The East Pacific Rise Between 9 N and 10 N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
38. Effect of Axial Magma Chambers Beneath Spreading Centers on the Compositions of Basaltic Rocks
38. EFFECT OF AXIAL MAGMA CHAMBERS BENEATH SPREADING CENTERS ON THE COMPOSITIONS OF BASALTIC ROCKS James H. Natland, Scripps Institution of Oceanography, La Jolla, California ABSTRACT Ferrobasalts are among a range of basalt types erupted over large, shallow, axial magma chambers beneath the East Pacific Rise crest near 9°N, and the Galapagos Rift near 86°W. Geological and geo- chemical evidence indicates that they evolve in small, isolated magma bodies either in conduit systems over the chambers, or in the solidify- ing walls of the magma chamber flanks away from the loci of fissure eruptions. The chambers act mainly as buffers in which efficient mix- ing ensures that a uniform average, moderately fractionated parent is supplied to the range of magma types erupted at the sea floor. For- mation of ferrobasalts in isolated magma bodies prevents them from mixing directly with primitive olivine tholeiite supplied to the base of the East Pacific Rise magma chamber at 9°N. Rises with abundant ferrobasalts may have magma chambers with broad, flat tops over which eruptions occur in wide, probably struc- turally unstable rift zones. Rises without ferrobasalts may have magma chambers with tapered tops which persistently constrain eruptions to narrow fissure zones, preventing formation of isolated shallow magma bodies where ferrobasalts can evolve. Formation of a flat-topped, rather than a tapered, magma chamber may reflect a high rate of magma supply relative to spreading rate. Steady-state compositions can be approached in magma cham- bers, probably approximating the least-fractionated typical lavas erupted above them. On this basis, the bulk magma composition in the chamber beneath the Galapagos Rift has become more iron-rich through time, a consequence of magma migration eastward down the rift as it shoaled to the west under the influence of the Galapagos Island hot spot. -
Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages. -
I. Türkiye Derin Deniz Ekosistemi Çaliştayi Bildiriler Kitabi 19 Haziran 2017
I. TÜRKİYE DERİN DENİZ EKOSİSTEMİ ÇALIŞTAYI BİLDİRİLER KİTABI 19 HAZİRAN 2017 İstanbul Üniversitesi, Su Bilimleri Fakültesi, Gökçeada Deniz Araştırmaları Birimi, Çanakkale, Gökçeada EDİTÖRLER ONUR GÖNÜLAL BAYRAM ÖZTÜRK NURİ BAŞUSTA Bu kitabın bütün hakları Türk Deniz Araştırmaları Vakfı’na aittir. İzinsiz basılamaz, çoğaltılamaz. Kitapta bulunan makalelerin bilimsel sorumluluğu yazarlarına aittir. All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission from the Turkish Marine Research Foundation. Copyright © Türk Deniz Araştırmaları Vakfı ISBN-978-975-8825-37-0 Kapak fotoğrafları: Mustafa YÜCEL, Bülent TOPALOĞLU, Onur GÖNÜLAL Kaynak Gösterme: GÖNÜLAL O., ÖZTÜRK B., BAŞUSTA N., (Ed.) 2017. I. Türkiye Derin Deniz Ekosistemi Çalıştayı Bildiriler Kitabı, Türk Deniz Araştırmaları Vakfı, İstanbul, Türkiye, TÜDAV Yayın no: 45 Türk Deniz Araştırmaları Vakfı (TÜDAV) P. K: 10, Beykoz / İstanbul, TÜRKİYE Tel: 0 216 424 07 72, Belgegeçer: 0 216 424 07 71 Eposta: [email protected] www.tudav.org ÖNSÖZ Dünya denizlerinde 200 metre derinlikten sonra başlayan bölgeler ‘Derin Deniz’ veya ‘Deep Sea’ olarak bilinir. Son 50 yılda sualtı teknolojisindeki gelişmelere bağlı olarak birçok ulus bu bilinmeyen deniz ortamlarını keşfetmek için yarışırken yeni cihazlar denemekte ayrıca yeni türler keşfetmektedirler. Özellikle Amerika, İngiltere, Kanada, Japonya başta olmak üzere birçok ülke derin denizlerin keşfi yanında derin deniz madenciliğine de ilgi göstermektedirler. Daha şimdiden Yeni Gine izin ve ruhsatlandırma işlemlerine başladı bile. Bütün bunlar olurken ülkemizde bu konuda çalışan uzmanları bir araya getirerek sinerji oluşturma görevini yine TÜDAV üstlendi. Memnuniyetle belirtmek gerekir ki bu çalıştay amacına ulaşmış 17 değişik kurumdan 30 uzman değişik konularda bildiriler sunarak konuya katkı sunmuşlardır. -
Results from Camera Tows Along the Southern Juan De Fuca Ridge
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICALSURVEY Results From Camera Tows Along the Southern Juan de Fuca Ridge: A2-84-WF Ellen S. Kappel1 ' 2 and William R. Normark1 Open-File Report 88-371 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. 1 U. S. Geological Survey, Menlo Park, California 2 Now at Joint Oceanographic Institutions Incorporated, Washington, D. C. ABSTRACT Nine camera tows carried out along the southern Juan de Fuca Ridge during the summer of 1984 extended photographic and video coverage north of the main USGS study area. These data, together with one camera tow conducted outside of the axial valley, provide ground-truth data for Sea MARC I and II acoustic images of the ridge axial zone. In addition, four new hydrothermal vents were discovered within the axial valley between latitudes 44°43'N and 44°54'N. INTRODUCTION The Juan de Fuca Ridge (JdFR) is a medium-rate (full spreading rate of 6 cm/yr) oceanic spreading center located approximately 500 km off the coasts of Oregon and Washington in the northeast Pacific Ocean (Figure 1). The ridge extends for nearly 500 km between the Blanco and Sovanco transform faults and separates the Pacific Plate from the Juan de Fuca Plate. Discoveries of high temperature hydrothermal venting, associated sulfide deposits, and unusual biota along the neovolcanic zones of medium-rate Pacific spreading centers ,such as the Galapagos Spreading Center (Ballard and others, 1982) and the East Pacific Rise at 21 °N (CYAMEX Scientific Team, 1979; RISE Project Group, 1980), prompted scientists from the U.S. -
Chemical and Thermal Description of the Environment of the Genesis Hydrothermal Vent Community (13°N, EPR)
Cah. Biol. Mar. (1998) 39 : 159-167 Chemical and thermal description of the environment of the Genesis hydrothermal vent community (13°N, EPR) Pierre-Marie SARRADIN1, Jean-Claude CAPRAIS1, Patrick BRIAND1, Françoise GAILL2, Bruce SHILLITO2 et Daniel DESBRUYÈRES1 1 DRO/EP/LEA IFREMER centre de BREST - BP 70 - F-29280 PLOUZANE (France), 2 INSU / CNRS / UPMC Roscoff / Paris (France) Fax: (33) 2 98 22 47 57; e-mail: [email protected] Abstract: The objective of this study is to describe the chemical and physical environment surrounding the vent organisms at the Genesis site (EPR, 2640 m). The main chimney is colonized by Riftia pachyptila, fishes Zoarcidae and crabs Bythograeidae. The top of the smoker is covered with tubes of polychaetes Alvinellidae, the frontier zone by limpet gastropods. Temperature measurements and water sampling were made on an axis along the chimney. The environment was characterized using relationships between chemical concentrations and temperature to provide a chemo-thermal model of the site. Discrete temperature ranges were l-1.6°C in sea water, 1.6- 10°C among Riftia plumes (up to 25°C at the tube base), 7-91°C close to the alvinellid tubes, fluid emission was 262-289°C. This study describes the habitat - 2- -1 -1 of Alvinellidae emphasizing its chemical (£S [H2S + HS + S ] 3-300 µmol l , CO2 3.5-6 mmol l , pH 5.7-7.5) and thermal specificities compared to the Riftia ones (IS 4-12 µmol l-1 ; CO2 2-3.5 mmol 1-1 ; pH 5.8-7.7). The size of Riftia allowed us to define its environment at the organism (temperature gradient along the tube 0.5-1°C cm-1) and population scales (temperature difference between organisms from the same clump: 10-20°C). -
Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin
California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses Capstone Projects and Master's Theses Summer 2020 Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin Kenji Jordi Soto California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes_all Recommended Citation Soto, Kenji Jordi, "Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin" (2020). Capstone Projects and Master's Theses. 892. https://digitalcommons.csumb.edu/caps_thes_all/892 This Master's Thesis (Open Access) is brought to you for free and open access by the Capstone Projects and Master's Theses at Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. For more information, please contact [email protected]. HYDROTEHRMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _______________ A Thesis Presented to the Faculty of Moss Landing Marine Laboratories California State University Monterey Bay _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Marine Science _______________ by Kenji Jordi Soto Spring 2020 CALIFORNIA STATE UNIVERSITY MONTEREY BAY The Undersigned Faculty Committee Approves the Thesis of Kenji Jordi Soto: HYDROTHERMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _____________________________________________ -
A New Vent Limpet in the Genus Lepetodrilus (Gastropoda: Lepetodrilidae) from Southern Ocean Hydrothermal Vent Fields Showing High Phenotypic Plasticity
fmars-06-00381 July 15, 2019 Time: 15:56 # 1 ORIGINAL RESEARCH published: 16 July 2019 doi: 10.3389/fmars.2019.00381 A New Vent Limpet in the Genus Lepetodrilus (Gastropoda: Lepetodrilidae) From Southern Ocean Hydrothermal Vent Fields Showing High Phenotypic Plasticity Katrin Linse1*, Christopher Nicolai Roterman2 and Chong Chen3 1 British Antarctic Survey, Cambridge, United Kingdom, 2 Department of Zoology, University of Oxford, Oxford, United Kingdom, 3 X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan The recently discovered hydrothermal vent ecosystems in the Southern Ocean host a suite of vent-endemic species, including lepetodrilid limpets dominating in abundance. Limpets were collected from chimneys, basalts and megafauna of the East Scotia Ridge Edited by: segments E2 and E9 and the Kemp Caldera at the southern end of the South Sandwich Wei-Jen Chen, Island arc. The limpets varied in size and shell morphology between vent fields and National Taiwan University, Taiwan displayed a high degree of phenotypic plasticity. Size frequency analyses between vent Reviewed by: fields suggests continuous reproduction in the limpet and irregular colonisation events. Marjolaine Matabos, Institut Français de Recherche pour Phylogenetic reconstructions and comparisons of mitochondrial COI gene sequences l’Exploitation de la Mer (IFREMER), revealed a level of genetic similarity between individuals from the three vent fields France Junlong Zhang, consistent with them belonging to a single molecular operational taxonomic unit. Here Institute of Oceanology (CAS), China we describe Lepetodrilus concentricus n. sp., and evaluate its genetic distinctness and *Correspondence: pylogenetic position with congeners based on the same gene. Results indicate that Katrin Linse L. -
Citações (2021-1979)
Página anterior/Back Citações (2021-1979) Número de citações em artigos de que tenho conhecimento não entrando em linha de conta com as dos artigos em que sou autor ou co-autor: 593 424) 2021 - Franke, M., B. Geier, J. U. Hammel, N. Dubilier, N & N. Leisch - Coming together- symbiont acquisition and early development in deep-sea bathymodioline mussels. Proceedings of the Royal Society B-Biological Sciences . 288 (1957): - na bibliografia cita o trabalho nº 40 423) 2021 - Tamayo, M., Barria, C., Coll, M. & Navarro, J. - Highly specialized feeding habits of the rabbitfish Chimaera monstrosa in the deep sea ecosystem of the northwestern Mediterranean Sea. Journal of Applied Ichthyology - na bibliografia cita o trabalho nº 25 422) 2021 – R. Thiel, Knebelsberger, T., Kihara, T. & Gerdes, K. - Description of a new eelpout Pachycara angeloi sp. nov. (Perciformes: Zoarcidae) from deep-sea hydrothermal vent fields in the Indian Ocean. ZOOTAXA, 4980 (1): 99-112 . - na bibliografia cita o trabalho nº 56 421) 2021 - Bujtor, L. & Nagy, J. - Fauna, palaeoecology and ecotypes of the Early Cretaceous sediment hosted hydrothermal vent environment of Zengovarkony (Mecsek Mountains, Hungary) - na bibliografia cita o trabalho nº 40 420) 2021 - Song, Xikun; Lyu, Mingxin; Zhang, Xiaodi; et al. Large Plastic Debris Dumps: New Biodiversity Hot Spots Emerging on the Deep-Sea Floor Environmental Science & Technology Letters. 8 Edição 2: 148-154 . - na bibliografia cita o trabalho nº 40 419) 2021 - Gomes-dos-Santos, N. Vilas-Arrondo, A. M. Machado, A. Veríssimo, M. Pérez, F. Baldó, L. F. C. Castro & E. Froufe.- Shedding light on the Chimaeridae taxonomy: the complete mitochondrial genome of the cartilaginous fish Hydrolagus mirabilis (Collett, 1904) (Holocephali: Chimaeridae). -
ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste -
Characterization of Hydrothermal Vent Faunal Assemblages in the Mariana Back-Arc Spreading Centre
Characterization of hydrothermal vent faunal assemblages in the Mariana Back-Arc Spreading Centre by Thomas Normand Giguère B.Sc., University of Guelph, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the School of Earth and Ocean Sciences © Thomas Normand Giguère, 2020 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Characterization of hydrothermal vent faunal assemblages in the Mariana Back-Arc Spreading Centre by Thomas Normand Giguère B.Sc. University of Guelph, 2017 Supervisory Committee Dr. Verena Tunnicliffe, School of Earth and Ocean Sciences Supervisor Dr. John Dower, School of Earth and Ocean Sciences Departmental Member Dr. Brian Starzomski, School of Environmental Studies Outside Member iii Abstract Researchers have learned much about the biological assemblages that form around hydrothermal vents. However, identities of species in these assemblages and their basic ecological features are often lacking. In 2015, the first leg of the Hydrothermal Hunt expedition identified likely new vent sites in the Mariana Back-arc Spreading Center (BASC). In 2016, the second leg of the expedition used a remotely operated vehicle (ROV) to confirm and sample two new sites and two previously known sites. My first objective is to identify the animals collected from these four vent sites. In these samples, I identify 42 animal taxa, including the discovery of four new vent-associated species, five potentially new species and six taxa not previously reported in the Mariana BASC vents. -
Structure and Tectonics of Cascadia Segment. Central Blanco Transform Fault Zone Abstract Approved
AN ABSTRACT OF THE THESIS OF Annette V. deCharon for the degree of Master of Science in Oceanography presented on October 14. 1988. Title: Structure and Tectonics of Cascadia Segment. Central Blanco Transform Fault Zone Redacted for Privacy Abstract approved: Robert W. Embley Seismic-reflection profiles and SeaBeam bathymetry are used to examine the structural development of the Cascadia Segment, a region of back-tilted blocks flanking a central depression within the Blanco transform fault zone. The depressed position of the Cascadia Segment has caused this area to act as a sediment trap for bottom transported material moving through Cascadia Channel (Duncan, 1968; Griggs & Kulm, 1970). The existence of thick turbidite sequences atop tectonic blocks this an ideal place for seismic-reflection imaging. Escarpment slopes and fault dip angles in Cascadia Segment range between 110 and 31°, which are, on average, shallower than values reported from slow-to-intermediate-rate spreading centers. The perched turbidite sequences are assumed to have originated within a central rifting basin. The lack of unconformable sequences within the back-tilted turbidites indicates that the tectonic blocks of Cascadia Segment have been uplifted in a continuous manner. Thus, a quantitative analysis of tilt of turbidite sequences versus distance from the present central rifting basin, Cascadia Depression, is used to understand the structural development of the Cascadia Segment. The high degree of tilt seen in turbidite sequences proximal to the present central rifting basin is consistent with a model in which turbidite flows are deposited within a basin that is being uplifted and spreading away from a narrow extensional zone. -
Fishes from the Hydrothermal Vents and Cold Seeps - an Update
Cah. Biol. Mar. (2002) 43 : 359-362 Fishes from the hydrothermal vents and cold seeps - An update Manuel BISCOITO1, Michel SEGONZAC2, Armando J. ALMEIDA3, Daniel DESBRUYÈRES2, Patrick GEISTDOERFER4, Mary TURNIPSEED5, Cindy VAN DOVER5 (1) Corresponding author: IMAR – Museu Municipal do Funchal (História Natural). Estação de Biologia Marinha do Funchal, Cais do Carvão - 9000-107 Funchal, Madeira, Portugal. Fax: (351)- 291766339. E-mail: [email protected] (2) IFREMER, Centre de Brest, DRO-EP/CENTOB, BP 70, 29280 Plouzané Cedex, France. (3) Laboratório Marítimo da Guia – IMAR, DZA - Faculdade de Ciências de Lisboa, Estrada do Guincho, 2750-642 Cascais, Portugal. (4) Laboratoire d’Ichtyologie, Muséum national d’Histoire naturelle, 43 rue Cuvier, 75231 Paris Cedex 5, France. (5) Biology Department, College of William & Mary, Williamsburg, VA 23187, U.S.A. Introduction and Menez Gwen hydrothermal vent fields, on the Mid- Atlantic Ridge. Since the discovery of animal communities in oceanic Species were separated into two groups: 1) species living hydrothermal vents in 1977 and in deep-sea cold seeps in within the vent and seep environments, including the so- 1984 (Londsdale, 1977; Paull et al., 1984) fishes have been called vent-endemic species and the species that also occur regularly observed in association with these elsewhere; 2) species pertaining to the bathyal environment, chemosynthetically-driven communities, but in most cases but recorded from the close proximity to the vents and they are difficult to catch and therefore species identification seeps. can only rely on images taken by the diving vehicles. Ichthyological information pertaining to species Results inhabiting the deep-sea hydrothermal vents and cold seeps is mentioned in over 30 papers and even in the more detailed Species living inside active fields and updated lists (Geistdoerfer, 1991; 1996; 1999; Sibuet & A complete list of species of fish found living inside active Olu, 1998; Tunnicliffe, 1991) there are species missing.