Managing Bacterial Wilt, Caused by Erwinia Tracheiphila, on Muskmelon with Early Control of Striped Cucumber Beetle

Total Page:16

File Type:pdf, Size:1020Kb

Managing Bacterial Wilt, Caused by Erwinia Tracheiphila, on Muskmelon with Early Control of Striped Cucumber Beetle Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 12-2016 Managing bacterial wilt, caused by Erwinia tracheiphila, on muskmelon with early control of striped cucumber beetle ( Acalymma vittatum (F)), and through varietal selection Ahmad Shah Mohammadi Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Agriculture Commons, and the Horticulture Commons Recommended Citation Mohammadi, Ahmad Shah, "Managing bacterial wilt, caused by Erwinia tracheiphila, on muskmelon with early control of striped cucumber beetle ( Acalymma vittatum (F)), and through varietal selection" (2016). Open Access Dissertations. 976. https://docs.lib.purdue.edu/open_access_dissertations/976 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Ahmad Shah Mohammadi Entitled Managing Bacterial Wilt, Caused by Erwinia tracheiphila, on Muskmelon With Early Control of Striped Cucumber Beetle (Acalymma vittatum (F)), and Through Varietal Selection. For the degree of Doctor of Philosophy Is approved by the final examining committee: Dr. Ricky E. Foster Dr. Peter M. Hirst Co-chair Dr. Elizabeth T. Maynard Co-chair Dr. Kevin T. Mc Namara Dr. Daniel S. Egel To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Approved by Major Professor(s): Elizabeth T. Maynard Approved by: Hazel Y. Wetzstein 11/29/2016 Head of the Departmental Graduate Program Date i MANAGING BACTERIAL WILT, CAUSED BY Erwinia tracheiphila, ON MUSKMELON WITH EARLY CONTROL OF STRIPED CUCUMBER BEETLE (Acalymma vittatum (F)), AND THROUGH VARIETAL SELECTION A Thesis Submitted to the Faculty of Purdue University by Ahmad Shah Mohammadi In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2016 Purdue University West Lafayette, Indiana ii Dedicated to my loving parents, brothers, sisters especially to my warm-hearted wife and children, who have supported and cheered me throughout the process. I have been very blessed and grateful for their support, encouragement and fortitude at entire of my life. iii ACKNOWLEDGEMENTS This endeavor is the result of more than four years of hard work whereby I am highly indebted to many people who directly and indirectly helped me for its successful completion. First of all, I find no words and I cannot acknowledge in words to express my deepest heartfelt thanks to my beloved parents, brothers and sisters, and especially my adorable wife and children for their patience, sacrifice, kindness, confidence to be without me for many years, and constant companionship, encouragement, support and help rendered throughout of my life and education period. Also, I wish to express my deep sense of gratitude and indebtedness to my co- advisors Dr. Ricky E. Foster Professor, Department of Entomology, and Dr. Elizabeth T. Maynard Assistant Professor, Department of Horticulture and Landscape Architecture, and my committee member Dr. Daniel Egel, Associate Professor, Department of Botany and Plant Pathology Purdue University, West Lafayette Indiana. Certainly without their valuable advice this mission would not have been accomplished. I owe my heartfelt thanks for their delightful guidance and intangible efforts for providing me with the atmosphere and facilities that I needed for completing this work successfully. I use this opportunity to express my profound sense of respect and gratitude to the members of my advisory committee, Dr. Kevin T. McNamara Professor, Department of Agricultural Economic and Assistant Director of International Programs in Agriculture (IPIA) for his valuable accompaniment, inspiration, support, assistance, cooperation and arranging this amazing education and capacity building program for junior and senior Afghan Agriculture Faculties Staff. As a representative member of Agriculture Faculty Herat University in this program, I would like to express my warmest thanks and acknowledge his hard work and treasured program. Also, I convey my respect and iv gratefulness to my advisory committee Dr. Peter Hirst Professor, Department of Horticulture and Landscape Architecture, for his edifying counsels and advices during the course of investigation. I would like to convey my thanks to the USAID for funding, Ministry of Higher Education, especially Agriculture Faculty Herat University, Afghanistan for their supports and cooperation. I also express my sincere thanks to all my respected professors and staff of Departments of Horticulture and Landscape Architecture, Entomology and International office (SAAF, A4 and IPIA), Purdue University for their cooperation and help which added to the success of this work. Friendship is the most important ingredient in the recipe of life and it adds more flavor when that is from different states with different language and culture. I am fortunate to have found a myriad of friends here and other places. I am thankful for the emotional support from my all friends, who encouraged and helped me in each and every step of my graduation. v TABLE OF CONTENTS Page LIST OF TABLES ........................................................................................................... viii LIST OF FIGURES .......................................................................................................... xv ABSTRACT ................................................................................................................... xviii INTRODUCTION AND LITERATURE REVIEW ................................. 1 Introduction ............................................................................................................... 1 1.2. Literature Review.................................................................................................... 4 1.2.1. Muskmelon ........................................................................................................ 4 1.2.1.1. Muskmelon Origin and Production .............................................................. 4 1.2.1.2. Muskmelon Nutritional Value ................................................................... 6 1.2.1.3. Muskmelon Characteristics ....................................................................... 6 1.2.1.4. Production with Drip Irrigation and Plastic Mulch .................................. 9 1.2.1.5. Harvesting and storage ............................................................................... 11 1.2.2. Striped Cucumber Beetle (SCB) (Acalymma vittata (F.)) .................................. 12 1.2.2.1. Striped Cucumber Beetle (SCB) ................................................................ 12 1.2.2.2. Striped Cucumber Beetle Biology ............................................................. 13 1.2.2.3. Striped Cucumber Beetle Life History....................................................... 13 1.2.3. Bacterial Wilt ...................................................................................................... 14 1.2.3.1. Bacterial Wilt Life Cycle ........................................................................... 14 1.2.3.2. Disease Symptoms ..................................................................................... 16 1.2.3.3. Bacterial Wilt Management ....................................................................... 17 1.2.3.4. Row Covers ................................................................................................ 17 1.2.3.5. Biological Control and Trap Crops ............................................................ 18 1.2.3.6. Insecticides ................................................................................................. 19 EXPERIMENTS 2013 AND 2014 ......................................................... 22 vi Page 2.1. Introduction ................................................................................................................ 22 2.2. Material and Methods ................................................................................................ 24 2.2.1. Experiment 1 (TPAC 1) ................................................................................... 24 2.2.2. Experiment 2 (TPAC 2) .............................................................................. 25 2.2.3. Experiment 3 (SWPAC) .............................................................................. 26 2.3. Data Components .................................................................................................. 28 2.3.1. Striped Cucumber Beetle Sampling ............................................................ 28 2.3.2. Bacterial Wilt Severity ................................................................................ 28 2.3.3. Plant Vigor .................................................................................................. 29 2.3.4 Number of Marketable Fruits and Total Yield Record ..................................... 29 2.4. Results and Discussion ......................................................................................... 33 2.4.1 Results..............................................................................................................
Recommended publications
  • Bacterial Wilt of Cucurbits José Pablo Soto-Arias*, UW-Madison Plant Pathology
    XHT1229 Provided to you by: Bacterial Wilt of Cucurbits José Pablo Soto-Arias*, UW-Madison Plant Pathology What is bacterial wilt? Bacterial wilt is a common and destructive disease that affects cucurbits (i.e., plants in the cucumber family), including economically important crops such as melon (Cucumis melo), cucumber (Cucumis sativus) and, to a lesser extent, squash and pumpkin (Cucurbita spp.). This disease is distributed throughout the United States; and can be found anywhere that cucurbits are grown. What does bacterial wilt look Garden Facts Garden like? The most distinctive symptom exhibited by a plant with bacterial wilt is wilting and ultimately death. These symptoms are a consequence of the blockage of water movement inside of the plant. Symptoms appear first on leaves of a single vine (runner). Leaves may develop chlorotic (i.e. yellow) and necrotic (i.e. dead) areas as the disease progresses. Symptoms typically develop Sudden wilting and eventual death of melon, rapidly along individual runners and cucumber and squash plants can be due to eventually the plant’s crown is affected, bacterial wilt. (Photo courtesy of ISU-PIDC.) resulting in the entire plant dying. To determine if a symptomatic plant has bacterial wilt, cut a wilted vine near the base of the plant. Next cut a section from this vine and look for sticky threads to form between the two vine sections as you slowly pull them apart. The presence of these sticky threads is diagnostic. This technique works best for cucumbers and melon, but less well for squash and pumpkins. Where does bacterial wilt come from? Bacterial wilt of cucurbits is caused by the bacterium Erwinia tracheiphila.
    [Show full text]
  • Diabrotica Speciosa Primary Pest of Soybean Arthropods Cucurbit Beetle Beetle
    Diabrotica speciosa Primary Pest of Soybean Arthropods Cucurbit beetle Beetle Diabrotica speciosa Scientific name Diabrotica speciosa Germar Synonyms: Diabrotica amabilis, Diabrotica hexaspilota, Diabrotica simoni, Diabrotica simulans, Diabrotica vigens, and Galeruca speciosa Common names Cucurbit beetle, chrysanthemum beetle, San Antonio beetle, and South American corn rootworm Type of pest Beetle Taxonomic position Class: Insecta, Order: Coleoptera, Family: Chrysomelidae Reason for Inclusion in Manual CAPS Target: AHP Prioritized Pest List - 2010 Pest Description Diabrotica speciosa was first described by Germar in 1824, as Galeruca speciosa. Two subspecies have been described, D. speciosa vigens (Bolivia, Peru and Ecuador), and D. speciosa amabilis (Bolivia, Colombia, Venezuela and Panama). These two subspecies differ mainly in the coloring of the head and elytra (Araujo Marques, 1941; Bechyne and Bechyne, 1962). Eggs: Eggs are ovoid, about 0.74 x 0.36 mm, clear white to pale yellow. They exhibit fine reticulation that under the microscope appears like a pattern of polygonal ridges that enclose a variable number of pits (12 to 30) (Krysan, 1986). Eggs are laid in the soil near the base of a host plant in clusters, lightly agglutinated by a colorless secretion. The mandibles and anal plate of the developing larvae can be seen in mature eggs. Larvae: Defago (1991) published a detailed description of the third instar of D. speciosa. First instars are about 1.2 mm long, and mature third instars are about 8.5 mm long. They are subcylindrical; chalky white; head capsule dirty yellow to light brown, epicraneal and frontal sutures lighter, with long light-brown setae; mandibles reddish dark brown; antennae and palpi pale yellow.
    [Show full text]
  • LD5655.V855 1997.W355.Pdf (2.586Mb)
    Plant Diversity and its Effects on Populations of Cucumber Beetles and Their Natural Enemies in a Cucurbit Agroecosystem by Jason Walker Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN HORTICULTURE APPROVED: ofl, 4 Lalla, 5 (John S. Caldwell (chair) Inhul x. UM 1 Sows Wl Robert H. Johes Ronald D. Morse January 9, 1997 Blacksburg, Virginia Keywords: Community ecology, cucumbers, Pennsylvania leatherwing, Diptera, lady beetles, wild violet, clover, goldenrod Ross VRS Va? oa PLANT DIVERSITY AND ITS EFFECTS ON POPULATIONS OF CUCUMBER BEETLES AND THEIR NATURAL ENEMIES IN A CUCURBIT AGROECOSYSTEM by Jason Walker John Caldwell, Chairman Horticulture (Abstract) Populations of striped cucumber beetles (Acalymma vittatum Fabr.), spotted cucumber beetles (Diabrotica undecimpunctata howardi Barber), western cucumber beetles (Acalymma trivittatum Mann.), Pennsylvania leatherwings (Chauliognathus pennsylvanicus DeGeer), Diptera (Order: Diptera), lady beetles (Order: Coleoptera, Family: Coccinellidae), hymenoptera (Order: Hymenoptera), and spiders (Order: Araneae) in a cucumber field and a bordering field of uncultivated vegetation were assessed using yellow sticky traps to determine: 1) the relative abundances of target insects across the uncultivated vegetation and the crop field, 2) relationships between target insects and plant species. In both years populations striped and spotted cucumber beetles and Pennsylvania leatherwings (only in 1995) increased Significantly and Diptera decreased significantly in the direction of the crop. The strength of these relationships increased over the season to a peak in August in 1995 and July in 1996 and then decreased in September in both years. There were significant correlations between Diptera and sweet-vernal grass in 1995.
    [Show full text]
  • Transcriptome Sequencing of the Striped Cucumber Beetle, Acalymma Vittatum (F.), Reveals Numerous Sex-Specific Transcripts and Xenobiotic Detoxification Genes
    Article Transcriptome Sequencing of the Striped Cucumber Beetle, Acalymma vittatum (F.), Reveals Numerous Sex-Specific Transcripts and Xenobiotic Detoxification Genes Michael E. Sparks 1 , David R. Nelson 2 , Ariela I. Haber 1, Donald C. Weber 1 and Robert L. Harrison 1,* 1 Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, MD 20705, USA; [email protected] (M.E.S.); [email protected] (A.I.H.); [email protected] (D.C.W.) 2 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-301-504-5249 Received: 24 September 2020; Accepted: 22 October 2020; Published: 27 October 2020 Abstract: Acalymma vittatum (F.), the striped cucumber beetle, is an important pest of cucurbit crops in the contintental United States, damaging plants through both direct feeding and vectoring of a bacterial wilt pathogen. Besides providing basic biological knowledge, biosequence data for A. vittatum would be useful towards the development of molecular biopesticides to complement existing population control methods. However, no such datasets currently exist. In this study, three biological replicates apiece of male and female adult insects were sequenced and assembled into a set of 630,139 transcripts (of which 232,899 exhibited hits to one or more sequences in NCBI NR). Quantitative analyses identified 2898 genes differentially expressed across the male–female divide, and qualitative analyses characterized the insect’s resistome, comprising the glutathione S-transferase, carboxylesterase, and cytochrome P450 monooxygenase families of xenobiotic detoxification genes. In summary, these data provide useful insights into genes associated with sex differentiation and this beetle’s innate genetic capacity to develop resistance to synthetic pesticides; furthermore, these genes may serve as useful targets for potential use in molecular-based biocontrol technologies.
    [Show full text]
  • Abstracts For
    ABSTRACTS FOR 92nd ANNUAL MEETING PACFIC BRANCH, ENTOMOLOGICAL SOCIETY OF AMERICA March 30 – April 2, 2008 Embassy Suites Napa Valley Napa, California, USA 1. IMPROVED MANAGEMENT OF CUCUMBER BEETLES IN CALIFORNIA MELONS Andrew Pedersen1, Larry D. Godfrey1, Carolyn Pickel2 1Dept. of Entomology, University of California, Davis, Davis, CA 2University of California Cooperative Extension, 142 Garden Highway, Suite A, Yuba City, CA In recent years cucumber beetles (Chrysomelidae) have become increasingly problematic as pests of melons grown in the Sacramento and San Joaquin Valleys of California. The primary source of damage comes from feeding on the rind of the developing fruit by adults, and occasionally by larvae, which creates corky lesions and renders the fruit unmarketable, especially for export. Larval feeding on the roots may also be contributing. There are two species of cucumber beetles that are pests of California melons: Western spotted cucumber beetle (Diabrotica undecimpunctata undecimpunctata Mannerheim) and Western striped cucumber beetle (Acalymma trivittatum Mannerheim). Monitoring of both species in Sutter and Colusa Counties began mid-season in July 2007 to investigate biology, distribution, and population dynamics but has not yet produced conclusive results. A study comparing the effects of different insecticide treatments with and without a cucurbitacin-based feeding stimulant called Cidetrak® was initiated in the summer of 2007. Cidetrak did appear to reduce beetle numbers when combined with either Spinosad or low doses of Sevin XLR Plus. None of the treatments however, reduced cosmetic damage sustained to the fruit. The limited plot size may have compromised the integrity of the treatments. Future studies will utilize field cages or larger plots in order to prevent movement between treatment plots.
    [Show full text]
  • Entomología Agrícola
    ENTOMOLOGÍA AGRÍCOLA EFECTIVIDAD BIOLÓGICA DE INSECTICIDAS CONTRA NINFAS DE Diaphorina citri KUWAYAMA (HEMIPTERA: PSYLLIDAE) EN EL VALLE DEL YAQUI, SON. Juan José Pacheco-Covarrubias. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Norman E. Borlaug. Calle Dr. Norman E. Borlaug Km. 12, CP 85000, Cd. Obregón, Son. [email protected]. RESUMEN. El Psilido Asiático de los Cítricos actualmente es la principal plaga de la citricultura en el mundo por ser vector de la bacteria Candidatus liberobacter que ocasiona el Huanglongbing. Tanto adultos como ninfas de cuarto y quinto instar pueden ser vectores de esta enfermedad por lo que su control es básico para minimizar este problema. Se realizó esta investigación para conocer el comportamiento de los estados inmaduros de la plaga a varias alternativas químicas de control. El análisis de los datos de mortalidad muestra que las poblaciones de Diaphorina tratadas con: clorpirifós, dimetoato, clotianidin, dinotefurán, thiametoxan, endosulfán, imidacloprid, lambdacialotrina, zetacipermetrina, y lambdacialotrina registraron mortalidades superiores al 85%. Por otra parte, las poblaciones tratadas con: pymetrozine (pyridine azomethines) y spirotetramat (regulador de crecimiento de la síntesis de lípidos) a las dosis evaluadas no presentaron efecto tóxico por contacto o efecto fumigante sobre la población antes mencionada. Palabras Clave: psílido, Diaphorina citri, ninfas, insecticidas. ABSTRACT. The Asian Citrus Psyllid, vector of Candidatus Liberobacter, bacteria that causes Huanglongbing disease, is currently the major pest of citrus in the world. Both, adults and nymphs of fourth and fifth instar can be vectors this pathogen, and therefore their control is essential to prevent increase and spread of disease. This research was carried out to evaluate the biological response of the immature stages of the pest to several chemical alternatives.
    [Show full text]
  • Review Bacterial Blackleg Disease and R&D Gaps with a Focus on The
    Final Report Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry Project leader: Dr Len Tesoriero Delivery partner: Crop Doc Consulting Pty Ltd Project code: PT18000 Hort Innovation – Final Report Project: Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry – PT18000 Disclaimer: Horticulture Innovation Australia Limited (Hort Innovation) makes no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in this Final Report. Users of this Final Report should take independent action to confirm any information in this Final Report before relying on that information in any way. Reliance on any information provided by Hort Innovation is entirely at your own risk. Hort Innovation is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from Hort Innovation or any other person’s negligence or otherwise) from your use or non‐use of the Final Report or from reliance on information contained in the Final Report or that Hort Innovation provides to you by any other means. Funding statement: This project has been funded by Hort Innovation, using the fresh potato and processed potato research and development levy and contributions from the Australian Government. Hort Innovation is the grower‐owned, not‐ for‐profit research and development corporation for Australian horticulture. Publishing details:
    [Show full text]
  • Pest Categorisation of Pantoea Stewartii Subsp. Stewartii
    SCIENTIFIC OPINION ADOPTED: 21 June 2018 doi: 10.2903/j.efsa.2018.5356 Pest categorisation of Pantoea stewartii subsp. stewartii EFSA Panel on Plant Health (EFSA PLH Panel), Michael Jeger, Claude Bragard, Thierry Candresse, Elisavet Chatzivassiliou, Katharina Dehnen-Schmutz, Gianni Gilioli, Jean-Claude Gregoire, Josep Anton Jaques Miret, Alan MacLeod, Maria Navajas Navarro, Bjorn€ Niere, Stephen Parnell, Roel Potting, Trond Rafoss, Vittorio Rossi, Gregor Urek, Ariena Van Bruggen, Wopke Van der Werf, Jonathan West, Stephan Winter, Charles Manceau, Marco Pautasso and David Caffier Abstract Following a request from the European Commission, the EFSA Plant Health Panel performed a pest categorisation of Pantoea stewartii subsp. stewartii (hereafter P. s . subsp. stewartii). P. s . subsp. stewartii is a Gram-negative bacterium that causes Stewart’s vascular wilt and leaf blight of sweet corn and maize, a disease responsible for serious crop losses throughout the world. The bacterium is endemic to the USA and is now present in Africa, North, Central and South America, Asia and Ukraine. In the EU, it is reported from Italy with a restricted distribution and under eradication. The bacterium is regulated according to Council Directive 2000/29/EC (Annex IIAI) as a harmful organism whose introduction and spread in the EU is banned on seeds of Zea mays. Other reported potential host plants include various species of the family Poaceae, including weeds, rice (Oryza sativa), oat (Avena sativa) and common wheat (Triticum aestivum), as well as jackfruit (Artocarpus heterophyllus), the ornamental Dracaena sanderiana and the palm Bactris gasipaes, but there is uncertainty about whether these are hosts of P.
    [Show full text]
  • Cucumis Melo, Cucumis Sativus, Cucurbita Moschata, and Anthurium Spp, New Hosts of Ralstonia Solanacearum in Martinique (French West Indies)
    http://ibws.nexenservices.com Cucumis melo, Cucumis sativus, Cucurbita moschata, and Anthurium spp, New Hosts of Ralstonia solanacearum in Martinique (French West Indies) Emmanuel WICKER 1, Laurence GRASSART 2, Danielle MIAN 3, Régine CORANSON-BEAUDU 3, Denise DUFEAL 3, Caroline GUILBAUD 4 and Philippe PRIOR 4 1CIRAD-FLHOR, BP 153, 97202, Fort de France Cedex, Martinique, FWI, 2 Service de la Protection des Végétaux, BP 438, La Pointe des Sables, 97205, Fort de France Cedex, Martinique, FWI, 3 Fédération régionale de défense contre les organismes nuisibles (FREDON), BP 550 – La Pointe des Sables, 97205 Fort de France Cedex, Martinique, FWI, 4INRA, Unité de Pathologie Végétale, Domaine St Maurice, BP 94, 84140, Montfavet, France. Corresponding author : [email protected] In the French West Indies (FWI), endemic wilt. A section of the pseudo-stem showed cucumber (C. sativus, cv. Gemini), pumpkin bacterial wilt caused by lowland tropical brown-reddish discoloration within and along (Cucurbita moschata, cv. Phoenix), Anthurium strains of Ralstonia solanacearum is known to vascular elements. Bacterial wilt on cucurbit andreanum (cv. Amigo), and Cavendish be a devastating disease to major solanaceous plot began in foci. At that stage, symptoms banana (Musa acuminata) cv. Grande naine. food and cash-crops like potato, tomato, developed quite late (fruit setting) on Inoculation was by infiltrating a bacterial eggplant and pepper (Prior & Steva, 1990). cantaloupe and pumpkin. When established in suspension (107 cfu.ml-1) into the stem or Since 1999, hybrid and local anthurium the plot, bacterial wilt may destroy the entire pseudo-stem, or by pouring 10 ml of inoculum (Anthurium sp.) productions which have crop only 2-3 weeks after planting.
    [Show full text]
  • Bacterial Wilt of Cucurbits Amy D
    ® ® KFSBOPFQVLCB?O>PH>¨ FK@LIKUQBKPFLK KPQFQRQBLCDOF@RIQROB>KA>QRO>IBPLRO@BP KLTELT KLTKLT G2023 Bacterial Wilt of Cucurbits Amy D. Timmerman, Extension Educator, Plant Pathology James A. Kalisch, Extension Associate, Entomology The fruit can also show symptoms with small water- This NebGuide covers the management and pre- soaked patches forming on the surface. Eventually these vention of bacterial wilt of cucurbits, which affects patches turn into shiny spots of dead tissue. cucumber, squash, muskmelon, pumpkin, and gourds. There are other causes for runners wilting that are observed in the garden, including squash vine borers and soil-borne fun- The vascular wilt disease caused by the bacterium Erwinia gal pathogens. A characteristic symptom of bacterial wilt is the tracheiphila affects members of the cucurbit family, includ- occasional creamy-white bacterial ooze that can be observed ing cucumber, squash, muskmelon, pumpkin, and gourd. in the xylem vascular bundles of an infected stem. Watermelon, however, is resistant to this disease and certain To observe the ooze, cut the stem crosswise near the varieties of cucumber and squash show varying degrees of ground and squeeze it. When the finger is pressed firmly resistance. You can recognize the disease by the severe wilting against the cut surface, and then slowly pulled away about of individual leaves during hot, sunny days, and within a week half an inch, the bacterial ooze will string out, forming fine, or two, the entire plant wilting with no recovery. shiny threads. Symptoms Bacterial wilt symptoms characteristically begin with the wilting of individual leaves or vines (Figure 1) during the heat of the day.
    [Show full text]
  • Cucumber Beetles in Vegetable Crops 2019 Continuing Education for Pest Management Zheng Wang, Ph.D
    Cucumber Beetles in Vegetable Crops 2019 Continuing Education for Pest Management Zheng Wang, Ph.D. University of California Cooperative Extension October 22, 2019 In the next 50-55 minutes… Cucumber beetles: Identity Their damage Control/prevent practices across the country Cucumber Beetles: Identity Cucumber beetles in general: Stripped cucumber beetle Spotted cucumber beetle Banded cucumber beetle Abundant info from xxx.edu. Cucumber Beetles: Identity Common name Latin name Major distribution Susceptible vegetables Western spotted cucumber Diabrotica Rocky Mountains, Major pest for cucurbits beetle undecimpunctata Mississippi River are including all melons, undecimpunctata considered the limits of cucumber, watermelon, Spotted cucumber beetle D. Undecimpunctata their distributions. squash. (Southern corn rootworm) howardi Western spotted and Other vegetables include striped cucumber beetles beans, sweet corn, sweet Western stripped Acalymma trivittatum are commonly found in potato, etc. (mainly fed by cucumber beetle California. Western species). Eastern stripped A. vittatum cucumber beetle Banded cucumber beetle Level of severity is varied. Banded cucumber beetle Diabrotica balteata is found mainly in southern California. Cucumber Beetles: Morphology 1/5-in long, 1/10-in wide Source:Source: P. Goodell USGS and P. Phillips Cucumber Beetles: Morphology 1/4-in long, 12 black spots on elytra Source: P. Goodell and P. Phillips Cucumber Beetles: Morphology Range throughout southern U.S. from NC to southern CA Source: J. Castner, Univ. of FL Similar size to spotted cucumber beetle Prefer Legumes and Cucurbitaceae crops Cucumber Beetles: Morphology Black stripes end before reaching the abdomen tip Do not confuse striped Source: Dept. of Entomology, KSU cucumber beetle with Western corn rootworm. In the next 50-55 minutes… Cucumber beetles: Identity Their damage Control/prevent practices across the country Cucumber Beetles: Damage Cucumber beetles have a wide range of host plants.
    [Show full text]
  • 1089 Willamette Falls Drive, West Linn, OR 97068 | Tel: +1 (503) 342 - 8611 | Fax: +1 (314) 271-7297 [email protected] | |
    2019 1089 Willamette Falls Drive, West Linn, OR 97068 | tel: +1 (503) 342 - 8611 | fax: +1 (314) 271-7297 [email protected] | www.alphascents.com | Our Story The story of Alpha Scents, Inc. begins with president and founder, Dr. Darek Czokajlo. When speaking about entomolo- gy, he will laugh and say the interest began “in the womb.” Driven by his passion for science and technology, he strives for eco- nomic security, which can be largely attributed to his upbringing in communist Poland. How do you become economically stable according to Darek? By building a company that is customer focused: embracing honesty, respect, trust and support, the rest are details. When discussing what characteristics Alpha Scents, Inc. reflects, it’s clear that the vision for the company is shaped by a desire to be loyal to all stakeholders, including customers, vendors, and his employees. Since childhood, Darek was involved with biology clubs and interest groups, fueling his passion for the sciences and leading him to study forestry and entomology during his undergraduate and master’s studies. In 1985 he started studying and experimenting with insect traps, in particular bark beetle traps baited with ethanol lures. This is how Darek started honing his speciali- zation and began asking the intriguing question of, “How could we use scents to manage insects?” In 1989, right before the fall of Communism, Darek emi- grated to Canada and in 1993 started his PhD program in the field of Insect Chemical Ecology in Syracuse, New York. After his graduation in 1998, one of his professors recommended Darek to a company in Portland, Oregon.
    [Show full text]