Classification of Volcanoes Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Classification of Volcanoes Pdf Classification of volcanoes pdf Continue The Earth is home to about 1,500 active or potentially active volcanoes, with about 40 of these often steaming vents erupting at any given time, in various ways. Some love of yl. Some erupt violently. But all these are the exciting masses of dynamic land. Here are 11 of the most infamous, and some little-known, volcanoes from around the world. 1. Novrupta Novarupta lava plug. Picture: NPS Alaska Novarupta does not look like a typical mountain-shaped volcano. Instead, it exists like a 200-foot dome of lava. But don't be fooled. Novarupta is responsible for the most powerful eruption of the 20th century, resulting in that Mount St. Helens' explosion of 1980 look small. The 1912 eruption, marred by the sinking of the Titanic, is considered one of the five most powerful eruptions in human history. The ash cloud has spread to Africa. The eruption turned the once-combatant-filled river valley into a barren, steaming lunar landscape called the Valley of 10,000 Smoke. This also led to the collapse of another volcano. And this ash plunged near kodiak Island into darkness for almost three days. Moreover, no Nowrupta existed until 1912. Volcanologists believe that a huge vent formed during a strong eruption before a thick mass of lava eventually oozed and cordoned off the volcano - at least for now. This volcano has not erupted for more than a century, but it is young, soars at times, and is certainly active. 2. In 2016, the Parikutin drone captured this image of the Parakutin volcano. Picture: MARIO VAZQUEZ/AFP/Getty Images Pareutin was born in a Mexican cornfield in 1943. It rose from the ground one February day, and after about eight hours began to roar and throw a number of incandescent bombs with great force, according to U.S. Geological Survey (USGS) scientists. Within a week, it surpassed the height of 500 feet. The eruption ended nine years later and left a cone-like hill of volcanic rock and debris more than 1,000 feet high. Paracutin has not erupted for more than half a century, but is found in volcanically active land. 3. Mount Vesuvius The top of the snow-covered Mount Vesuvius looms over the ruins of Pompeii. Image: LightRocket via Getty Images Mount Vesuvius is probably the most infamous mountain in history. Nearly 2,000 years ago, in 79 AD, a mountain erupted violently, burying Roman communities like Pompeii in an avalanche of sand like volcanic rock. This type of eruption, which blows up ominous columns of ash more than 11 kilometers (6.8 miles) into the sky, is called the Plinian eruption, named after a local Roman who lived to document the event. Pliny the Younger, nephew of the famous Roman General Pliny the Elder (who died during the eruption), fled Vesuvius when a cloud of ash collapsed from the mountain as a result of devastating avalanches of fire. The dark cloud turned day into night, terrifying Romans. As Pliny wrote: People their own fate or the fate of their relatives, and there were some who prayed for death in their horror of death. Many begged for the help of the gods, but even more imagined that there were no gods left, and that the universe was forever plunged into eternal darkness. The volcano has been active so far, but its eruptions, like many volcanoes, are intermittent. 4. Yellowstone Ferry Grand Prismatic Source in Yellowstone National Park. Image: Nps Many volcanologists not only consider Yellowstone as a volcano, but a supervolcano, as it is capable of exploding from colossal quantities (at least 240 cubic miles) of molten material that has occurred on this supervolcano in half in the last 2 million years. These large eruptions are rare - in human time, at any rate - but the volcano is undoubtedly active. Yellowstone National Park, which sits atop a volcano, contains more than 500 erupting geysers, fueled by scorching underground, where molten rock brews nearby. The volcano is one of the most carefully controlled in the world. Earthquakes would herald eruptions weeks, if not years, in advance. So, don't worry, we'll have a lot of notice if the supervolcano threatens to erupt at any time in the near future. 5. Mount Pele On the island of Martinique in the Caribbean. Image: UIG via Getty Images In 1902, there were only a handful of reported survivors in Saint-Pierre, a town sitting at the foot of Mount Pele in the Caribbean. (One of them was saved by a prison sentence in a stone cell.) The eruption is estimated to have killed about 28,000 people as an avalanche of scorching rocks destroyed the modest city. Although terrifying, the event prompted volcanologist Thomas Jagger to find the world's first volcano observatory, in Hawaii. After seeing more than 20,000 bodies buried by destroyed buildings and volcanic rocks, Jagger was forced to improve the lack of science. I realized that the murder of thousands of people by underground equipment is completely unknown to geologists... was worthy of a lifetime of work, he wrote. The volcano last issued significant aftershocks in 1985, so it is now in an inactive phase. 6. Krakatau Krakatau blows away ash and steam in 2013. Image: Mast Irham/Epa/REX/Shutterstock During the extreme eruption of 1883, Krakatau made a sound so loud that people 3,000 miles away documented hearing the boom. People within a 160 km radius of the eruption would experience severe ear pain and permanent hearing loss from exposure to these shock waves, the University of Oregon wrote. Estimates of exposure levels show that it would be like standing on a rocket launch pad without ear protection. Many people nearby, however, were even more apprehensive: about 36,000 were killed as a result of subsequent streams of scorching volcanic rocks. Every few years, Krakatau will Lava flows down its slopes or spew ash into the air - but ear-damaging explosive events are much rarer. 7. Kilauea Lava flows from Kilauea in June 2018. Image: USGS Not all volcanoes are fortunately so deadly. Hawaii's youngest volcano, Kilauea, is now synonymous with lava. The volcano has been spewing lava continuously for 35 years. It tends to yl lava rather than explode. Deaths here are rare, but certainly possible if someone wanders close to spatting vents of lava or toxic gases. Kilauea lava flows often meet the sea, where they cool and gradually add more land to the big island. 8. Mauna Loa in the form of the Mauna Loa Shield. Image: Usgs Looming over Kilauea is the largest, by mass, mountain on Earth. When measured from the dark depths of the Pacific seabed, Mauna Loa is higher than Mount Everest. It makes up more than half of Hawaii's Big Island. It is still an active, growing volcano, built entirely of lava. 9. Erefayokul Snow- Covered Erefayykull in the distance. Image: wikimedia commons/Reykholt This icy active volcano is the largest in Iceland, and an eruption here can stop air traffic in Europe for days or weeks - like its cousin Eyjafjallajakullu, which closed European airports for almost a week in 2010. Planes cannot fly in ash conditions because engines inhale tiny volcanic rocks, or ash. Although exactly how long flight disruptions can last depends on various factors such as wind direction and the amount of ash in the air. When Erefayokul will erupt, it will sweep through a long-settled layer of ice and snow. 10. Le Havre Map of the underwater volcano Le Havre. Picture: Rebecca Carey/UNIVERSITY TASMANIA, AUSTRALIA./WOODS HOLE OCEANOGRAPHIC INSTITUTE About a mile under the Pacific Ocean is the Volcano Le Havre. It attracted quite a lot of attention in 2012, when both air passengers and the Royal Navy of New York spotted a floating collection of 150 square miles of porous volcanic rock called pumice. After a deeper study, the researchers found that the volcano unleashed a massive eruption, roughly equivalent to the largest eruption on land in the 20th century - that's looking at you, Novarupta. 11. Shishaldin Natural symmetry. Image: Alaska Volcano Observatory / Musselwhite, Levi / Usgs Shishaldin sits in one of the world's most volcanically active regions, the Alaskan Peninsula. This young volcanic cousin, Novarupta, can also be found in this glacier and volcano laden territory. Shishaldin, known for its impressive symmetry, often emits ash, steam or both from the top. Bonus volcano: Olympus Mons 3D view of Olympus Mons. Image: NASA This Martian behemoth is the largest volcano in our System. It's the size of Arizona. As in Kilauea in Hawaii, it is a shield volcano that takes on a gentle sloping structure as lava flows accumulate to accumulate It's time. But Mars is almost completely dead, geologically. So is Olympus Mons. The U.S. Geological Survey defines the volcano as a vent on the Earth's surface, either on land or on the seabed, from which molten rock called magma can erupt or ooze, as well as ash and gases. Different types of volcanoes erupt in different ways, with some erupting spectacularly, while others, primarily Hawaiian shield volcanoes, have steadily oozed lava. There are different types of volcanoes, including stratovolcanoes, shield volcanoes and slag cones, as well as different types of lava and other volcanic flows. Volcanoes can be active, dormant or extinct. Most of Earth's volcanoes are located along the Pacific Ring of Fire, where many of Earth's tectonic plates subduct under another slab. Currently volcanic eruptions cannot be predicted, although most large, active volcanoes are regularly monitored and allowing a warning when they think an eruption is likely.
Recommended publications
  • TITAN TRANSMOGRIFIED. C. A. Wood, Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tuc- Son, AZ 85719-2395; [email protected]
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 3032.pdf TITAN TRANSMOGRIFIED. C. A. Wood, Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tuc- son, AZ 85719-2395; [email protected] Titan’s Global Crustal Thickening Event: Based on volume scattering [6] and have only minor coatings by a variety of estimates of the age of events affecting its other materials. The proposed origin of mountains by atmosphere, Hörst [1] deduced that Titan underwent a contraction [7] would occur after the GCTE began fundamental transformation about 500 m.y. ago. No when the icy crust began to thicken. explanation for what that event could have been; I pro- Titan’s mountains are old; is it possible that Titan’s pose that it was a rapid Global Crustal Thickening mountain-forming era was limited to a short period Event (GCTE) predicted by a geophysical model of about 500 m.y. ago as the crust was thickening from a Titan’s internal evolution. Tobie, Lunine & Sotin (TLS weak 10 km until it became too thick and strong for [2]) predicted that ~500 m.y. ago the onset of convec- mountain formation? Can mountains form today? tion led to rapid cooling of the interior and consequent Blandlands. The most pervasive geologic unit on rapid thickening of the crust from ~10 km to more than Titan appears as nearly featureless expanses, concen- 50 km. I propose that this catastrophic event occurred, trated in temperate regions [8]. These plains were orig- completely resetting Titan’s geologic processes, trans- inally called blandlands, but now are classified as Un- forming its surface from a smooth icy ball into what differentiated Plains.
    [Show full text]
  • Titan's Cold Case Files
    Titan’s cold case files - Outstanding questions after Cassini-Huygens C.A. Nixon, R.D. Lorenz, R.K. Achterberg, A. Buch, P. Coll, R.N. Clark, R. Courtin, A. Hayes, L. Iess, R.E. Johnson, et al. To cite this version: C.A. Nixon, R.D. Lorenz, R.K. Achterberg, A. Buch, P. Coll, et al.. Titan’s cold case files - Out- standing questions after Cassini-Huygens. Planetary and Space Science, Elsevier, 2018, 155, pp.50-72. 10.1016/j.pss.2018.02.009. insu-03318440 HAL Id: insu-03318440 https://hal-insu.archives-ouvertes.fr/insu-03318440 Submitted on 10 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Planetary and Space Science 155 (2018) 50–72 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Titan's cold case files - Outstanding questions after Cassini-Huygens C.A. Nixon a,*, R.D. Lorenz b, R.K. Achterberg c, A. Buch d, P. Coll e, R.N. Clark f, R. Courtin g, A. Hayes h, L. Iess i, R.E.
    [Show full text]
  • Cryovolcanic Activity and Morphotectonic Features on Titan and Enceladus – Connection to Terrestrial Geology A
    EPSC Abstracts Vol. 8, EPSC2013-854-1, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 Cryovolcanic activity and morphotectonic features on Titan and Enceladus – Connection to terrestrial geology A. Solomonidou (1,2), A. Coustenis (1), M. Hirtzig (1,3), E. Bratsolis (4), G. Bampasidis (1,4), K. Kyriakopoulos (2), F. Sohl (5), F.W. Wagner (5), H. Hussmann (5), K. Stephan (5), R. Jaumann (5), R.M.C. Lopes (6), K. St. Seymour (7,8) and X. Moussas (4) (1) LESIA - Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris-Diderot – Meudon, 92195 Meudon Cedex, France ([email protected]), (2) National and Kapodistrian University of Athens, Department of Geology and Geoenvironment, Athens, Greece, (3) Fondation La Main à la Pâte, Montrouge, France, (4) National and Kapodistrian University of Athens, Department of Physics, Athens, Greece, (5) DLR, Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin, Germany, (6) Jet Propulsion Laboratory, Pasadena, California, USA, (7) University of Patras, Department of Geology, Patras, Greece, (8) Concordia University, Department of Geography, Montreal, Canada. Abstract [6], faults [7] as well as rectangular drainage patterns Long-lasting investigations, measurements and controlled most likely by tectonism which resemble analysis by the Cassini-Huygens mission since 2004, the terrestrial ones in shape and structure but not in showed that Saturn’s fascinating satellites, Titan and size [2]. Evidence for cryovolcanic activity is Enceladus, present complex, dynamic and Earth-like assumed to be present, especially from data attributed geology [e.g. 1]. Endogenous as well as exogenous by the Visual and Infrared Mapping Spectrometer dynamic processes, have created diverse terrains with instrument (VIMS) [8;9;10].
    [Show full text]
  • The Shapeshifter: a Morphing, Multi-Agent, Multi-Modal Robotic Platform for the Exploration of Titan
    Final Report NASA NIAC Phase I Study The Shapeshifter: a Morphing, Multi-Agent, Multi-Modal Robotic Platform for the Exploration of Titan Prepared for Mr. Jason Derleth Program Executive, NASA Innovative Advanced Concepts Program Submitted May 31, 2019 Submitted by: Dr. Ali-akbar Agha-mohammadi, PI Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr, Pasadena, CA 91109 Phone: (626) 840-9140 Email: [email protected] Andrea Tagliabue Stephanie Schneider Dr. Benjamin Morrell Jet Propulsion Laboratory Dep. of Aeronautics and Jet Propulsion Laboratory California Institute of Astronautics California Institute of Technology Stanford University Technology [email protected] [email protected] [email protected] Prof. Marco Pavone, Co-I Dr. Jason Hofgartner, Co-I Dr. Issa A.D. Nesnas, Co-I Dep. of Aeronautics and Jet Propulsion Laboratory Jet Propulsion Laboratory Astronautics California Institute of California Institute of Stanford University Technology Technology [email protected] [email protected] [email protected] Kalind Carpenter, Co-I Dr. Rashied B. Amini, Co-I Dr. Arash Kalantari Jet Propulsion Laboratory Jet Propulsion Laboratory Jet Propulsion Laboratory California Institute of California Institute of California Institute of Technology Technology Technology [email protected] [email protected] [email protected] Dr. Alessandra Babuscia Dr. Javid Bayandor Prof. Jonathan Lunine Jet Propulsion Laboratory School of Engineering and Dep. of Astronomy California Institute of Applied Sciences Cornell University Technology University at Buffalo [email protected] [email protected] bayandor@buffalo.edu c 2019 California Institute of Technology. Partial Government sponsorship acknowledged.
    [Show full text]
  • EGU2014-588, 2014 EGU General Assembly 2014 © Author(S) 2013
    Geophysical Research Abstracts Vol. 16, EGU2014-588, 2014 EGU General Assembly 2014 © Author(s) 2013. CC Attribution 3.0 License. Looking at some equatorial regions on Titan using Cassini/VIMS and RADAR data: a case for changes in surface properties Anezina Solomonidou (1), Athena Coustenis (1), Rosaly Lopes (2), Mathieu Hirtzig (1,3), Emmanuel Bratsolis (4), Pierre Drossart (1), Stephane Le Mouélic (5), Sebastien Rodriguez (6), Ralf Jaumann (7), Katrin Stephan (7), Georgios Bampasidis (1,4), Christophe Sotin (2), and Robert Brown (8) (1) LESIA - Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot – Meudon, 92195 Meudon Cedex, France, (2) Jet Propulsion Laboratory, Pasadena, California, USA, (3) Fondation La Main à la Pâte, Montrouge, France, (4) Department of Physics, National and Kapodistrian University of Athens, Athens, Greece, (5) Laboratoire de Planétologie et Géodynamique, Université de Nantes, Nantes Cedex 03, France, (6) Laboratoire AIM, Université Paris Diderot, Paris 7/CNRS/CEA-Saclay, DSM/IRFU/SAp, 91191 Gif sur Yvette, France, (7) Institute of Planetary Research, DLR, Rutherfordstrasse 2, D-12489 Berlin, Germany, (8) Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, United States Titan, Saturn’s largest moon, has a complex, dynamic and -in some aspects- Earth-like atmosphere and surface. Data from the remote sensing instruments on board Cassini, particularly VIMS and the RADAR, have shown the presence of diverse terrains on the surface, suggesting exogenic and endogenic processes [1;2;3]. In this research we focus on some equatorial regions that have been identified as possibly subject to changes, having particular spectral properties and possibly being the strongest cryovolcanic candidate regions, that is: Sotra Patera, Hotei Regio and Tui Regio [1,4,5].
    [Show full text]
  • Titan As Revealed by the Cassini Radar
    Space Sci Rev (2019) 215:33 https://doi.org/10.1007/s11214-019-0598-6 Titan as Revealed by the Cassini Radar R.M.C. Lopes1 · S.D. Wall1 · C. Elachi2 · S.P.D. Birch3 · P. Corlies3 · A. Coustenis4 · A.G. Hayes3 · J.D. Hofgartner1 · M.A. Janssen1 · R.L. Kirk5 · A. LeGall6 · R.D. Lorenz7 · J.I. Lunine2,3 · M.J. Malaska1 · M. Mastroguiseppe8 · G. Mitri9 · C.D. Neish10 · C. Notarnicola11 · F. Paganelli12 · P. Paillou13 · V. Poggiali3 · J. Radebaugh14 · S. Rodriguez15 · A. Schoenfeld16 · J.M. Soderblom17 · A. Solomonidou18 · E.R. Stofan19 · B.W. Stiles1 · F. Tosi 20 · E.P. Turtle7 · R.D. West1 · C.A. Wood21 · H.A. Zebker22 · J.W. Barnes23 · D. Casarano24 · P. Encrenaz4 · T. Farr1 · C. Grima25 · D. Hemingway26 · O. Karatekin27 · A. Lucas28 · K.L. Mitchell1 · G. Ori9 · R. Orosei29 · P. Ries 1 · D. Riccio30 · L.A. Soderblom5 · Z. Zhang2 Received: 13 July 2018 / Accepted: 27 April 2019 / Published online: 21 May 2019 © Springer Nature B.V. 2019 Abstract Titan was a mostly unknown world prior to the Cassini spacecraft’s arrival in July 2004. We review the major scientific advances made by Cassini’s Titan Radar Map- per (RADAR) during 13 years of Cassini’s exploration of Saturn and its moons. RADAR measurements revealed Titan’s surface geology, observed lakes and seas of mostly liquid methane in the polar regions, measured the depth of several lakes and seas, detected tempo- ral changes on its surface, and provided key evidence that Titan contains an interior ocean. B R.M.C. Lopes 1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 2 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 3 Department of Astronomy, Cornell University, Ithaca, NY 14853, USA 4 LESIA – Observatoire de Paris, CNRS, UPMC Univ.
    [Show full text]
  • Exploration of Enceladus and Titan
    Exploration of Enceladus and Titan 1 Exploration of Enceladus and Titan Authors Mitri, Giuseppe IRSPS InGeo Univ. d’Annunzio Italy [email protected] Barnes Jason Univ. of Idaho U.S.A. [email protected] Coustenis Athena LESIA, Observatoire de Paris France [email protected] Flamini Enrico IRSPS, Università d’Annunzio Italy [email protected] Hayes Alexander Cornell University U.S.A. [email protected] Lorenz Ralph D. JHU Applied Physics Lab. U.S.A. [email protected] Mastrogiuseppe Marco Università La Sapienza Italy [email protected] Orosei Roberto INAF Italy [email protected] Postberg Frank University of Heidelberg Germany [email protected] Reh Kim Jet Propulsion Laboratory U.S.A. [email protected] Soderblom Jason M. MIT U.S.A. [email protected] Sotin Christophe Jet Propulsion Laboratory U.S.A. [email protected] Tobie Gabriel Université de Nantes France [email protected] Tortora Paolo University of Bologna Italy [email protected] Vuitton Veronique Univ. Grenoble Alpes France [email protected] Wurz Peter University of Bern Switzerland [email protected] 2 Exploration of Enceladus and Titan Executive Summary Recent observations from the ground and in space have shown that Earth is not the only place in the Solar System to possess exposed surface liquid. Observations have provided evidence of subsurface liquid water oceans covered by icy shells on multiple objects in the Solar System, called ocean worlds, including the icy moons of Jupiter (Europa, Ganymede and Callisto) and of Saturn (Titan and Enceladus) and dwarf planets (Ceres and Pluto) (see Lunine 2017 for a review).
    [Show full text]
  • Compositional Variations of Titan's Impact Craters Indicates Active Surface Erosion
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-30-2018 2:00 PM Compositional Variations of Titan's Impact Craters Indicates Active Surface Erosion Alyssa Werynski The University of Western Ontario Supervisor Neish, Catherine D. The University of Western Ontario Graduate Program in Geophysics A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Alyssa Werynski 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Werynski, Alyssa, "Compositional Variations of Titan's Impact Craters Indicates Active Surface Erosion" (2018). Electronic Thesis and Dissertation Repository. 5585. https://ir.lib.uwo.ca/etd/5585 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Impact craters on Titan are relatively scarce but provide ample information about the subsurface properties and modification processes present there. This study utilizes impact craters to examine compositional variations across Titan’s surface and their subsequent modification. Fifteen craters and their ejecta blankets were studied. Subsurface composition was inferred from emissivity data from Cassini’s RADAR instrument, and surficial composition from Cassini’s Visible and Infrared Mapping Spectrometer (VIMS). Results show subsurface composition of these craters is controlled by their degradation state and local environment. Older craters are more infilled with organics than younger, and dunes craters show more organic enrichment than plains craters. Surficial composition is only controlled by the local environment (i.e.
    [Show full text]
  • Shapeshifter: a Multi-Agent, Multi-Modal Robotic Platform for Exploration of Titan
    Shapeshifter: A Multi-Agent, Multi-Modal Robotic Platform for Exploration of Titan Andrea Tagliabue Stephanie Schneider Aerospace Controls Lab Autonomous Systems Lab Dpt. of Aeronautics and Astronautics Dpt. of Aeronautics and Astronautics Massachusetts Institute of Technology Stanford University Boston, MA 02139 Stanford, CA 94305-4035 (510) 701-4579 (408) 910-5868 [email protected] [email protected] Marco Pavone Ali-akbar Agha-mohammadi Autonomous Systems Lab Robotic Aerial Mobility Group Dpt. of Aeronautics and Astronautics Jet Propulsion Laboratory Stanford University California Institute of Technology Stanford, CA 94305-4035 Pasadena, CA 91109 (650) 723 4432 (626) 840-9140 [email protected] [email protected] Abstract—In this paper we present a mission architecture and a robotic platform, the Shapeshifter, that allow multi-domain and redundant mobility on Saturn’s moon Titan, and potentially other bodies with atmospheres. The Shapeshifter is a collection of simple and affordable robotic units, called Cobots, compa- rable to personal palm-size quadcopters. By attaching and detaching with each other, multiple Cobots can shape-shift into novel structures, capable of (a) rolling on the surface, to increase the traverse range, (b) flying in a flight array formation, and (c) swimming on or under liquid. A ground station complements the robotic platform, hosting science instrumentation and pro- viding power to recharge the batteries of the Cobots. In the first part of this paper we experimentally show the flying, docking and rolling capabilities of a Shapeshifter constituted by two Cobots, presenting ad-hoc control algorithms. We additionally evaluate the energy-efficiency of the rolling-based mobility strat- egy by deriving an analytic model of the power consumption and by integrating it in a high-fidelity simulation environment.
    [Show full text]
  • A Corridor of Exposed Ice- Distinct Components, an Icy Bedrock and the Rich Bedrock Across Titan's Atmospheric-Derived Organic Sediments Tropical Region 2
    EPSC Abstracts Vol. 13, EPSC-DPS2019-191-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Therefore, Titan’s surface is expected to have two A corridor of exposed ice- distinct components, an icy bedrock and the rich bedrock across Titan's atmospheric-derived organic sediments tropical region 2. PCA investigation of Titan’s Surface Caitlin A. Griffith1, Paulo F. Penteado2, Jake D. Turner3, Catherine D. Neish4, Giuseppe Mitri5, Nicholas J. Montiel1, This project analyzes the composition of half of Ashley Schoenfeld6, Rosaly M.C. Lopes2 Titan’s surface, that bounded by 30◦S and 30◦N latitude (Supplementary Figure 1) to study the 1Department of Planetary Sciences, LPL, University of surface spectral diversity and investigate the Arizona, Tucson, AZ, 85721; [email protected], 2 exposure of water ice “bedrock” of Titan’s tropical Department of Physics and Astronomy, Northern Arizona surface, despite the ongoing sedimentation of organic University, Flagstaff AZ 86011,currently at 2Jet Propulsion material from the atmosphere. Towards this goal, we Laboratory, California Institute of Technology, Pasadena, CA 91109 3Department of Astronomy, University of developed a PCA analysis of the 4 wavelength bands Virginia, Charlottesville, VA 22904, USA, 4Department of (1.1, 1.3, 1.6, and 2.0 µm) that most clearly view Earth Sciences, University of Western Ontario, London, Titan’s surface from orbit. ON, Canada, 5International Research School of Planetary Sciences, Università d'Annunzio, Pescara, Italy, In contrast to radiative transfer analyses, the PCA 6Department of Earth and Planetary Sciences, UCLA, Los identifies and deconstructs the major spectral Angeles, CA, 90095 components based on the variance of the data.
    [Show full text]
  • The Evolution of the Atmosphere and Surface of Titan from Cassini
    The evolution of the atmosphere and surface of TitanNational from & Kapodistrian Cassini University of Athens infrared observations (1) LESIA - Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot – Meudon, Meudon Cedex, France, (2) A. Coustenis1, G. Bampasidis1,2, A. Solomonidou1,3, R. Achterberg4,5, Department of Physics, National and Kapodistrian University of Athens, Athens, Greece, (3) Department of Geology and 6 1 1,7 2 5 4 Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece, (4) NASA/Goddard Space Flight Center, P. Lavvas , S. Vinatier , M. Hirtzig , E. Bratsolis , C. Nixon , D. Jennings , Greenbelt, USA, (5) Department of Astronomy, University of Maryland, Maryland, USA, (6) GSMA, Université de Reims, Reims, S. Le Mouelic8, S. Rodriguez9, R. Jaumann10, K. Stephan10, N. Teanby11, France, (7) Fondation La Main à la Pâte, Montrouge, France, (8) Laboratoire de Planétologie et Géodynamique, Université de Nantes, Nantes Cedex, France, (9) Laboratoire AIM, Université Paris Diderot, Paris 7/CNRS/CEA-Saclay, DSM/IRFU/SAp, Centre P. Drossart 1, F. M. Flasar4 de l’Orme des Merisiers, Gif sur Yvette, France, (10) Institute of Planetary Research, DLR, Berlin, Germany, (11) AOPP, Department of Physics, University of Oxford, Oxford, UK Saturn’s Earth-like satellite Titan has a thick and dense atmosphere consisting of nitrogen (98.4%), CIRS nadir and limb spectral [1-4] show variations in temperature and chemical composition in the methane (1.6%) and trace gases such as hydrocarbons and nitriles [1]. The condensed organics are stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE) and also deposited on the surface and the atmosphere-surface-interior interactions shape the ground.
    [Show full text]
  • Cassini RADAR Users Guide Second Edition
    Cassini RADAR Users Guide Second Edition S.D. Wall, R.L. Kirk, B.W. Stiles, A. Hayes, K. Mitchell, R.D. Lorenz, M. Janssen, B. Bills, V. Poggiali, A. Schoenfeld, and the Cassini RADAR Science Team JPL D-102030 September 2019 The authors wish to thank Ellen Stofan, Yanhua Anderson, Rudy Boehmer, Trina Ray, and Reta Bebe for their assistance in producing this document, and especially Charles Elachi, whose guidance and support have led us in this amazingly successful experiment. We also thank Claire Marie-Peterson for helpful comments and superb editing. This publication was prepared for the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. This guide is dedicated to the memory of Bill Johnson and Steve Ostro. They were fundamental to the success of the Cassini RADAR, and we miss them not only as colleagues, but as friends. Cassini RADAR Users Guide Contents Preface to the Second Edition .................................................................................................................... 1 1 Introduction ............................................................................................................................................... 2 2 The Cassini Spacecraft
    [Show full text]