Radiation Shielding of Fusion Systems

Total Page:16

File Type:pdf, Size:1020Kb

Radiation Shielding of Fusion Systems RADIATION SHIELDING OF FUSION SYSTEMS by Andrew Davis A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Physics and Astronomy The University of Birmingham April 2010. University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This thesis discusses the development, benchmarking and applications of activation dose analysis methods for fusion devices. The development and code logic of the Mesh Coupled Rigorous 2 Step (MCR2S) system is discussed. Following the development of the code, appropriate benchmarking studies were performed on the Frascati neutron generator, and revealed that the code was able to predict shutdown gamma ray dose rates to within ±3% of experimentally determined values, for decay times between 3×105 and 107 seconds. The development of the Ion Cyclotron Resonance Heater (ICRH) with regards to neu- tronics is discussed. The ICRH went through a number of design stages and shutdown gamma ray doserates were determined for each stage. It was determined that of all the designs analysed only one of them, the first concept design for the internally matched design did not meet the shutdown dose criteria. This was due to a flaw in the system design, brought about by a lack of consideration towards nuclear design. The ITER Light Imaging Detection and Ranging (LIDAR) system was subjected to a full shutdown nuclear analysis. It was found that the design of the LIDAR system sup- plied did not meet the ITER required shutdown gamma ray doserate limit of 100 µ Sv hr−1, however use of the MCR2S system highlighted the components that contributed most to the shutdown gamma ray doserate and were shown to be the mirror holder and the laser beam pipe. Future designs should include additional shielding around the beam pipe. Authors Contribution The author of this thesis designed and wrote a computer program called MCR2S, based on the Rigorous 2 Step (R2S) method, that couples the radiation transport program MCNP to the nuclear inventory code FISPACT that facilitates high resolu- tion activation analysis. The technical aspects of this code are described in Chapter 4. Fusion appropriate benchmarking was performed to validate the code for fusion neutronics calculations in two cases, one idealised case to compare MCR2S against a different code that performs similar analysis and one case from a well defined fusion neutronics experiment. The simulations performed and results of the benchmarking studies are described in Chapter 5. The author performed nuclear analysis, including neutron and photon transport, nuclear heating and activation calculations on a number of Ion Cyclotron Resonance Heating (ICRH) designs for ITER. This involved creation of the MCNP model from CAD drawings and the subsequent use of MCNP and FISPACT to perform the analysis. The method used and results of the simulations performed are described in Chapter 6. A shutdown dose analysis was performed on the ITER Laser Imaging Detection and Ranging (LIDAR) system. The model was created by S Zheng, but the author performed neutron transport and MCR2S analysis. The results of the simulations performed are described in Chapter 6. The author was fortunate enough to present the results of ICRH analysis as a poster presentation at the TOFE meeting in San Francisco, the results of ICRH and LIDAR analysis at the IAEA meeting on Fusion Safety. The second case resulted in a collaborative publication in the proceedings of the meeting. The results of the benchmarking of MCR2S were published in the peer reviewed journal Fusion Engi- neering and Design with the reference Fus. Eng. and Des., vol. 85, no. 1, pp. 8792, 2010. “Adam, the first man, didn’t know anything about the nucleus but Dr. George Gamow, visiting professor from George Washington University, pretends he does. He says for example that the nucleus is 0.00000000000003 feet in diameter. Nobody believes it, but that doesn’t make any difference to him. He also says that the nuclear energy contained in a pound of lithium is enough to run the United States Navy for a period of three years. But to get this energy you would have to heat a mixture of lithium and hydrogen up to 50,000,000 degrees Fahrenheit. If one has a little stove of this temperature installed at Stanford, it would burn everything alive within a radius of 10,000 miles and broil all the fish in the Pacific Ocean. If you could go as fast as nuclear particles generally do, it wouldn’t take you more than one ten-thousandth of a second to go to Miller’s where you could meet Gamow and get more details.” -George Gamow ‘Gamow interviews Gamow’ Stanford Daily, 25 Jun 1936. In Helge Kragh, Cosmol- ogy and Controversy: The Historical Development of Two Theories of the Universe (1996), 90. The author would like to extend his sincerest gratitude to; Thankyou to both of my supervisors, Drs Pampin and Norman, for without whom this thesis would not have been possible. To Dr R Pampin, at the Neutronic and Nuclear Data section of the Culham Centre for Fusion Energy, whose help, support and understanding have been invaluable. To Dr P I Norman, at the University of Birmingham, School of Physics and Astronomy, for giving me the opportunity to follow my dream. And to Dr M J Loughlin, now at ITER, for giving me a good start. To my colleagues at CCFE, all of whom have understood my lack of understanding; especially Dr D Ward, Dr R Forrest, Dr S Newton, Dr S Zheng and Mr L Packer. I also have to thank Mrs W Coombes and Ms K Samson, for without whom I doubt this thesis would have been completed. I would also like to thank my family, friends and peers for the experiences of the past few years. And to my best friend and partner Jenny, who has been wonderful and understanding throughout. This work was funded by the United Kingdom Engineering and Phys- ical Sciences Research Council Contents 1 Introduction 1 1.1 Nuclear Fusion . 1 1.2 Physics of Plasmas . 4 1.2.1 Confinement of Plasmas . 5 1.2.2 Production of neutrons by plasmas . 6 1.3 Magnetically Confined Fusion . 7 1.4 Inertially Confined Fusion . 10 1.5 ITER . 10 1.5.1 Geometry of ITER . 11 1.5.2 Upper, Equatorial and Divertor Ports . 11 1.5.3 Heating Systems . 13 1.5.4 Magnets . 17 1.5.5 Vacuum Vessel . 19 1.5.6 Blanket . 19 1.5.7 Plasma Diagnostics . 21 1.5.8 Divertor . 22 1.5.9 Cooling . 23 1.6 Thesis Outline . 24 2 Radiation Effects and Shielding 26 2.1 Radiation Transport . 26 2.1.1 Neutron Physics . 26 2.1.2 Gamma Ray Physics . 30 2.1.3 Boltzmann Transport Equation . 33 2.1.4 Monte Carlo Methods . 34 2.1.5 Deterministic methods . 35 2.2 Radiation Effects on Materials . 36 2.2.1 Atomic Displacement . 36 2.2.2 Transmutation . 37 2.2.3 Radiation Heating . 39 2.2.4 Engineering Effects . 40 2.2.5 Optical Effects . 41 2.2.6 Electrical Effects . 42 2.3 Biological Effects of Ionising Radiation . 43 2.3.1 Effects of Ionising Radiation . 43 i 2.3.2 Absorbed Dose . 44 2.3.3 Effective Dose Equivalent . 44 2.3.4 Limits on Dose and Dose Rate . 46 2.3.5 Maintenance Ports Dose Rate Limits . 47 2.3.6 Bioshield Dose Rate Limits . 48 2.4 Radiation Shielding . 48 2.4.1 Stages in Radiation Shielding Design . 50 2.4.2 Neutron Shielding . 53 2.4.3 Photon Shielding . 54 2.4.4 Charged Particle Shielding . 55 2.5 Radiation Fields in ITER . 56 2.5.1 Neutron Field . 56 2.5.2 Prompt Gamma ray Field . 57 2.5.3 Shutdown Gamma ray field . 60 2.5.4 Shutdown Neutron Field . 61 3 Computational Methods 62 3.1 Radiation Transport . 62 3.1.1 Monte Carlo N Particle (MCNP) . 63 3.1.2 MCNP Nuclear Data . 73 3.2 Nuclide Inventory . 74 3.2.1 FISPACT . 76 3.2.2 EAF Data Libraries . 76 3.2.3 Modelling Pulsed Irradiations . 77 4 Activation Source Generator for MCNP 79 4.1 Introduction . 79 4.1.1 FISPACT Contact Dose . 80 4.1.2 Direct One Step Method . 83 4.1.3 The Rigorous 2 Step method . 85 4.2 Mesh tally Coupled Rigorous 2 Step . 87 4.2.1 MCR2S Input . 89 4.3 MCR2S Activation Subroutine . 95 4.4 MCR2S Data Processing . 97 4.5 MCR2S MCNP Source Subroutine . 98 4.5.1 Treatment of voids in MCR2S . 101 4.5.2 The effect of mesh resolution . 103 4.6 Sources of uncertainty in MCR2S . 105 5 MCR2S Benchmark 108 5.1 MCR2S and Attila ASG comparison . 108 5.2 Frascati Neutron Generator Benchmarking . 122 5.2.1 The Frascati Neutron Generator . 122 5.2.2 Characterisation of FNG source neutrons . 123 5.2.3 Experimental Campaign 1 . 124 ii 5.2.4 Experimental Campaign 2 . 134 6 ITER Port Plug Nuclear Analysis 145 6.1 Port Plug Nuclear Requirements . 145 6.2 The ITER ICRH Systems .
Recommended publications
  • Use of DD-108 Neutron Generator with ISU Sub-Critical Assembly
    From: Ramsey, Kevin To: Maxwell Daniels Cc: Campbell, Vivian; Font, Ossy; Yin, Xiaosong; Gonzalez, Hipolito; Johnson, Robert; Tripp, Christopher Subject: Use of DD-108 neutron generator with ISU sub-critical assembly Date: Thursday, July 20, 2017 3:46:00 PM We have evaluated your proposal to use a neutron generator to pulse your sub-critical assembly, and concluded that you may use the neutron generator under the current authorization in Materials License SNM-1373. Our finding that you may proceed without an amendment is based on the following understanding. If your understanding differs, please inform us. It is our understanding that you want to use the Adelphi Technology DD-108 Neutron Generator described at http://www.adelphitech.com/products/dd108.html. The technical brochure located at http://www.adelphitech.com/pdfs/DD108-9_generator_Flier_24-Nov- 14_A.PDF states that the device uses deuterium gas to produce 2.45 MeV neutrons. The NRC does not regulate the possession and use of deuterium, so there is no need to add the device to one of your NRC licenses. PLEASE NOTE – NRC regulates tritium and a license amendment would be needed to possess and use a tritium neutron generator. Our criticality safety evaluation concluded that using a neutron source will affect the fission rate, but will not affect the neutron multiplication or criticality analysis. From the description and pictures of the neutron generator, it appears that it would only contain a small amount of deuterium. As long as this is not permitted to come into physical contact with the SNM, there should be no issue.
    [Show full text]
  • How I Learned to Stop Worrying and Dismantle the Bomb New Approaches to Nuclear Warhead Verification
    HOW I LEARNED TO STOP WORRYING AND DISMANTLE THE BOMB NEW APPROACHES TO NUCLEAR WARHEAD VERIFICATION Alex Glaser,* Sébastien Philippe,* and Robert J. Goldston** *Princeton University **Princeton University and Princeton Plasma Physics Laboratory Duke University, January 19, 2017 Revision 1 CONSORTIUM FOR VERIFICATION TECHNOLOGY PNNL Oregon State MIT U Michigan INL Yale U Wisconsin Columbia Penn State Princeton and PPPL U Illinois LBNL LLNL Sandia NNSS Duke ORNL NC State LANL Sandia U Florida (not shown: U Hawaii) Five-year project, funded by U.S. DOE, 13 U.S. universities and 9 national labs, led by U-MICH Princeton participates in the research thrust on disarmament research (and leads the research thrust of the consortium on policy) A. Glaser, S. Philippe, R. Goldston, How I Learned to Stop Worrying and Dismantle the Bomb, Duke University, January 19, 2017 2 INTERNATIONAL PARTNERSHIP FOR NUCLEAR DISARMAMENT VERIFICATION Established in 2015; currently 26 participating countries Working Group One: “Monitoring and Verification Objectives” (chaired by Italy and the Netherlands) Working Group Two: “On-Site Inspections” (chaired by Australia and Poland) Working Group Three: “Technical Challenges and Solutions” (chaired by Sweden and the United States) www.state.gov/t/avc/ipndv A. Glaser, S. Philippe, R. Goldston, How I Learned to Stop Worrying and Dismantle the Bomb, Duke University, January 19, 2017 3 WHAT’S NEXT FOR NUCLEAR ARMS CONTROL? 2015 STATEMENT BY JAMES MATTIS “The nuclear stockpile must be tended to and fundamental questions must be asked and answered: • We must clearly establish the role of our nuclear weapons: do they serve solely to deter nuclear war? If so we should say so, and the resulting clarity will help to determine the number we need.
    [Show full text]
  • Radiological Safety Aspects of the Operation of Neutron Generators
    \ This publication is no longer valid Nuclear Safety Information Centre, B0655 Please see http://www-ns.iaea.org/standards/ OBSOLETE SAFETY SERIES No. 42 Radiological Safety Aspects of the Operation of Neutron Generators INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1 976 This publication is no longer valid Please see http://www-ns.iaea.org/standards/ This publication is no longer valid Please see http://www-ns.iaea.org/standards/ RADIOLOGICAL SAFETY ASPECTS OF THE OPERATION OF NEUTRON GENERATORS This publication is no longer valid Please see http://www-ns.iaea.org/standards/ The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL A RG EN TIN A IN D IA QATAR AUSTRALIA INDONESIA REPUBLIC OF SOUTH VIETNAM AUSTRIA IRAN ROMANIA BANGLADESH IRAQ SAUDI ARABIA BELG IU M IRELAND SENEGAL BOLIVIAISRAEL SIERRA LEONE BRAZIL ITALY SINGAPORE BULGARIA IVORY COAST SOUTH AFRICA BURMA JAMAICA SPAIN BYELORUSSIAN SOVIET JAPAN SRI LANKA SOCIALIST REPUBLIC JORDANSUDAN CAMBODIA KENYA SWEDEN CANADA KOREA, REPUBLIC OF SWITZERLAND CHILE KUWAIT SYRIAN ARAB REPUBLIC COLOM BIA LEBANON THAILAND COSTA RICA LIBERIA TUNISIA CUBA LIBYAN ARAB REPUBLIC TURKEY CYPRUS LIECHTENSTEIN UGANDA CZECHOSLOVAKIA LUXEMBOURG UKRAINIAN SOVIET SOCIALIST DEMOCRATIC PEOPLE’S MADAGASCAR REPU BLIC REPUBLIC OF KOREA MALAYSIA UNION OF SOVIET SOCIALIST DENMARK MALI REPUBLICS DOMINICAN REPUBLIC MAURITIUS UNITED ARAB EMIRATES ECUADOR M EXICO UNITED KINGDOM OF GREAT EGYPT MONACO BRITAIN AND NORTHERN
    [Show full text]
  • The Hansen Letter
    The Hansen Letter Introduction by Howard Morland, November 2003: This seven-thousand-word letter by Chuck Hansen, dated August 27, 1979, delivered a coup de grace to the government=s case for censorship of my Progressive magazine article on the H- bomb. It is a bit odd that Senator Charles Percy of Illinois was the intended recipient of the letter. He was never involved in The Progressive case, nor was he Chuck Hansen=s senator. He did not, apparently, request such a communication, and after receiving it he did not subsequently play a role in The Progressive case. However, copies of the letter immediately began to circulate among all persons concerned with the case. Hansen=s reason for writing the letter is not entirely clear, except as a vehicle for outlining his theory about the H-bomb secret. As he states in the letter, AThese... are some of the ideas I believe are presented in the Morland article (I have not seen the article).@ The defense attorneys in The Progressive case regarded him as an ally, of sorts, but wanted no part of his call for the punishment of Edward Teller, Theodore Taylor, and George Rathjens for security violations. Nonetheless, the defense was preparing to argue in court that the widespread distribution of this Hansen letter should moot The Progressive case. The letter clearly outlines the three H-bomb principles at issue in the case: separation of stages, compression, and radiation coupling. However it introduces two obvious technical flaws. Hansen describes the use of two primaries, or fission triggers, one at either end of the fusion secondary, which would explode simultaneously to compress the fusion secondary between them.
    [Show full text]
  • The Tokamak As a Neutron Source
    PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76-CHO-3073 PPPL-2656 PPPL-2656 UC-420 THE TOKAMAK AS A NEUTRON SOURCE BY H.W. HENDEL AND D.L JASSBY November 1989 PMNCITON PLASMA PHYSICS LASOffATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY NOTICE Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield. Virginia 22161 703-487-4650 Use the following price codes when ordering: Price: Printed Copy A04 Microfiche A01 THE TOKAMAK AS A NEUTRON SOURCE by H.W. Hendel and D.L. Jassby PPPL—2656 DE90 001821 Princeton Plasma Physics Laboratory Princeton University Princeton, N.J. 08543 ABSTRACT This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal nsutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. DISCLAIMER This report was prepared as JH account or work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi­ bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or repre^r-s that its use would not infringe privately owned rights.
    [Show full text]
  • Investigation of the Feasibility of a Small Scale Transmutation Device
    Investigation of the Feasibility of a Small Scale Transmutation Device by Roger Carson Sit B.S. (Mississippi State University) 1984 M.S. (University of California, Berkeley) 1985 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Nuclear Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jasmina Vujic, Chair Professor David McNelis (University of North Carolina at Chapel Hill) Professor Ka-Ngo Leung Professor Dorian Liepmann Fall 2009 Abstract Investigation of the Feasibility of a Small Scale Transmutation Device by Roger Carson Sit Doctor of Philosophy in Engineering-Nuclear Engineering University of California, Berkeley Professor Jasmina Vujic, Chair This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy 1 spectra for targeting the radionuclide for transmutation.
    [Show full text]
  • Chapter 3 Gamma-Ray and Neutron Sources R.J. Holmes
    123 CHAPTER 3 GAMMA-RAY AND NEUTRON SOURCES R.J. HOLMES 125 1. GAMMA-RAY SOURCES Most y-ray sources in commercial use do not occur in nature because their half-lives are small compared with geological times. They must be produced from naturally occurring nuclides by a suitable nucle?r reaction; often this is by irradiation in a nuclear reactor. Some examples of radioisotope production are given below: 59Co (n,y)60Co T^ 5.26 y 123Sb (n,y)mSb T^ 60 d 6Li (n,a)3H T^ 12.3 y 55Mn (p,n)55Fe T, 2.7 y Commercially available sources are sealed in chemically inert capsules. The choice of the most suitable source for a particular application usually depends on the energy of the y-rays that are emitted and on the half-life of the radioisotope. In many applications, a monoenergetic source of long half-life is preferred. Calibration corrections for source decay can be made using the familiar equation - 0.693t/T, = Io e where I is the initial source intensity/ I(t) is its intensity at time o t, and T, is the half-life. Selection of the appropriate y-ray energy depends on such criteria as the energy threshold for a desired nuclear reaction and whether absorption should be due predominantly to the photoelectric effect or Compton scattering. Table 1 lists the commonly used y-ray sources together with their y-ray energies and half-lives. 2. X-RAY SOURCES Sources of radiation below an energy of about 150 keV are usually referred to as X-ray sources, although technically some of them are low energy y-ray sources, e.g.
    [Show full text]
  • The Regulation of Fusion – a Practical and Innovation-Friendly Approach
    The Regulation of Fusion – A Practical and Innovation-Friendly Approach February 2020 Amy C. Roma and Sachin S. Desai AUTHORS Amy C. Roma Sachin S. Desai Partner, Washington, D.C. Senior Associate, Washington, D.C. T +1 202 637 6831 T +1 202 637 3671 [email protected] [email protected] The authors want to sincerely thank the many stakeholders who provided feedback on this paper, and especially William Regan for his invaluable contributions and review of the technical discussion. TABLE OF CONTENTS I. EXECUTIVE SUMMARY 1 II. THE STATE OF FUSION INNOVATION 3 A) An Introduction to Fusion Energy 3 B) A Rapid Growth in Private-Sector Fusion Innovation 4 III. U.S. REGULATION OF ATOMIC ENERGY - NOT ONE SIZE FITS ALL 7 A) The Foundation of U.S. Nuclear Regulation - The Atomic Energy Act and the NRC 7 B) The Atomic Energy Act Embraces Different Regulations for Different Situations 7 1. NRC Frameworks for Different Safety Cases 8 2. Delegation of Regulatory Authority to States 9 IV. THE REGULATION OF FUSION - A PRACTICAL AND INNOVATION- FRIENDLY APPROACH 10 A) Fusion Regulation Comes to the Fore, Raising Key Questions 10 B) A Regulatory Proposal That Recognizes the Safety Case of Fusion and the Needs of Fusion Innovators 11 1. Near-Term: Regulation of Fusion Under the Part 30 Framework is Appropriate Through Development and Demonstration 11 2. Long-Term: The NRC Should Develop an Independent Regulatory Framework for Fusion at Commercial Scale, Not Adopt a Fission Framework 12 V. CONCLUSION 14 1 Hogan Lovells I. EXECUTIVE SUMMARY Fusion, the process that powers the Sun, has long been seen Most fusion technologies are already regulated by the NRC as the “holy grail” of energy production.
    [Show full text]
  • A Fast Neutron Radiography System Using a High Yield Portable DT Neutron Source
    Journal of Imaging Article A Fast Neutron Radiography System Using a High Yield Portable DT Neutron Source David L. Williams *, Craig M. Brown, David Tong, Alexander Sulyman and Charles K. Gary Adelphi Technology Inc., 2003 E. Bayshore Rd, Redwood City, CA 94063, USA; [email protected] (C.M.B.); [email protected] (D.T.); [email protected] (A.S.); [email protected] (C.K.G.) * Correspondence: [email protected]; Tel.: +1-650-474-2750 Received: 20 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: Resolution measurements were made using 14.1 MeV neutrons from a high-yield, portable DT neutron generator and a neutron camera based on a scintillation screen viewed by a digital camera. Resolution measurements were made using a custom-built, plastic, USAF-1951 resolution chart, of dimensions 125 98 25.4 mm3, and by calculating the modulation transfer function from × × the edge-spread function from edges of plastic and steel objects. A portable neutron generator with a yield of 3 109 n/s (DT) and a spot size of 1.5 mm was used to irradiate the object with neutrons for × 10 min. The neutron camera, based on a 6LiF/ZnS:Cu-doped polypropylene scintillation screen and digital camera was placed at a distance of 140 cm, and produced an image with a spatial resolution of 0.35 cycles per millimeter. Keywords: fast neutron radiography; FNR; imaging; deuterium-tritium; DT; 14.1 MeV; USAF-1951; modulation transfer function; MTF 1. Introduction Kallmann and Kuhn [1,2] are credited with taking the first neutron radiographs shortly after the discovery of the neutron by Chadwick in 1932.
    [Show full text]
  • Qt6z74x57b Nosplash B36c09d
    Characterization of Deuteron-Deuteron Neutron Generators by Cory Scott Waltz A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Nuclear Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Karl Van Bibber, Chair Professor Lee Bernstein Professor Peter Hosemann Professor Chris Dames Spring 2016 Characterization of Deuteron-Deuteron Neutron Generators Copyright 2016 by Cory Scott Waltz 1 Abstract Characterization of Deuteron-Deuteron Neutron Generators by Cory Scott Waltz Doctor of Philosophy in Engineering - Nuclear Engineering University of California, Berkeley Professor Karl Van Bibber, Chair A facility based on a next-generation, high-flux D-D neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near mono- energetic 2.45 MeV neutrons at outputs of 108 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 1010 n/s. Characteristics that effect the operational stability include the suppression of the target- emitted back streaming electrons, target sputtering and cooling, and ion beam optics. Sup- pression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than -400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incor- porating the additional heat removal effects of subcooled boiling was developed.
    [Show full text]
  • Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques - Preliminary Modeling Results Emphasizing Integration Among Techniques
    LBNL- Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques - Preliminary Modeling Results Emphasizing Integration among Techniques by S. J. Tobin1, M. L. Fensin1, B. A. Ludewigt4, H. O. Menlove1, B. J. Quiter1, 3, N. P. Sandoval1, M. T. Swinhoe1, S. J. Thompson1, 2 1. Los Alamos National Laboratory, 2. Idaho State University 3. University of California – Berkeley, 4. Lawrence Berkeley National Laboratory Los Alamos National Laboratory, Los Alamos NM, 87545, USA Tel:505-667-3315 , Fax: 505-665-4433, Email:[email protected] IBT Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California 94720 September 6-11, 2009 This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Proceedings of Global 2009 Paris, France, September 6-11, 2009 Paper 9303 Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques - Preliminary Modeling Results Emphasizing Integration among Techniques S. J. Tobin1, M. L. Fensin1, B. A. Ludewigt4, H. O. Menlove1, B. J. Quiter1, 3, N. P. Sandoval1, M. T. Swinhoe1, S. J. Thompson1, 2 1. Los Alamos National Laboratory, 2. Idaho State University 3. University of California – Berkeley, 4. Lawrence Berkeley National Laboratory Los Alamos National Laboratory, Los Alamos NM, 87545, USA Tel:505-667-3315 , Fax: 505-665-4433, Email:[email protected] Abstract – There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories.
    [Show full text]
  • Neutron Generators Developed at Lbnl for Homeland Security and Imaging Applications* J
    NEUTRON GENERATORS DEVELOPED AT LBNL FOR HOMELAND SECURITY AND IMAGING APPLICATIONS* J. Reijonen#, E. O. Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA Abstract instantaneous neutron yields. In this presentation, the The Plasma and Ion Source Technology Group at progress on the single-beam axial neutron generator and Lawrence Berkeley National Laboratory has developed the point neutron generator for T-T wide energy neutron various types of advanced D-D (neutron energy 2.5 MeV), generation will be presented. D-T (14 MeV) and T-T (0–9 MeV) neutron generators for wide range of applications. These applications include AXIAL, SINGLE-BEAM D-D NEUTRON medical (Boron Neutron Capture Therapy), homeland GENERATOR security (Prompt Gamma Activation Analysis, Fast The high voltage shielded RF-induction ion source Neutron Activation Analysis and Pulsed Fast Neutron driven, axial D-D neutron generator[1] is a development Transmission Spectroscopy) and planetary exploration of the previously developed sectioned accelerator[2] with a sub-surface material characterization on Mars. single beam D-D neutron generator. The fully high These neutron generators utilize RF induction discharge voltage shielded construction of the latest axial neutron to ionize the deuterium/tritium gas. This discharge method generator is the main difference between these two provides high plasma density for high output current, high neutron generators. It utilizes an external antenna RF- atomic species from molecular gases, long life operation induction ion source for highly efficient plasma and versatility for various discharge chamber geometries. generation. It enables placement of the neutron generator, Four main neutron generator developments are discussed even in places where the moderator material next to the here: high neutron output co-axial neutron generator for neutron generator is conducting.
    [Show full text]