalone (Haliotis spp.) along the California Coast Dr. Stevens ENVS 190 Senior Thesis Kalli Fenk Abstract Abalone was once a common sight along the California Coast. Native tribes co-existed with the species for thousands of years. They relied on if for sustenance and they used it for tools, utensils, jewelry, trading, and regalia. In return, they took care of the abalone as if it were one of their own. When colonization devastated Native Californian culture, much of their knowledge disappeared along with the species they cared for. Abalone was highly valuable for its taste and beauty. When commercialization of abalone fisheries began their populations began to decline. Now, they face more obstacles to recovery than ever before. Current abalone stressors include, poaching, low population densities, pollution, and disease. Warming ocean temperatures also subject abalone to sea level rise and ocean acidification. I recommend a combined approach of traditional ecological management and western science be used to provide adaptive management strategies for policy makers and fisheries managers. In preserving these creatures we are inherently preserving cultural heritage and traditions of over 20 tribes in California. Table of Contents Introduction……………………………………………………………………….1 Background………………………………………………………………………..2 Biology………………………………………………………………………3 Ecology……………………………………………………………………....4 Native History and Cultural Significance…………………………………...6 20th Century Population Declines…………………………………………..10 Current
    [Show full text]