December 2000

Total Page:16

File Type:pdf, Size:1020Kb

December 2000 THE ISBA BULLETIN Vol. 7 No. 4 December 2000 The o±cial bulletin of the International Society for Bayesian Analysis A WORD FROM already lays out all the elements mere statisticians might have THE PRESIDENT of the philosophical position anything to say to them that by Philip Dawid that he was to continue to could possibly be worth ISBA President develop and promote (to a listening to. I recently acted as [email protected] largely uncomprehending an expert witness for the audience) for the rest of his life. defence in a murder appeal, Radical Probabilism He is utterly uncompromising which revolved around a Modern Bayesianism is doing in his rejection of the realist variant of the “Prosecutor’s a wonderful job in an enormous conception that Probability is Fallacy” (the confusion of range of applied activities, somehow “out there in the world”, P (innocencejevidence) with supplying modelling, data and in his pragmatist emphasis P ('evidencejinnocence)). $ analysis and inference on Subjective Probability as Contents procedures to nourish parts that something that can be measured other techniques cannot reach. and regulated by suitable ➤ ISBA Elections and Logo But Bayesianism is far more instruments (betting behaviour, ☛ Page 2 than a bag of tricks for helping or proper scoring rules). other specialists out with their What de Finetti constructed ➤ Interview with Lindley tricky problems – it is a totally was, essentially, a whole new ☛ Page 3 original way of thinking about theory of logic – in the broad ➤ New prizes the world we live in. I was sense of principles for thinking ☛ Page 5 forcibly struck by this when I and learning about how the had to deliver some brief world behaves. Its novelty lies ➤ Bayesian history comments about de Finetti at in its recognition of the essential ☛ Page 6 the meeting of the International role of uncertainty in sound Society for Clinical Biostatistics human thinking, and its ➤ Bayesians teaching in Trento last September, and provision of tools for correctly ☛ Page 10 prepared myself by reading or manipulating that uncertainty. ➤ Bayesians in Brazil rereading as much of his work Such a logic should be vital ☛ Page 12 as I could get my hands on. I importance over the whole range was particularly struck by his of human activity, not just the ➤ Applications youthful work “Probabilismo”, narrow confines of scientific ☛ Page 14 written when he was 23. An research. However, even within English translation of this the scientific community (dare I ➤ Software review (“Probabilism”) appears in a say, even within the ISBA ☛ Page 16 special issue, entirely given over community?!) there has been ➤ Students' corner to papers on de Finetti’s little enthusiasm to listen to this ☛ Page 18 philosophy of probability, of the radical message, and it is even journal “Erkenntnis” (Volume harder to put it across to a ➤ Bibliography 31, nos. 2 – 3, 1989), which also public trained from childhood ☛ Page 21 contains a valuable overview, to regard it as wimpish ever to “Reading Probabilismo”, by admit to anything less than ➤ News from the world Richard Jeffrey. In ☛ Page 25 certainty, who can’t believe that & % “Probabilismo” de Finetti ISBA Bulletin, December 2000 ISBA I had previously prepared a disease”) epidemic, without brilliantly served) for their deep detailed written report, which taking into account any of the contribution in shaping the was before the court. However, uncertainties involved. Slowly, “new” Newsletter. They when counsel for the defence perhaps, the ground may be deserve a hearty plause from all asked for me to be called to the becoming more receptive, and ISBA members. New Associate stand to explain my report, the the radical probabilistic seed Editors (Maria Eugenia judge replied: “We don’t really may yet take root and flourish. Castellanos and Javier Morales need to hear his testimony, do But it will need the concerted for the Students’ Corner, Kate we? It’s hardly rocket science, is efforts of all those who feel Cowles for Applications, it?”. (Clearly, he had not read proud to call themselves Duncan Fong for Bibliography, my article in the March 2000 Bayesians. Leo Knorr-Held for Software issue of the ISBA Bulletin). The and Antonio Lijoi for News final judgement pooh-poohed A WORD FROM from the World) are warming the idea that anybody could THE EDITOR up for the next issue: please get ever be taken in by the in touch with them (see their prosecutor’s fallacy, and went by Fabrizio Ruggeri e-mail addresses at on to ignore completely the ISBA Bulletin Editor www.iami.mi.cnr.it/isba ). logical points made. The appeal [email protected] Arnold Zellner is back: his was not granted. My first thought is about the new contribution is about ISBA It can be dispiriting, but we Associate and Corresponding History and all of you are must continue to try to spread Editors who are stepping down invited, as suggested by Arnold, the good word with all our from their job with this issue: to update his paper on the ISBA vigour. In Britain there has been they have been the “engine” website, www.bayesian.org. Last, but not least, a word of much public concern recently behind the success (after two thanks to Dennis Lindley, and about the way in which our years, we can say it ...) of the his interviewer (Karen Young): government solicited, used and Bulletin. I wish to thank read the interview and you will disseminated scientific advice Antonio, Gabriel, Siva and Sujit understand why! over the BSE (“mad cow (and Maria for the year she ISBA ELECTIONS to all who participated and ISBA LOGO especially to those who stood as by Mike Evans candidates. The following by Mike Evans ISBA Executive Secretary individuals were elected. ISBA Executive Secretary [email protected] [email protected] ➤ President-Elect This year ISBA held an online ISBA has now chosen a new David Draper election for the positions of logo; see it at www.bayesian.org. President-Elect, Executive ➤ Executive Secretary This logo was designed by Secretary and four new Board Petros Dellaportas. members. The option of mailing Cindy Christiansen Congratulations to Petros and in the ballot was also available many thanks to all those who ➤ but the vast majority of Board Members submitted entries! We received members chose to vote online. Nicky Best 21 additional entries designed In this year’s election 147 Eduardo Gutierrez-Pe˜na by Concha Bielza, Nigel Cooper, ISBA members participated by Tony O’Hagan Jorgen Hilden, Daphne Kounali, voting for one or more of the Raquel Prado Brunero Liseo, Duncan Murdoch, positions. This participation J. Lynn Palmer, Jonathan Rougier, rate is about the same as in Juan Antonio Cano Sanchez, previous elections. Many thanks Bob Shaker and Alyson Wilson. 2 ISBA Bulletin, December 2000 INTERVIEWS DENNIS LINDLEY again at a conference in Canada. Statistician 2000, 293-337) you say, about the Sixth by Karen Young 2. Are you aware that your procedure for Valencia Conference, that [email protected] estimation based on model ``Although I was impressed estimates from that paper by the overall quality of Dennis needs no introduction is now called ``Iterated the papers and the - without him Bayesian statistics Conditional Modes'' and I substantial advances made, would not be where it is today. recently saw a paper which many participants did not compared its results with seem to me fully to 1. Dennis, you have been appreciate the Bayesian interviewed before by Gibbs sampling? Have you any comments on this? philosophy.'' Could you Adrian Smith (Statistical amplify a bit the sort of Science, 10, 305-319) and The idea of using the modes concerns you had? we don't want to cover the in place of the means was same ground again. One Adrian’s and I can recall him What the people at Valencia thing which I wanted to ask coming into my room one day did not realise is that Probability you about your influential with this simple and effective is the only sensible description 1972 RSS paper with Adrian. observation. I had not heard of of uncertainty. Almost Can you tell us a bit about “iterated conditional modes” everything we talk about has an its genesis? but would have expected them element of uncertainty about it to be unnecessary these days and therefore needs probability. My memory about the past is I have just begun to read not always reliable but I believe when the whole distribution can often be calculated by MCMC. Sprott’s recent book. He does the following description about not understand this for he my paper with Adrian is correct. 3. I suggested that your admits that the value of a I was enormously impressed by 1972 paper is highly parameter is uncertain and yet Stein’s proof that the sample influential and I think will not admit that it has a mean was not an admissible that it should be on the probability distribution. My estimate of the population mean reading list of any favourite example concerns of a normal distribution in research student. Can you multiple comparisons. Suppose dimensions 3 or more. suggest some other papers that we have several means that (Incidentally, this result is still which you would put on that we wish to compare. Then we ignored by many statisticians list? are uncertain of them and today. Reflect, it means that Savage did produce a reading therefore have a probability least squares estimates are list for a research student. It distribution for them. From this similarly inadmissible.) Part of appeared in American we can calculate any margin of the reason for my reaction to Statistician, 24, 23-27 (1970).
Recommended publications
  • Reminiscences of a Statistician Reminiscences of a Statistician the Company I Kept
    Reminiscences of a Statistician Reminiscences of a Statistician The Company I Kept E.L. Lehmann E.L. Lehmann University of California, Berkeley, CA 94704-2864 USA ISBN-13: 978-0-387-71596-4 e-ISBN-13: 978-0-387-71597-1 Library of Congress Control Number: 2007924716 © 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper. 987654321 springer.com To our grandchildren Joanna, Emily, Paul Jacob and Celia Gabe and Tavi and great-granddaughter Audrey Preface It has been my good fortune to meet and get to know many remarkable people, mostly statisticians and mathematicians, and to derive much pleasure and benefit from these contacts. They were teachers, colleagues and students, and the following pages sketch their careers and our interactions. Also included are a few persons with whom I had little or no direct contact but whose ideas had a decisive influence on my work.
    [Show full text]
  • Strength in Numbers: the Rising of Academic Statistics Departments In
    Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • September 2010
    THE ISBA BULLETIN Vol. 17 No. 3 September 2010 The official bulletin of the International Society for Bayesian Analysis AMESSAGE FROM THE membership renewal (there will be special provi- PRESIDENT sions for members who hold multi-year member- ships). Peter Muller¨ The Bayesian Nonparametrics Section (IS- ISBA President, 2010 BA/BNP) is already up and running, and plan- [email protected] ning the 2011 BNP workshop. Please see the News from the World section in this Bulletin First some sad news. In August we lost two and our homepage (select “business” and “mee- big Bayesians. Julian Besag passed away on Au- tings”). gust 6, and Arnold Zellner passed away on Au- gust 11. Arnold was one of the founding ISBA ISBA/SBSS Educational Initiative. Jointly presidents and was instrumental to get Bayesian with ASA/SBSS (American Statistical Associa- started. Obituaries on this issue of the Analysis tion, Section on Bayesian Statistical Science) we Bulletin and on our homepage acknowledge Juli- launched a new joint educational initiative. The an and Arnold’s pathbreaking contributions and initiative formalized a long standing history of their impact on the lives of many people in our collaboration of ISBA and ASA/SBSS in related research community. They will be missed dearly! matters. Continued on page 2. ISBA Elections 2010. Please check out the elec- tion statements of the candidates for the upco- In this issue ming ISBA elections. We have an amazing slate ‰ A MESSAGE FROM THE BA EDITOR of candidates. Thanks to the nominating commit- *Page 2 tee, Mike West (chair), Renato Martins Assuncao,˜ Jennifer Hill, Beatrix Jones, Jaeyong Lee, Yasuhi- ‰ 2010 ISBA ELECTION *Page 3 ro Omori and Gareth Robert! ‰ SAVAGE AWARD AND MITCHELL PRIZE 2010 *Page 8 Sections.
    [Show full text]
  • IMS Bulletin 39(4)
    Volume 39 • Issue 4 IMS1935–2010 Bulletin May 2010 Meet the 2010 candidates Contents 1 IMS Elections 2–3 Members’ News: new ISI members; Adrian Raftery; It’s time for the 2010 IMS elections, and Richard Smith; we introduce this year’s nominees who are IMS Collections vol 5 standing for IMS President-Elect and for IMS Council. You can read all the candi- 4 IMS Election candidates dates’ statements, starting on page 4. 9 Amendments to This year there are also amendments Constitution and Bylaws to the Constitution and Bylaws to vote Letter to the Editor 11 on: they are listed The candidate for IMS President-Elect is Medallion Preview: Laurens on page 9. 13 Ruth Williams de Haan Voting is open until June 26, so 14 COPSS Fisher lecture: Bruce https://secure.imstat.org/secure/vote2010/vote2010.asp Lindsay please visit to cast your vote! 15 Rick’s Ramblings: March Madness 16 Terence’s Stuff: And ANOVA thing 17 IMS meetings 27 Other meetings 30 Employment Opportunities 31 International Calendar of Statistical Events The ten Council candidates, clockwise from top left, are: 35 Information for Advertisers Krzysztof Burdzy, Francisco Cribari-Neto, Arnoldo Frigessi, Peter Kim, Steve Lalley, Neal Madras, Gennady Samorodnitsky, Ingrid Van Keilegom, Yazhen Wang and Wing H Wong Abstract submission deadline extended to April 30 IMS Bulletin 2 . IMs Bulletin Volume 39 . Issue 4 Volume 39 • Issue 4 May 2010 IMS members’ news ISSN 1544-1881 International Statistical Institute elects new members Contact information Among the 54 new elected ISI members are several IMS members. We congratulate IMS IMS Bulletin Editor: Xuming He Fellow Jon Wellner, and IMS members: Subhabrata Chakraborti, USA; Liliana Forzani, Assistant Editor: Tati Howell Argentina; Ronald D.
    [Show full text]
  • Significance Redux
    The Journal of Socio-Economics 33 (2004) 665–675 Significance redux Stephen T. Ziliaka,∗, Deirdre N. McCloskeyb,1 a School of Policy Studies, College of Arts and Sciences, Roosevelt University, Chicago, 430 S. Michigan Avenue, Chicago, IL 60605, USA b College of Arts and Science (m/c 198), University of Illinois at Chicago, 601 South Morgan, Chicago, IL 60607-7104, USA Abstract Leading theorists and econometricians agree with our two main points: first, that economic sig- nificance usually has nothing to do with statistical significance and, second, that a supermajority of economists do not explore economic significance in their research. The agreement from Arrow to Zellner on the two main points should by itself change research practice. This paper replies to our critics, showing again that economic significance is what science and citizens want and need. © 2004 Elsevier Inc. All rights reserved. JEL CODES: C12; C10; B23; A20 Keywords: Hypothesis testing; Statistical significance; Economic significance Science depends on entrepreneurship, and we thank Morris Altman for his. The sympo- sium he has sparked can be important for the future of economics, in showing that the best economists and econometricians seek, after all, economic significance. Kenneth Arrow as early as 1959 dismissed mechanical tests of statistical significance in his search for eco- nomic significance. It took courage: Arrow’s teacher, the amazing Harold Hotelling, had been one of Fisher’s sharpest disciples. Now Arrow is joined by Clive Granger, Graham ∗ Corresponding author. E-mail addresses: [email protected] (S.T. Ziliak), [email protected] (D.N. McCloskey). 1 For comments early and late we thank Ted Anderson, Danny Boston, Robert Chirinko, Ronald Coase, Stephen Cullenberg, Marc Gaudry, John Harvey, David Hendry, Stefan Hersh, Robert Higgs, Jack Hirshleifer, Daniel Klein, June Lapidus, David Ruccio, Jeff Simonoff, Gary Solon, John Smutniak, Diana Strassman, Andrew Trigg, and Jim Ziliak.
    [Show full text]
  • Generalized Learning and Conditional Expectation
    Generalized Learning and Conditional Expectation Simon M. Huttegger Michael Nielsen Abstract Reflection and martingale principles are central to models of rational learning. They can be justified in a variety of ways. In what follows we study martingale and reflection principles in the context of measure theory. We give special attention to two approaches for justifying these principles that have not been studied in that context before: diachronic coherence and the value of information. Together with an extant argument based on expected accuracy, these arguments lend support to the thesis that reflection and martingale principles govern rational learning. 1 Introduction Richard Jeffrey’s epistemological program known as radical probabilism (Jeffrey, 1992) tries to reconcile two goals: it aims at being both mathematically precise and flexible regarding representations of opinions and opinion change. Jeffrey conditioning (also known as probability kinematics) is a prime example (Jeffrey, 1957, 1965, 1968). Being less rigid than standard Bayesian conditioning, it nonetheless captures a common type of uncertain observational learning within the framework of probability theory. Learning from experience is not, however, restricted to Bayesian and Jeffrey condition- ing. In the most extreme case the learning event is a black box: we only know an agent's opinions before and after the learning experience. Despite the lack of structure, there is a family of principles|known as reflection and martingale principles|that are plausible candidates for regulating how to respond to new information in generalized learning sit- uations. The principles say, roughly speaking, that current opinions should cohere with anticipated future opinions. How can such principles be justified? There are three paradigms (Huttegger, 2017).
    [Show full text]
  • STATISTICAL SCIENCE Volume 36, Number 3 August 2021
    STATISTICAL SCIENCE Volume 36, Number 3 August 2021 Khinchin’s 1929 Paper on Von Mises’ Frequency Theory of Probability . Lukas M. Verburgt 339 A Problem in Forensic Science Highlighting the Differences between the Bayes Factor and LikelihoodRatio...........................Danica M. Ommen and Christopher P. Saunders 344 A Horse Race between the Block Maxima Method and the Peak–over–Threshold Approach ..................................................................Axel Bücher and Chen Zhou 360 A Hybrid Scan Gibbs Sampler for Bayesian Models with Latent Variables ..........................Grant Backlund, James P. Hobert, Yeun Ji Jung and Kshitij Khare 379 Maximum Likelihood Multiple Imputation: Faster Imputations and Consistent Standard ErrorsWithoutPosteriorDraws...............Paul T. von Hippel and Jonathan W. Bartlett 400 RandomMatrixTheoryandItsApplications.............................Alan Julian Izenman 421 The GENIUS Approach to Robust Mendelian Randomization Inference .....................................Eric Tchetgen Tchetgen, BaoLuo Sun and Stefan Walter 443 AGeneralFrameworkfortheAnalysisofAdaptiveExperiments............Ian C. Marschner 465 Statistical Science [ISSN 0883-4237 (print); ISSN 2168-8745 (online)], Volume 36, Number 3, August 2021. Published quarterly by the Institute of Mathematical Statistics, 9760 Smith Road, Waite Hill, Ohio 44094, USA. Periodicals postage paid at Cleveland, Ohio and at additional mailing offices. POSTMASTER: Send address changes to Statistical Science, Institute of Mathematical Statistics, Dues and Subscriptions Office, PO Box 729, Middletown, Maryland 21769, USA. Copyright © 2021 by the Institute of Mathematical Statistics Printed in the United States of America Statistical Science Volume 36, Number 3 (339–492) August 2021 Volume 36 Number 3 August 2021 Khinchin’s 1929 Paper on Von Mises’ Frequency Theory of Probability Lukas M. Verburgt A Problem in Forensic Science Highlighting the Differences between the Bayes Factor and Likelihood Ratio Danica M.
    [Show full text]
  • A Matching Based Theoretical Framework for Estimating Probability of Causation
    A Matching Based Theoretical Framework for Estimating Probability of Causation Tapajit Dey and Audris Mockus Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Abstract The concept of Probability of Causation (PC) is critically important in legal contexts and can help in many other domains. While it has been around since 1986, current operationalizations can obtain only the minimum and maximum values of PC, and do not apply for purely observational data. We present a theoretical framework to estimate the distribution of PC from experimental and from purely observational data. We illustrate additional problems of the existing operationalizations and show how our method can be used to address them. We also provide two illustrative examples of how our method is used and how factors like sample size or rarity of events can influence the distribution of PC. We hope this will make the concept of PC more widely usable in practice. Keywords: Probability of Causation, Causality, Cause of Effect, Matching 1. Introduction Our understanding of the world comes from our knowledge about the cause-effect relationship between various events. However, in most of the real world scenarios, one event is caused by multiple other events, having arXiv:1808.04139v1 [stat.ME] 13 Aug 2018 varied degrees of influence over the first event. There are two major concepts associated with such relationships: Cause of Effect (CoE) and Effect of Cause (EoC) [1, 2]. EoC focuses on the question that if event X is the cause/one of the causes of event Y, then what is the probability of event Y given event Email address: [email protected], [email protected] (Tapajit Dey and Audris Mockus) Preprint submitted to arXiv July 2, 2019 X is observed? CoE, on the other hand, tries to answer the question that if event X is known to be (one of) the cause(s) of event Y, then given we have observed both events X and Y, what is the probability that event X was in fact the cause of event Y? In this paper, we focus on the CoE scenario.
    [Show full text]
  • CATS 10Th Anniversary Brochure
    CELEBRATING 10OF INNOVATIVE YEARS RESEARCH 2000-2010 CONTENTS I. Foreword 2 II. The Centre for the Analysis of Time Series: Evolving over time… 3 III. CATS projects past and present 8 IV. CATS members past and present 11 V. Further information 24 1 1. FOREWORD We are proud of the achievements of CATS and hope that this ‘anniversary issue’ conveys something of the excitement of working in and with CATS over the last few years. Perhaps the most remarkable of these achievements has been the establishment of a strong international profile in the area of climate change which many comparable institutions would be proud of. This has been an era of policy making in addition to the science, at a national and international governmental level and in the private sector, such as insurance. It has been a period where the ‘truth’ has been at a premium. CATS is, we hope, known for its frank and honest approach and with Professor Leonard Smith at the helm has steered a careful course. CATS has come of age and this has been both acknowledged and reinforced in particular with its involvement in the Munich Re programme, the ESRC Centre for Climate Change Economics and Policy, and its seat in the Grantham Research Institute for Climate Change and the Environment. Behind and leading up to these has been strong research output with a firm mathematical basis in non-linear time series, simulation and statistical modeling, all fed by good science and a rich portfolio of research grants. Conducting high level scientific research in areas with, at times, a global decision support imperative requires the right mix of vision, pragmatism and even nerve.
    [Show full text]
  • Tea: a High-Level Language and Runtime System for Automating
    Tea: A High-level Language and Runtime System for Automating Statistical Analysis Eunice Jun1, Maureen Daum1, Jared Roesch1, Sarah Chasins2, Emery Berger34, Rene Just1, Katharina Reinecke1 1University of Washington, 2University of California, 3University of Seattle, WA Berkeley, CA Massachusetts Amherst, femjun, mdaum, jroesch, [email protected] 4Microsoft Research, rjust, [email protected] Redmond, WA [email protected] ABSTRACT Since the development of modern statistical methods (e.g., Though statistical analyses are centered on research questions Student’s t-test, ANOVA, etc.), statisticians have acknowl- and hypotheses, current statistical analysis tools are not. Users edged the difficulty of identifying which statistical tests people must first translate their hypotheses into specific statistical should use to answer their specific research questions. Almost tests and then perform API calls with functions and parame- a century later, choosing appropriate statistical tests for eval- ters. To do so accurately requires that users have statistical uating a hypothesis remains a challenge. As a consequence, expertise. To lower this barrier to valid, replicable statistical errors in statistical analyses are common [26], especially given analysis, we introduce Tea, a high-level declarative language that data analysis has become a common task for people with and runtime system. In Tea, users express their study de- little to no statistical expertise. sign, any parametric assumptions, and their hypotheses. Tea A wide variety of tools (such as SPSS [55], SAS [54], and compiles these high-level specifications into a constraint satis- JMP [52]), programming languages (e.g., R [53]), and libraries faction problem that determines the set of valid statistical tests (including numpy [40], scipy [23], and statsmodels [45]), en- and then executes them to test the hypothesis.
    [Show full text]
  • Statistical Inference: Paradigms and Controversies in Historic Perspective
    Jostein Lillestøl, NHH 2014 Statistical inference: Paradigms and controversies in historic perspective 1. Five paradigms We will cover the following five lines of thought: 1. Early Bayesian inference and its revival Inverse probability – Non-informative priors – “Objective” Bayes (1763), Laplace (1774), Jeffreys (1931), Bernardo (1975) 2. Fisherian inference Evidence oriented – Likelihood – Fisher information - Necessity Fisher (1921 and later) 3. Neyman- Pearson inference Action oriented – Frequentist/Sample space – Objective Neyman (1933, 1937), Pearson (1933), Wald (1939), Lehmann (1950 and later) 4. Neo - Bayesian inference Coherent decisions - Subjective/personal De Finetti (1937), Savage (1951), Lindley (1953) 5. Likelihood inference Evidence based – likelihood profiles – likelihood ratios Barnard (1949), Birnbaum (1962), Edwards (1972) Classical inference as it has been practiced since the 1950’s is really none of these in its pure form. It is more like a pragmatic mix of 2 and 3, in particular with respect to testing of significance, pretending to be both action and evidence oriented, which is hard to fulfill in a consistent manner. To keep our minds on track we do not single out this as a separate paradigm, but will discuss this at the end. A main concern through the history of statistical inference has been to establish a sound scientific framework for the analysis of sampled data. Concepts were initially often vague and disputed, but even after their clarification, various schools of thought have at times been in strong opposition to each other. When we try to describe the approaches here, we will use the notions of today. All five paradigms of statistical inference are based on modeling the observed data x given some parameter or “state of the world” , which essentially corresponds to stating the conditional distribution f(x|(or making some assumptions about it).
    [Show full text]
  • ALEXANDER PHILIP DAWID Emeritus Professor of Statistics University of Cambridge E-Mail: [email protected] Web
    ALEXANDER PHILIP DAWID Emeritus Professor of Statistics University of Cambridge E-mail: [email protected] Web: http://www.statslab.cam.ac.uk/∼apd EDUCATION 1967{69 University of London (Imperial College; University College) 1963{67 Cambridge University (Trinity Hall; Darwin College) 1956{63 City of London School QUALIFICATIONS 1982 ScD (Cantab.) 1970 MA (Cantab.) 1967 Diploma in Mathematical Statistics (Cantab.: Distinction) 1966 BA (Cantab.): Mathematics (Second Class Honours) 1963 A-levels: Mathematics and Advanced Mathematics (Double Distinction), Physics (Distinction) State Scholarship HONOURS AND AWARDS 2018 Fellow of the Royal Society 2016 Fellow of the International Society for Bayesian Analysis 2015 Honorary Lifetime Member, International Society for Bayesian Analysis 2013 Network Scholar of The MacArthur Foundation Research Network on Law and Neuroscience 2002 DeGroot Prize for a Published Book in Statistical Science 2001 Royal Statistical Society: Guy Medal in Silver 1978 Royal Statistical Society: Guy Medal in Bronze 1977 G. W. Snedecor Award for Best Publication in Biometry EMPLOYMENT ETC. 2013{ Emeritus Professor of Statistics, Cambridge University 2013{ Emeritus Fellow, Darwin College Cambridge 2007{13 Professor of Statistics and Director of the Cambridge Statistics Initiative, Cambridge University 2011{13 Director of Studies in Mathematics, Darwin College Cambridge 2007{13 Professorial Fellow, Darwin College Cambridge 1989{2007 Pearson Professor of Statistics, University College London 1983{93 Head, Department of Statistical Science, University College London 1982{89 Professor of Probability and Statistics, University College London 1981{82 Reader in Probability and Statistics, University College London 1978{81 Professor of Statistics, Head of Statistics Section, and Director of the Statistical Laboratory, Department of Mathematics, The City University, London 1969{78 Lecturer in Statistics, University College London VISITING POSITIONS ETC.
    [Show full text]