Daniel Bernoulli and of Mechanics in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jean-Baptiste Charles Joseph Bélanger (1790-1874), the Backwater Equation and the Bélanger Equation
THE UNIVERSITY OF QUEENSLAND DIVISION OF CIVIL ENGINEERING REPORT CH69/08 JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION AUTHOR: Hubert CHANSON HYDRAULIC MODEL REPORTS This report is published by the Division of Civil Engineering at the University of Queensland. Lists of recently-published titles of this series and of other publications are provided at the end of this report. Requests for copies of any of these documents should be addressed to the Civil Engineering Secretary. The interpretation and opinions expressed herein are solely those of the author(s). Considerable care has been taken to ensure accuracy of the material presented. Nevertheless, responsibility for the use of this material rests with the user. Division of Civil Engineering The University of Queensland Brisbane QLD 4072 AUSTRALIA Telephone: (61 7) 3365 3619 Fax: (61 7) 3365 4599 URL: http://www.eng.uq.edu.au/civil/ First published in 2008 by Division of Civil Engineering The University of Queensland, Brisbane QLD 4072, Australia © Chanson This book is copyright ISBN No. 9781864999211 The University of Queensland, St Lucia QLD JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION by Hubert CHANSON Professor, Division of Civil Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072, Australia Ph.: (61 7) 3365 3619, Fax: (61 7) 3365 4599, Email: [email protected] Url: http://www.uq.edu.au/~e2hchans/ REPORT No. CH69/08 ISBN 9781864999211 Division of Civil Engineering, The University of Queensland August 2008 Jean-Baptiste BÉLANGER (1790-1874) (Courtesy of the Bibliothèque de l'Ecole Nationale Supérieure des Ponts et Chaussées) Abstract In an open channel, the transition from a high-velocity open channel flow to a fluvial motion is a flow singularity called a hydraulic jump. -
Brief History of the Early Development of Theoretical and Experimental Fluid Dynamics
Brief History of the Early Development of Theoretical and Experimental Fluid Dynamics John D. Anderson Jr. Aeronautics Division, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA 1 INTRODUCTION 1 Introduction 1 2 Early Greek Science: Aristotle and Archimedes 2 As you read these words, there are millions of modern engi- neering devices in operation that depend in part, or in total, 3 DA Vinci’s Fluid Dynamics 2 on the understanding of fluid dynamics – airplanes in flight, 4 The Velocity-Squared Law 3 ships at sea, automobiles on the road, mechanical biomedi- 5 Newton and the Sine-Squared Law 5 cal devices, and so on. In the modern world, we sometimes take these devices for granted. However, it is important to 6 Daniel Bernoulli and the Pressure-Velocity pause for a moment and realize that each of these machines Concept 7 is a miracle in modern engineering fluid dynamics wherein 7 Henri Pitot and the Invention of the Pitot Tube 9 many diverse fundamental laws of nature are harnessed and 8 The High Noon of Eighteenth Century Fluid combined in a useful fashion so as to produce a safe, efficient, Dynamics – Leonhard Euler and the Governing and effective machine. Indeed, the sight of an airplane flying Equations of Inviscid Fluid Motion 10 overhead typifies the laws of aerodynamics in action, and it 9 Inclusion of Friction in Theoretical Fluid is easy to forget that just two centuries ago, these laws were Dynamics: the Works of Navier and Stokes 11 so mysterious, unknown or misunderstood as to preclude a flying machine from even lifting off the ground; let alone 10 Osborne Reynolds: Understanding Turbulent successfully flying through the air. -
GYRODYNAMICS Introduction to the Dynamics of Rigid Bodies
2 GYRODYNAMICS Introduction to the dynamics of rigid bodies Introduction. Though Newton wrote on many topics—and may well have given thought to the odd behavior of tops—I am not aware that he committed any of that thought to writing. But by Euler was active in the field, and it has continued to bedevil the thought of mathematical physicists. “Extended rigid bodies” are classical abstractions—alien both to relativity and to quantum mechanics—which are revealed to our dynamical imaginations not so much by commonplace Nature as by, in Maxwell’s phrase, the “toys of Youth.” That such toys behave “strangely” is evident to the most casual observer, but the detailed theory of their behavior has become notorious for being elusive, surprising and difficult at every turn. Its formulation has required and inspired work of wonderful genius: it has taught us much of great worth, and clearly has much to teach us still. Early in my own education as a physicist I discovered that I could not understand—or, when I could understand, remained unpersuaded by—the “elementary explanations” of the behavior of tops & gyros which are abundant in the literature. So I fell into the habit of avoiding the field, waiting for the day when I could give to it the time and attention it obviously required and deserved. I became aware that my experience was far from atypical: according to Goldstein it was in fact a similar experience that motivated Klein & Sommerfeld to write their 4-volume classic, Theorie des Kreisels (–). In November I had occasion to consult my Classical Mechanics II students concerning what topic we should take up to finish out the term. -
The Bernoulli Edition the Collected Scientific Papers of the Mathematicians and Physicists of the Bernoulli Family
Bernoulli2005.qxd 24.01.2006 16:34 Seite 1 The Bernoulli Edition The Collected Scientific Papers of the Mathematicians and Physicists of the Bernoulli Family Edited on behalf of the Naturforschende Gesellschaft in Basel and the Otto Spiess-Stiftung, with support of the Schweizerischer Nationalfonds and the Verein zur Förderung der Bernoulli-Edition Bernoulli2005.qxd 24.01.2006 16:34 Seite 2 The Scientific Legacy Èthe Bernoullis' contributions to the theory of oscillations, especially Daniel's discovery of of the Bernoullis the main theorems on stationary modes. Johann II considered, but rejected, a theory of Modern science is predominantly based on the transversal wave optics; Jacob II came discoveries in the fields of mathematics and the tantalizingly close to formulating the natural sciences in the 17th and 18th centuries. equations for the vibrating plate – an Eight members of the Bernoulli family as well as important topic of the time the Bernoulli disciple Jacob Hermann made Èthe important steps Daniel Bernoulli took significant contributions to this development in toward a theory of errors. His efforts to the areas of mathematics, physics, engineering improve the apparatus for measuring the and medicine. Some of their most influential inclination of the Earth's magnetic field led achievements may be listed as follows: him to the first systematic evaluation of ÈJacob Bernoulli's pioneering work in proba- experimental errors bility theory, which included the discovery of ÈDaniel's achievements in medicine, including the Law of Large Numbers, the basic theorem the first computation of the work done by the underlying all statistical analysis human heart. -
Leonhard Euler: His Life, the Man, and His Works∗
SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St. -
Augustin-Louis Cauchy - Wikipedia, the Free Encyclopedia 1/6/14 3:35 PM Augustin-Louis Cauchy from Wikipedia, the Free Encyclopedia
Augustin-Louis Cauchy - Wikipedia, the free encyclopedia 1/6/14 3:35 PM Augustin-Louis Cauchy From Wikipedia, the free encyclopedia Baron Augustin-Louis Cauchy (French: [oɡystɛ̃ Augustin-Louis Cauchy lwi koʃi]; 21 August 1789 – 23 May 1857) was a French mathematician who was an early pioneer of analysis. He started the project of formulating and proving the theorems of infinitesimal calculus in a rigorous manner, rejecting the heuristic Cauchy around 1840. Lithography by Zéphirin principle of the Belliard after a painting by Jean Roller. generality of algebra exploited by earlier Born 21 August 1789 authors. He defined Paris, France continuity in terms of Died 23 May 1857 (aged 67) infinitesimals and gave Sceaux, France several important Nationality French theorems in complex Fields Mathematics analysis and initiated the Institutions École Centrale du Panthéon study of permutation École Nationale des Ponts et groups in abstract Chaussées algebra. A profound École polytechnique mathematician, Cauchy Alma mater École Nationale des Ponts et exercised a great Chaussées http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy Page 1 of 24 Augustin-Louis Cauchy - Wikipedia, the free encyclopedia 1/6/14 3:35 PM influence over his Doctoral Francesco Faà di Bruno contemporaries and students Viktor Bunyakovsky successors. His writings Known for See list cover the entire range of mathematics and mathematical physics. "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)."[1] Cauchy was a prolific writer; he wrote approximately eight hundred research articles and five complete textbooks. He was a devout Roman Catholic, strict Bourbon royalist, and a close associate of the Jesuit order. -
Continuity Example – Falling Water
Continuity example – falling water Why does the stream of water from a tap get narrower as it falls? Hint: Is the water accelerating as it falls? Answer: The fluid accelerates under gravity so the velocity is higher down lower. Since Av = const (i.e. A is inversely proportional to v), the cross sectional area, and the radius, is smaller down lower Bernoulli’s principle Bernoulli conducted experiments like this: https://youtu.be/9DYyGYSUhIc (from 2:06) A fluid accelerates when entering a narrow section of tube, increasing its kinetic energy (=½mv2) Something must be doing work on the parcel. But what? Bernoulli’s principle resolves this dilemma. Daniel Bernoulli “An increase in the speed of an ideal fluid is accompanied 1700-1782 by a drop in its pressure.” The fluid is pushed from behind Examples of Bernoulli’s principle Aeroplane wings high v, low P Compressible fluids? Bernoulli’s equation OK if not too much compression. Venturi meters Measure velocity from pressure difference between two points of known cross section. Bernoulli’s equation New Concept: A fluid parcel of volume V at pressure P has a pressure potential energy Epot-p = PV. It also has gravitational potential energy: Epot-g = mgh Ignoring friction, the energy of the parcel as it flows must be constant: Ek + Epot = const 1 mv 2 + PV + mgh = const ) 2 For incompressible fluids, we can divide by volume, showing conservation of energy 1 density: ⇢v 2 + P + ⇢gh = const 2 This is Bernoulli’s equation. Bernoulli equation example – leak in water tank A full water tank 2m tall has a hole 5mm diameter near the base. -
Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time. -
An Appreciation and Discussion of Paul Germain’S “The Method of Virtual Power in the Mechanics of Continuous Media I: Second-Gradient Theory”
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DA VINCI vol. 8 no. 2 2020 Mathematics and Mechanics of Complex Systems MARCELO EPSTEIN AND RONALD E. SMELSER AN APPRECIATION AND DISCUSSION OF PAUL GERMAIN’S “THE METHOD OF VIRTUAL POWER IN THE MECHANICS OF CONTINUOUS MEDIA I: SECOND-GRADIENT THEORY” msp MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS Vol. 8, No. 2, 2020 dx.doi.org/10.2140/memocs.2020.8.191 ∩ MM AN APPRECIATION AND DISCUSSION OF PAUL GERMAIN’S “THE METHOD OF VIRTUAL POWER IN THE MECHANICS OF CONTINUOUS MEDIA I: SECOND-GRADIENT THEORY” MARCELO EPSTEIN AND RONALD E. SMELSER Paul Germain’s 1973 article on the method of virtual power in continuum me- chanics has had an enormous impact on the modern development of the disci- pline. In this article we examine the historical context of the ideas it contains and discuss their continuing importance. Our English translation of the French original appears elsewhere in this volume (MEMOCS 8:2 (2020), 153–190). Introduction Among the many contributions of Paul Germain (1920–2009) to mechanics, this classical 1973 article[1973a] on the method of virtual power in continuum mechan- ics stands out for its enormous impact on the modern development of the discipline, as evidenced by hundreds of citations and by its direct or indirect influence in establishing a paradigm of thought for succeeding generations. In this article we examine the historical antecedents of the ideas contained in the article and discuss their continuing relevance. The article was published in French in the Journal de Mécanique. -
La Notion De Couple En Mécanique : Réhabiliter Poinsot
La notion de couple en mécanique : réhabiliter Poinsot par Ivor Grattan-Guinness Historien des mathématiques et philosophe des sciences Professeur émérite à l’université du Middlesex (UK) Figure 1: Louis Poinsot, gravure de Boilly. Jules Boilly (1796-1874) est un peintre et lithographe spécialisé dans la gravure de personnalités, dont les membres de l’Institut (P.S. Girard, J.D. Cassini, Alexis Bouvard). Il était le fils d’un peintre plus renommé, Léopold Boilly (1761-1845), auteur de peintures de genre et de portraits, notamment de Sadi Carnot. I - PRÉLIMINAIRES En 1803, Louis Poinsot publia un traité de statique, à caractère révolutionnaire puisqu’il posait clairement le sujet non seulement en termes de forces mais aussi en terme de « couples » (c’est son expression), c’est-à-dire des paires de forces non colinéaires égales en amplitude et en direction mais en sens opposés. Plus tard, il adapta cette notion pour induire en dynamique une relation 1 nouvelle entre mouvement linéaire et mouvement de rotation. Le présent article résume ces développements et examine leur réception, qui fut lente parmi ses contemporains mathématiciens et quasi inexistante parmi les « historiens » de la mécanique plus tard. 1. Les organisations Un beau jour, lors des années révolutionnaires II ou III, période à présent plus connue sous le nom d’année 1794, un adolescent orphelin, étudiant au collège Louis le Grand à Paris, tomba sur un prospectus annonçant la création d’une nouvelle institution d’enseignement supérieur. Intrigué, il se porta candidat et fut accepté, ce qui détermina la suite de sa longue carrière. Cette institution constituait un des deux projets du gouvernement français pour résoudre l’une des crises sociales causées par cinq années de révolution et de ruptures. -
Bernoulli? Perhaps, but What About Viscosity?
Volume 6, Issue 1 - 2007 TTTHHHEEE SSSCCCIIIEEENNNCCCEEE EEEDDDUUUCCCAAATTTIIIOOONNN RRREEEVVVIIIEEEWWW Ideas for enhancing primary and high school science education Did you Know? Fish Likely Feel Pain Studies on Rainbow Trout in the United Kingdom lead us to conclude that these fish very likely feel pain. They have pain receptors that look virtually identical to the corresponding receptors in humans, have very similar mechanical and thermal thresholds to humans, suffer post-traumatic stress disorders (some of which are almost identical to human stress reactions), and respond to morphine--a pain killer--by ceasing their abnormal behaviour. How, then, might a freshly-caught fish be treated without cruelty? Perhaps it should be plunged immediately into icy water (which slows the metabolism, allowing the fish to sink into hibernation and then anaesthesia) and then removed from the icy water and placed gently on ice, allowing it to suffocate. Bernoulli? Perhaps, but What About Viscosity? Peter Eastwell Science Time Education, Queensland, Australia [email protected] Abstract Bernoulli’s principle is being misunderstood and consequently misused. This paper clarifies the issues involved, hypothesises as to how this unfortunate situation has arisen, provides sound explanations for many everyday phenomena involving moving air, and makes associated recommendations for teaching the effects of moving fluids. "In all affairs, it’s a healthy thing now and then to hang a question mark on the things you have long taken for granted.” Bertrand Russell I was recently asked to teach Bernoulli’s principle to a class of upper primary students because, as the Principal told me, she didn’t feel she had a sufficient understanding of the concept. -
La Notion De Couple En Mécanique : Réhabiliter Poinsot
Bibnum Textes fondateurs de la science Physique La notion de couple en mécanique : réhabiliter Poinsot Ivor Grattan-Guiness Traducteur : Alexandre Moatti Édition électronique URL : http://journals.openedition.org/bibnum/725 ISSN : 2554-4470 Éditeur FMSH - Fondation Maison des sciences de l'homme Référence électronique Ivor Grattan-Guiness, « La notion de couple en mécanique : réhabiliter Poinsot », Bibnum [En ligne], Physique, mis en ligne le 01 janvier 2013, consulté le 19 avril 2019. URL : http:// journals.openedition.org/bibnum/725 © BibNum La notion de couple en mécanique : réhabiliter Poinsot par Ivor Grattan-Guinness Historien des mathématiques et philosophe des sciences Professeur émérite à l’université du Middlesex (UK) Figure 1: Louis Poinsot, gravure de Boilly. Jules Boilly (1796-1874) est un peintre et lithographe spécialisé dans la gravure de personnalités, dont les membres de l’Institut (P.S. Girard, J.D. Cassini, Alexis Bouvard). Il était le fils d’un peintre plus renommé, Léopold Boilly (1761-1845), auteur de peintures de genre et de portraits, notamment de Sadi Carnot. I - PRÉLIMINAIRES En 1803, Louis Poinsot publia un traité de statique, à caractère révolutionnaire puisqu’il posait clairement le sujet non seulement en termes de forces mais aussi en terme de « couples » (c’est son expression), c’est-à-dire des paires de forces non colinéaires égales en amplitude et en direction mais en sens opposés. Plus tard, il adapta cette notion pour induire en dynamique une relation 1 nouvelle entre mouvement linéaire et mouvement de rotation. Le présent article résume ces développements et examine leur réception, qui fut lente parmi ses contemporains mathématiciens et quasi inexistante parmi les « historiens » de la mécanique plus tard.