Sufficient Covariate, Propensity Variable and Doubly Robust Estimation Hui Guo, Philip Dawid and Giovanni Berzuini Abstract Statistical causal inference from observational studies often requires ad- justment for a possibly multi-dimensional variable, where dimension reduction is crucial. The propensity score, first introduced by Rosenbaumand Rubin,is a popular approach to such reduction. We address causal inference within Dawid’s decision- theoretic framework, where it is essential to pay attention to sufficient covariates and their properties. We examine the role of a propensity variable in a normal linear model. We investigate both population-based and sample-based linear regressions, with adjustments for a multivariate covariate and for a propensity variable. In ad- dition, we study the augmented inverse probability weighted estimator, involving a combination of a response model and a propensity model. In a linear regression with homoscedasticity, a propensity variable is proved to provide the same estimated causal effect as multivariate adjustment. An estimated propensity variable may, but need not, yield better precision than the true propensity variable. The augmented inverse probability weighted estimator is doubly robust and can improve precision if the propensity model is correctly specified. Hui Guo Centre for Biostatistics, Institute of Population Health, The University of Manch- arXiv:1501.07761v1 [math.ST] 30 Jan 2015 ester, Jean McFarlane Building, Oxford Road, Manchester M13 9PL, UK, e-mail:
[email protected] Philip Dawid Statistical Laboratory, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK, e-mail:
[email protected] Giovanni Berzuini Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy, e-mail:
[email protected] 1 2 Hui Guo, Philip Dawid and Giovanni Berzuini 1 Introduction Causal effects can be identified from well-designed experiments, such as ran- domised controlled trials (RCT), because treatment assignment is entirely unrelated to subjects’ characteristics, both observed and unobserved.