Xamples 53 Suggested Problems/Topics for Student Research 63 References for Student Research 64 Bibliography 68 IV

Total Page:16

File Type:pdf, Size:1020Kb

Xamples 53 Suggested Problems/Topics for Student Research 63 References for Student Research 64 Bibliography 68 IV California State University, Northridge lVIATHEIV;ATICS SElVIINAR COURSE A paper submitted in partial satisfaction of the requirements for the degree of Master of Science in Mathematics by Harry James Pappas May 1972 The paper of Harry James Pappas is approved: California State University, Northridge May 1972 TABLE OF CONTENTS Page I, INTRODUCTION 1 Bibliography 15 II. THE MATHEMATICS SEMINAR 17 Bibliography 25 III. HISTORY OF MATHEMATICS 26 Behavioral Objectives 26 Preface 26 Introduction to the Topic 27 Examples 53 Suggested Problems/Topics for Student Research 63 References for Student Research 64 Bibliography 68 IV. NON-EUCLIDEAN GEOMETRY 69 Behavioral Objectives 69 Preface 69 Introduction to the Topic 81 Examples 96 Suggested Problems/Topics for Student Research 103 References for Student Research 103 Bibliography 106 v. LINEAR PROGRAMMING 108 Behavioral Objectives 108 Preface 108 Introduction to the Topic 109 Examples 114 Suggested Problems/Topics for Student Research 134 References for Student Research 135 Bibliography 137 TABLE OF CONTENTS Page VI, GAME THEORY 138 Behavioral Objectives 138 Preface 138 Introduction to the Topic 140 Examples 144 Suggested Problems/Topics for Student Research 153 References for Student Research 153 Bibliography 155 VII. THEORY OF NUMBERS 157 Behavioral Objectives 157 Preface 157 Introduction to the Topic 159 Examples 165 Suggested Problems/Topics for Student Research 176 References for Student Research 177 Bibliography 179 CHAPTER I INTRODUCTION We should provide courses that reveal mathematics as a way to understanding "almost every corner of human thought."(3, P• 46) The role of mathematics in modern society is a very significant one. Mathematical methods have penetrated many other fields of knowledge, changing them in substance and power, and have actually brought new disciplines into being. Mathematics has become an indispensable tool in economics, sociology, biology, linguistics, etc. New mathematics- based fields have been created, such as computer science, information theory, and cybernetics. Today any domain that desires rational thinking is more and more in debt to mathematics. Within mathematics itself has come a great revolution since the turn of the century; its foundations have been reappraised and unifying mathematical disciplines have been created, making possible a better view of classical mathe­ matics and opening new areas and methods of research and application. Until 1930, mathematics applications were restricted to small areas accessible only to a very limited number of people. Now mathematics has become an important "social factor," making the planning of a good mathematics 2 curriculum an educational challenge and responsibility of the highest order.(l6 ) Although there has been much difference of opinion among secondary mathematics teachers as to just how curri­ culum should be changed, there seems to be general agreement that changes were necessary--thus giving rise to so-called accelerated programs, such as a full year of calculus; or enrichment, within existing courses, by introducing at a simplified or intuitive level topics that will be studied in depth at a later time.(S) A current problem in high school mathematics curricula is what mathematical topics ought to be taught to seniors and advanced juniors. Woodby (1965) in a survey of emerging twelfth•grade programs, concluded that no particular program seems to be the most appropriate one at the present; however, he noted that both acceleration and enrichment were included in what he labeled "strong mathematical programs." Many writers feel that acceleration is often overemphasized; for example, Grossman (1962) argues that too often enrichment is slighted in favor of acceleration. The twelfth-grade mathematics program offers an excel­ lent opportunity for enrichment by means of seminars, mathematics laboratories, or independent study. (5) Although at present some degree of agreement has been evolved regarding the mathematics curriculum through grade eleven, various proposals are still under discussion 3 involving the twelfth-grade program: some probability theory, matrix algebra and elementary functions, calculus, computer mathematics, and number theory. The program remains undecided throughout the country, Essentially, the updating of mathematics programs involves a change in content and approach. The change in content presents a desire to impart knowledge of topics now of greater importance than formerly, such as inequalities, number fields and probability, necessitating a drop from the curriculum of such items as extensive logarithmic calculations and solid-geometry proofs. However, no longer can a student learn in school all the mathematics he might be expected to use in later life. By concentrating on any topic, certain others are omitted, and students are unprepared for possible new uses of mathematics. This, then, ties to a change in approach. By emphasiz­ ing the structure of the subject, it is desired that students become sufficiently skillful in handling mathematical systems that they will be able to learn new mathematics more easily in the future. (7) As Wagner< 20 • p. 454) so aptly stated: Since no one can predict with certainty his future profession, much less foretell which math skills will be required in the future by a given profession, it is important that math be taught that students will be able in later life to learn new mathematical skills which the future will surely demand of them. 4 Basically, in the evolving mathematics curriculum (as only one part of our changing knowledge and information explosion), the teacher functions differently to promote a different type of learning, Emphasis is shifting away from the mastery of old knowledge to techniques for developing access to new knowledge (in this process existing knowledge remains important and cannot be discarded; it is simply reorganized). Thus, the teacher functions less autocrati­ cally and instead directs student inquiry, creating an environment where learning is maximized, The teacher functions as a resource and a coordinator, retaining the decision-making role in curriculum. Much of the classroom activity is open-ended, with the teacher the operational curriculum writer or developer, initiating changes and modifying existing format where necessary,(ll) In class, the mathematics teacher is aware of teaching only a small fragment of one of the great mathematics systems, The teacher should convey this to the students. Almost every course has little mathematics significance except as it relates to the mathematics that follows and to that which has preceded, To equalize this emphasis, teachers should feel more of a responsibility for giving new meaning, new interpraation to previous work and to developing better programs for the training of mathematics scholars. 5 In selecting subject matter for a course, a good teacher of mathematics should think through these three points:(l2) 1. Selecting material so that the resulting structure gives the impression of unity and completeness and provides an adequate founda­ tion for future extensions. 2. The utilitarian aspects of mathematics that have made possible the great technological and scientific achievements should be stressed-­ this can coexist with the pure aspects of mathematics, all too often stressed to the exclusion of all else. No teacher has a better opportunity to achieve a balance between the practical and the impractical. 3. Mathematics, along with all other subjects, should accept the responsibility for providing experiences to enhance cultural breadth and appreciation. A teacher of mathematics must believe and emphasize that there is a litera­ ture of mathematics as important to man's development as the great classics. It has been clearly shown as far back as 1950 that high IQ often accompanies low creativity because of adult and peer lack of attention or sympathy toward creativity. However, this originality, lack of conformity, and a tendency to see something different and new even in widely accepted usages and procedures can and should be fostered and directed. The gifted are reluctant to accept the obvious and reach the final solution too soon; they can combine ideas that are usually considered unrelated. Repetitions, reviews and 6 routine methods of presentation bore the gifted. Their pace of learning is high; they keep seeing new things and raising new questions. In mathematics, it becomes not just a ques- tion of solving harder and harder problems for these students, but imaginative thinking--as mathematics has areas of "simplicity, ingenuity, beauty and utility, like linear programming, finite mathematics, nonmetrical geometry, and theory of games."(lB, P• 396) Teachers must cope with the phenomenon of highly creative individuality mixed with a good deal of ambiguity and absence of rigor in speculation. The content of mathematics courses taught continues to be determined largely by the basic textbook. Although most schools have reorganized their mathematics curricula to some degree since 1960,<14) this has been effected mainly by the adoption of recently copyrighted textbooks and sub­ sequent changes in course content. Student boredom with textbooks among the gifted should lead in addition to such work as, for example, the more stimulating records of the triumphs, breakthroughs, and pitfalls of the masters. "The genius of Archimedes in working with a very inconvenient numeration system, the simple but profound contributions of Euler and Gauss in the theory of
Recommended publications
  • The Ordered Distribution of Natural Numbers on the Square Root Spiral
    The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution
    [Show full text]
  • The Spiral of Theodorus and Sums of Zeta-Values at the Half-Integers
    The spiral of Theodorus and sums of zeta-values at the half-integers David Brink July 2012 Abstract. The total angular distance traversed by the spiral of Theodorus is governed by the Schneckenkonstante K introduced by Hlawka. The only published estimate of K is the bound K ≤ 0:75. We express K as a sum of Riemann zeta-values at the half-integers and compute it to 100 deci- mal places. We find similar formulas involving the Hurwitz zeta-function for the analytic Theodorus spiral and the Theodorus constant introduced by Davis. 1 Introduction Theodorus of Cyrene (ca. 460{399 B.C.) taught Plato mathematics and was himself a pupil of Protagoras. Plato's dialogue Theaetetus tells that Theodorus was distinguished in the subjects of the quadrivium and also contains the following intriguing passage on irrational square-roots, quoted here from [12]: [Theodorus] was proving to us a certain thing about square roots, I mean of three square feet and of five square feet, namely that these roots are not commensurable in length with the foot-length, and he went on in this way, taking all the separate cases up to the root of 17 square feet, at which point, for some reason, he stopped. It was discussed already in antiquity why Theodorus stopped at seventeen and what his method of proof was. There are at least four fundamentally different theories|not including the suggestion of Hardy and Wright that Theodorus simply became tired!|cf. [11, 12, 16]. One of these theories is due to the German amateur mathematician J.
    [Show full text]
  • Babylonian Astral Science in the Hellenistic World: Reception and Transmission
    CAS® e SERIES Nummer 4 / 2010 Francesca Rochberg (Berkeley) Babylonian Astral Science in the Hellenistic World: Reception and Transmission Herausgegeben von Ludwig-Maximilians-Universität München Center for Advanced Studies®, Seestr. 13, 80802 München www.cas.lmu.de/publikationen/eseries Nummer 4 / 2010 Babylonian Astral Science in the Hellenistic World: Reception and Transmission Francesca Rochberg (Berkeley) In his astrological work the Tetrabiblos, the astronomer such as in Strabo’s Geography, as well as in an astrono- Ptolemy describes the effects of geography on ethnic mical text from Oxyrhynchus in the second century of character, claiming, for example, that due to their specific our era roughly contemporary with Ptolemy [P.Oxy. geographical location „The ...Chaldeans and Orchinians 4139:8; see Jones 1999, I 97-99 and II 22-23]. This have familiarity with Leo and the sun, so that they are astronomical papyrus fragment refers to the Orchenoi, simpler, kindly, addicted to astrology.” [Tetr. 2.3] or Urukeans, in direct connection with a lunar parameter Ptolemy was correct in putting the Chaldeans and identifiable as a Babylonian period for lunar anomaly Orchinians together geographically, as the Chaldeans, or preserved on cuneiform tablets from Uruk. The Kaldayu, were once West Semitic tribal groups located Babylonian, or Chaldean, literati, including those from in the parts of southern and western Babylonia known Uruk were rightly famed for astronomy and astrology, as Kaldu, and the Orchinians, or Urukayu, were the „addicted,” as Ptolemy put it, and eventually, in Greco- inhabitants of the southern Babylonian city of Uruk. He Roman works, the term Chaldean came to be interchan- was also correct in that he was transmitting a tradition geable with „astrologer.” from the Babylonians themselves, which, according to a Hellenistic Greek writers seeking to claim an authorita- Hellenistic tablet from Uruk [VAT 7847 obv.
    [Show full text]
  • Apollonian Circle Packings: Dynamics and Number Theory
    APOLLONIAN CIRCLE PACKINGS: DYNAMICS AND NUMBER THEORY HEE OH Abstract. We give an overview of various counting problems for Apol- lonian circle packings, which turn out to be related to problems in dy- namics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi lec- tures given at RIMS, Kyoto in the fall of 2013. Contents 1. Counting problems for Apollonian circle packings 1 2. Hidden symmetries and Orbital counting problem 7 3. Counting, Mixing, and the Bowen-Margulis-Sullivan measure 9 4. Integral Apollonian circle packings 15 5. Expanders and Sieve 19 References 25 1. Counting problems for Apollonian circle packings An Apollonian circle packing is one of the most of beautiful circle packings whose construction can be described in a very simple manner based on an old theorem of Apollonius of Perga: Theorem 1.1 (Apollonius of Perga, 262-190 BC). Given 3 mutually tangent circles in the plane, there exist exactly two circles tangent to all three. Figure 1. Pictorial proof of the Apollonius theorem 1 2 HEE OH Figure 2. Possible configurations of four mutually tangent circles Proof. We give a modern proof, using the linear fractional transformations ^ of PSL2(C) on the extended complex plane C = C [ f1g, known as M¨obius transformations: a b az + b (z) = ; c d cz + d where a; b; c; d 2 C with ad − bc = 1 and z 2 C [ f1g. As is well known, a M¨obiustransformation maps circles in C^ to circles in C^, preserving angles between them.
    [Show full text]
  • Cambridge University Press 978-1-108-48147-2 — Scale, Space and Canon in Ancient Literary Culture Reviel Netz Index More Information
    Cambridge University Press 978-1-108-48147-2 — Scale, Space and Canon in Ancient Literary Culture Reviel Netz Index More Information Index Aaker, Jennifer, 110, 111 competition, 173 Abdera, 242, 310, 314, 315, 317 longevity, 179 Abel, N. H., 185 Oresteia, 197, 200, 201 Academos, 189, 323, 324, 325, 337 papyri, 15 Academy, 322, 325, 326, 329, 337, 343, 385, 391, Persians, 183 399, 404, 427, 434, 448, 476, 477–8, 512 portraits, 64 Achilles Tatius, 53, 116, 137, 551 Ptolemaic era, 39 papyri, 16, 23 Aeschylus (astronomer), 249 Acta Alexandrinorum, 87, 604 Aesop, 52, 68, 100, 116, 165 adespota, 55, 79, 81–5, 86, 88, 91, 99, 125, 192, 194, in education, 42 196, 206, 411, 413, 542, 574 papyri, 16, 23 Adkin, Neil, 782 Aethiopia, 354 Adrastus, 483 Aetia, 277 Adrastus (mathematician), 249 Africa, 266 Adrianople, 798 Agatharchides, 471 Aedesius (martyr), 734, 736 Agathocles (historian), 243 Aegae, 479, 520 Agathocles (peripatetic), 483 Aegean, 338–43 Agathon, 280 Aegina, 265 Agias (historian), 373 Aelianus (Platonist), 484 agrimensores, 675 Aelius Aristides, 133, 657, 709 Ai Khanoum, 411 papyri, 16 Akhmatova, Anna, 186 Aelius Herodian (grammarian), 713 Albertus Magnus, 407 Aelius Promotus, 583 Albinus, 484 Aenesidemus, 478–9, 519, 520 Alcaeus, 49, 59, 61–2, 70, 116, 150, 162, 214, 246, Aeolia, 479 see also Aeolian Aeolian, 246 papyri, 15, 23 Aeschines, 39, 59, 60, 64, 93, 94, 123, 161, 166, 174, portraits, 65, 67 184, 211, 213, 216, 230, 232, 331 Alcidamas, 549 commentaries, 75 papyri, 16 Ctesiphon, 21 Alcinous, 484 False Legation, 22 Alcmaeon, 310
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • Diophantus of Alexandria
    Diophantus of Alexandria Diophantus of Alexandria played a major role in the development of algebra and was a considerable influence on later number theorists. Diophantine analysis, which is closely related to algebraic geometry, has experienced a resurgence of interest in the past half century. Diophantus worked before the introduction of modern algebraic notation, but he moved from rhetorical algebra to syncopated algebra, where abbreviations are used. Prior to Diophantus’ time the steps in solving a problem were written in words and complete sentences, like a piece of prose, or a philosophical argument. Diophantus employed a symbol to represent the unknown quantity in his equations, but as he had only one symbol he could not use more than one unknown at a time. His work, while not a system of symbols, was nevertheless an important step in the right direction. François Viète, influenced by Napier, Descartes and John Wallis, introduced symbolic algebra into Europe in the 16th century when he used letters to represent both constants and variables. Claims that Diophantus lived from about 200 to 284 and spent time at Alexandria are based on detective work in finding clues to the times he flourished in his and others’ writings. Theon of Alexandria quoted Diophantus in 365 and his work was the subject of a commentary written by Theon’s daughter Hypatia at the beginning of the 5th century, which unfortunately is lost. The most details concerning Diophantus’ life are found in the Greek Anthology, compiled by Metrodorus around 500. Diophantus is often referred to as the “father of algebra,” but this is stretching things as many of his methods for solving linear and quadratic equations can be traced back to the Babylonians.
    [Show full text]
  • MATH 9 HOMEWORK ASSIGNMENT GIVEN on FEBRUARY 3, 2019. CIRCLE INVERSION Circle Inversion Circle Inversion (Or Simply Inversion) I
    MATH 9 HOMEWORK ASSIGNMENT GIVEN ON FEBRUARY 3, 2019. CIRCLE INVERSION Circle inversion Circle inversion (or simply inversion) is a geometric transformation of the plane. One can think of the inversion as of reflection with respect to a circle which is analogous to a reflection with respect to a straight line. See wikipedia article on Inversive geometry. Definition of inversion Definition. Given a circle S with the center at point O and having a radius R consider the transformation of the plane taking each point P to a point P 0 such that (i) the image P 0 belongs to a ray OP (ii) the distance jOP 0j satisfies jOP j · jOP 0j = R2. Remark. Strictly speaking the inversion is the transformation not of the whole plane but a plane without point O. The point O does not have an image. It is convenient to think of an “infinitely remote" point O0 added to a euclidian plane so that O and O0 are mapped to each other by the inversion. Basic properties of inversion We formulated and proved some basic properties of the inversion. The most important properties are that the inversion • maps circles and straight lines onto circles and straight lines • preserves angles These properties are stated as homework problems below. Try to prove them indepen- dently. In the following we denote the center of inversion as O, the circle of inversion as S and we use prime to denote the images of various objects under inversion. Classwork Problems The properties presented in problems 1-3 are almost obvious.
    [Show full text]
  • Polygonal Numbers 1
    Polygonal Numbers 1 Polygonal Numbers By Daniela Betancourt and Timothy Park Project for MA 341 Introduction to Number Theory Boston University Summer Term 2009 Instructor: Kalin Kostadinov 2 Daniela Betancourt and Timothy Park Introduction : Polygonal numbers are number representing dots that are arranged into a geometric figure. Starting from a common point and augmenting outwards, the number of dots utilized increases in successive polygons. As the size of the figure increases, the number of dots used to construct it grows in a common pattern. The most common types of polygonal numbers take the form of triangles and squares because of their basic geometry. Figure 1 illustrates examples of the first four polygonal numbers: the triangle, square, pentagon, and hexagon. Figure 1: http://www.trottermath.net/numthry/polynos.html As seen in the diagram, the geometric figures are formed by augmenting arrays of dots. The progression of the polygons is illustrated with its initial point and successive polygons grown outwards. The basis of polygonal numbers is to view all shapes and sizes of polygons as numerical values. History : The concept of polygonal numbers was first defined by the Greek mathematician Hypsicles in the year 170 BC (Heath 126). Diophantus credits Hypsicles as being the author of the polygonal numbers and is said to have came to the conclusion that the nth a-gon is calculated by 1 the formula /2*n*[2 + (n - 1)(a - 2)]. He used this formula to determine the number of elements in the nth term of a polygon with a sides. Polygonal Numbers 3 Before Hypsicles was acclaimed for defining polygonal numbers, there was evidence that previous Greek mathematicians used such figurate numbers to create their own theories.
    [Show full text]
  • A Short History of Greek Mathematics
    Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers.
    [Show full text]
  • The Adaptation of Babylonian Methods in Greek Numerical Astronomy
    FIgure 1. A Babylonian tablet (B.M. 37236) listing undated phases of Mars according to the System A scheme. By permission of the Trustees of the British Museum. This content downloaded from 128.122.149.96 on Thu, 04 Jul 2019 12:50:19 UTC All use subject to https://about.jstor.org/terms The Adaptation of Babylonian Methods in Greek Numerical Astronomy By Alexander Jones* THE DISTINCTION CUSTOMARILY MADE between the two chief astro- nomical traditions of antiquity is that Greek astronomy was geometrical, whereas Babylonian astronomy was arithmetical. That is to say, the Babylonian astronomers of the last five centuries B.C. devised elaborate combinations of arithmetical sequences to predict the apparent motions of the heavenly bodies, while the Greeks persistently tried to explain the same phenomena by hypothe- sizing kinematic models compounded out of circular motions. This description is substantially correct so far as it goes, but it conceals a great difference on the Greek side between the methods of, say, Eudoxus in the fourth century B.C. and those of Ptolemy in the second century of our era. Both tried to account for the observed behavior of the stars, sun, moon, and planets by means of combinations of circular motions. But Eudoxus seems to have studied the properties of his models purely through the resources of geometry. The only numerical parameters associated with his concentric spheres in our ancient sources are crude periods of synodic and longitudinal revolution, that is to say, data imposed on the models rather than deduced from them.1 By contrast, Ptolemy's approach in the Alma- 2 gest is thoroughly numerical.
    [Show full text]
  • Welcome to the Complete Pythagoras
    Welcome to The Complete Pythagoras A full-text, public domain edition for the generalist & specialist Edited by Patrick Rousell for the World Wide Web. I first came across Kenneth Sylvan Guthrie’s edition of the Complete Pythagoras while researching a book on Leonardo. I had been surfing these deep waters for a while and so the value of Guthrie’s publication was immediately apparent. As Guthrie explains in his own introduction, which is at the beginning of the second book (p 168), he was initially prompted to publish these writings in the 1920’s for fear that this information would become lost. As it is, much of this information has since been published in fairly good modern editions. However, these are still hard to access and there is no current complete collection as presented by Guthrie. The advantage here is that we have a fairly comprehensive collection of works on Pythagoras and the Pythagoreans, translated from the origin- al Greek into English, and presented as a unified, albeit electronic edition. The Complete Pythagoras is a compilation of two books. The first is entitled The Life Of Py- thagoras and contains the four biographies of Pythagoras that have survived from antiquity: that of Iamblichus (280-333 A.D.), Porphry (233-306 A.D.), Photius (ca 820- ca 891 A.D.) and Diogenes Laertius (180 A.D.). The second is entitled Pythagorean Library and is a complete collection of the surviving fragments from the Pythagoreans. The first book was published in 1920, the second a year later, and released together as a bound edition.
    [Show full text]