UNIVERSITY of CALIFORNIA IRVINE Targeting Eif4f Translation

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA IRVINE Targeting Eif4f Translation UNIVERSITY OF CALIFORNIA IRVINE Targeting eIF4F Translation Initiation Complex in order to Sensitize Blood Malignancies to Targeted Agents Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY In Biological Sciences By Lee-or Herzog Dissertation Committee: Professor David A. Fruman Professor Craig M. Walsh Associate professor Mei Kong Associate Professor Olga V. Razorenova 2020 © 2020 Lee-or Herzog DEDICATION To Eitan Herzog - My dearest son. You are my soul. You mean everything to me. To my dear parents – For always believing in me, supporting me and guiding me. To Ella, May and Ilan - For your constant encouragement, laughter and help. To my grandparents - Who are always on my mind. I keep my promises every day. To Dr. David Fruman – For your outstanding mentorship, for your help and for helping me become a better scientist each day. To my committee members – for your encouragement, useful suggestions and for helping me improve my scientific skills. To my mentees and team – I could not have done this without you. Thank you very much for all your help, your dedication and for making an impact on translational science. To my lab mates – Thank you for your help, for making the lab such a great place to work in, for your support and the good time we shared together. ii TABLE OF CONTENTS LIST OF FIGURES………………………………………………………………….. iv LIST OF TABLES…………………………………………………………………… vi ACKNOWLEDGEMENTS………………………………………………………...... vii CURRICULUM VITAE……………………………………………………………... iix ABSTRACT OF THE DISSERTATION…………………………………………….. x CHAPTER 1: Introduction….……………………………………………………….. 1 CHAPTER 2: Targeting eIF4F Translation Initiation Complex with SBI-756 Sensitizes B Lymphoma Cells to Venetoclax ……………………………………….. 97 CHAPTER 3: Targeting eIF4F translation complex sensitizes B-ALL cells to tyrosine kinase inhibition…….……………………………………………………….. 165 CHAPTER 4: Significance, discussion and future directions……………………….. 200 iii LIST OF FIGURES Figure Title Page number Figure 1.1 The hallmarks of cancer and therapeutic targeting of them 3 Figure 1.2 Overview of mTORC1 and mTORC2 Complexes, Key Substrates, and Inhibitors 4 Figure 1.3 mTOR acts as a nutrient sensor coordinating cellular functions 6 Figure 1.4 Mechanisms of oncogenic activation of PI3K/AKT or loss of PTEN 7 Figure 1.5 The Philadelphia Chromosome 10 Figure 1.6 Overview of BCL-2 family protein interactions 20 Figure 1.7 Extrinsic and intrinsic apoptotic signaling pathways 22 Figure 1.8 Targeting mTOR Pathway as a Therapeutic Strategy 44 Figure 1.9 Convergence of major signaling pathways involved in cancer toward the eIF4F 47 complex Figure 1.10 Components of eIF4F translation initiation machinery complex, and inhibitors 49 Figure 2.1 mTORC1 regulates eIF4E dependent translation via phosphorylation of 4E-BP1 112 Figure 2.2 Constitutively active 4E-BP1 mutant sensitizes lymphoma cells to venetoclax 114 (ABT-199) and navitoclax (ABT-263) similar to TOR-KI combination Figure 2.3 SBI-756 prevents eIF4E-eIF4G interaction 115 Figure 2.4 SBI-756 treatment suppresses cap-dependent translation 116 Figure 2.5 SBI-756 does not change mTOR substrate phosphorylation 117 Figure 2.6 Treatment with SBI-756 sensitizes DLBCL and MCL cells to venetoclax 119 combinational treatment Figure 2.7 Treatment with SBI-756 sensitizes DLBCL and MCL cells to venetoclax 120 combinational treatment Figure 2.8 SBI-756 in combination with venetoclax induces apoptosis 121 Figure 2.9 4E-BP1 KO clones are insensitive to TOR-KI treatment, yet remain sensitive to 123 SBI-756 treatment Figure 2.10 Lymphoma cell lacking 4EBP1 are resistant to TOR-KI yet are sensitive to SBI- 124 756 treatment Figure 2.11 SBI-756 sensitizes to venetoclax treatment in vivo 125 Figure 2.12 Venetoclax and SBI-756 combination is tolerable and retains mTOR 127 functionality, while reduces tumor volume in vivo iv Figure 2.13 SBI-756 induces a decrease in MCL-1, BCL-xL, survivin, eIF4E and eIF4G 129 Figure 2.14 Selective reduction of mRNA translation following 4 hours SBI-756 treatment 131 Figure 2.15 SBI-756 treatment reduces protein synthesis following 16 hours of treatment 133 Figure 2.16 SBI-756 is not cytotoxic to human CD4+T cells, CD8+ T cells, NK cells or 135 monocytes Figure 2.17 B lymphocytes are more sensitive to eIF4F targeting than other PBMCs 137 Figure 2.18 Components of eIF4F translation initiation machinery complex, and inhibitors 140 Figure 2.19 Model for mechanism of venetoclax sensitization by SBI-756 142 Figure 3.1 Schematic diagram of the PI3K/ mTOR/ eIF4E signaling pathway and inhibitors 167 used in this study to target the pathway Figure 3.2 4E-BP mediates cytotoxicity of TORC1 inhibition 170 Figure 3.3 Reduced Eif4e gene dosage sensitizes to dasatinib 172 Figure 3.4 Targeting the eIF4F complex sensitizes p190 cells to dasatinib 173 Figure 3.5 Targeting the eIF4F complex suppresses colony formation to similar extent as 173 targeting mTORC1 Figure 3.6 SBI-576 sensitizes similar to mTOR inhibition but does not inhibit mTOR 174 Figure 3.7 Reduced eIF4E availability leads to reduction in protein synthesis 175 Figure 3.8 SBI sensitizes human Ph+ and Ph-like B-ALL cell lines and stromal-dependent 176 lines to dasatinib treatment Figure 3.9 SBI-756 is selectively toxic to B cells 177 Figure 3.10 SBI-576 reduces eIF4E:eIF4G1 interaction in vivo in a dose-dependent manner 178 Figure 3.11 Combination of SBI-756 and dasatinib reduces B-ALL leukemic burden while 180 suppress eIF4E:eIF4G interaction in vivo Figure 3.12 MLN0128 or SBI-756 treatment prime cells towards apoptosis 181 Figure 4.1 Strategies for evading apoptosis 206 Figure 4.2 TOR-KI and SBI-756 treatments sensitize AML cells to venetoclax combination 211 Figure 4.3 eIF4F variants reprogram the cellular translatome in response to distinct stimuli 217 Figure 4.4 Schematic diagram of the genetic model that enables conditional reduction in 219 eIF4E expression v LIST OF TABLES Table Title Page number Table 2.1 The sequences used for guiding Cas9 to 4EBP1 108 Table 2.2 The sequences used for guiding Cas9 to 4EBP2 108 Table 2.3 Genes found to be translationally down-regulated following eIF4F 150 suppression Table 2.4 Negative regulators of apoptosis genes that were found to be 164 translationally downregulated following eIF4F inhibition vi ACKNOWLEDGMENTS • This study was supported by: National Institutes of Health grants R01-CA158383 (to Dr. Fruman), UC Irvine Cancer Research Institute pilot grant from the 2018 Anti-Cancer Challenge (to Dr. Fruman), Bridge Grant from the American Society of Hematology (to Dr. Fruman), and by Cancer Center Support Grant P30-CA062203 to UC Irvine. • I was supported by National Institutes of Health grant T32 AI 060573. I want to thank Dr. Eric Pearlman, Dr. Amanda Burkhardt and Ms. Rebecca Taylor for believing in me, giving me a chance to do the research that I wanted, and for their constant support. • I thank Dr. Selina Chen-Kiang and Dr. Maurizio Di Liberto for providing MCL cell lines. • I want to thank Dr. Bert Semler for providing us with the dual-luciferase reporter construct, and for Dr. Grant MacGregor for his assistance with performance of dual-luciferase assays and establishment of mouse models. • I thank Dr. Adeela Syed for her great assistance with microscopy imaging, her patience and for her training. vii CURRICULUM VITAE EDUCATION • University of California, Irvine (UCI), California 09/2015 Ph.D. in Biological sciences - Molecular Biology & Biochemistry • Tel Aviv University, Tel Aviv, Israel 06/2012 M.Sc. in Medical Sciences (Magna cum Laude) • The Hebrew University of Jerusalem, Jerusalem, Israel 06/2005 B.Sc. in Biological Sciences RESEARCH EXPERIENCE • Oncology & Immunology, University of California, Irvine (UCI) 08/2015 - Present Graduate Student Researcher Project manager - Managing 5 research projects and 12 students to achieve goals within budget. Scientific writer - Published 3 peer-reviewed scientific publications (5 more in process) in international journals. Scientific communicator - 14 scientific presentations that received 10 awards. Collaborator - Identified and supported 5 research opportunities, that led to 3 publications. • Weizmann Institute of Science, Rehovot, Israel 06/2014 – 05/2015 Senior Research Assistant and Lab Technician Conducted diverse biological methods at the Antibodies unit and the Microbiology unit, such as: full production of monoclonal and polyclonal antibodies, tissue culture, protein purification, antibodies labeling (CyTOF), plasmid production, directed fermentations, DASGIP controlled fermentations, microscopy and diverse microbiology methods. Managed databases constant update and drafting of lab protocols, reports and SOPs. • CorAssist Cardiovascular, Herzliya, Israel 01/2014 – 04/2014 Preclinical and Clinical Research Assistant As research and development coordinator, oversaw the entire research process, development of medical device, ethics committees, practical work, operations and follow ups. Wrote research and quality assurance documentation (all inspected and approved during a successful ISO audit). • HY Laboratories, Rehovot, Israel 10/2012 – 11/2013 Technical Writer and Quality Assurance Associate Researched at GMP and ISO 17025 conditions, authored all laboratory documents (e.g. protocols, reports, SOPs) for medical devices and pharmaceutical customers for submission to regulatory authorities (FDA and CE). Conducted and certified to perform all the tests offered by the lab (Sterility, LAL, Bioburden etc.). Supervised research, development and production
Recommended publications
  • TBX15/Mir-152/KIF2C Pathway Regulates Breast Cancer Doxorubicin Resistance Via Preventing PKM2 Ubiquitination
    TBX15/miR-152/KIF2C Pathway Regulates Breast Cancer Doxorubicin Resistance via Preventing PKM2 Ubiquitination Cheng-Fei Jiang Nanjing Medical University Yun-Xia Xie Zhengzhou University Ying-Chen Qian Nanjing Medical University Min Wang Nanjing Medical University Ling-Zhi Liu Thomas Jefferson University - Center City Campus: Thomas Jefferson University Yong-Qian Shu Nanjing Medical University Xiao-Ming Bai ( [email protected] ) Nanjing Medical University Bing-Hua Jiang Thomas Jefferson University Research Keywords: TBX15, miR-152, KIF2C, PKM2, Doxorubicin resistance, breast cancer Posted Date: December 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-130874/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background Chemoresistance is a critical risk problem for breast cancer treatment. However, mechanisms by which chemoresistance arises remains to be elucidated. The expression of T-box transcription factor 15 (TBX- 15) was found downregulated in some cancer tissues. However, role and mechanism of TBX15 in breast cancer chemoresistance is unknown. Here we aimed to identify the effects and mechanisms of TBX15 in doxorubicin resistance in breast cancer. Methods As measures of Drug sensitivity analysis, MTT and IC50 assays were used in DOX-resistant breast cancer cells. ECAR and OCR assays were used to analyze the glycolysis level, while Immunoblotting and Immunouorescence assays were used to analyze the autophagy levels in vitro. By using online prediction software, luciferase reporter assays, co-Immunoprecipitation, Western blotting analysis and experimental animals models, we further elucidated the mechanisms. Results We found TBX15 expression levels were decreased in Doxorubicin (DOX)-resistant breast cancer cells.
    [Show full text]
  • Eif2b Is a Decameric Guanine Nucleotide Exchange Factor with a G2e2 Tetrameric Core
    ARTICLE Received 19 Feb 2014 | Accepted 15 Apr 2014 | Published 23 May 2014 DOI: 10.1038/ncomms4902 OPEN eIF2B is a decameric guanine nucleotide exchange factor with a g2e2 tetrameric core Yuliya Gordiyenko1,2,*, Carla Schmidt1,*, Martin D. Jennings3, Dijana Matak-Vinkovic4, Graham D. Pavitt3 & Carol V. Robinson1 eIF2B facilitates and controls protein synthesis in eukaryotes by mediating guanine nucleotide exchange on its partner eIF2. We combined mass spectrometry (MS) with chemical cross- linking, surface accessibility measurements and homology modelling to define subunit stoichiometry and interactions within eIF2B and eIF2. Although it is generally accepted that eIF2B is a pentamer of five non-identical subunits (a–e), here we show that eIF2B is a decamer. MS and cross-linking of eIF2B complexes allows us to propose a model for the subunit arrangements within eIF2B where the subunit assembly occurs through catalytic g- and e-subunits, with regulatory subunits arranged in asymmetric trimers associated with the core. Cross-links between eIF2 and eIF2B allow modelling of interactions that contribute to nucleotide exchange and its control by eIF2 phosphorylation. Finally, we identify that GTP binds to eIF2Bg, prompting us to propose a multi-step mechanism for nucleotide exchange. 1 Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK. 2 MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge CB2 0QH, UK. 3 Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK. 4 Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
    [Show full text]
  • Cofactor Dependent Conformational Switching of Gtpases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 1704 Biophysical Journal Volume 95 August 2008 1704–1715 Cofactor Dependent Conformational Switching of GTPases Vasili Hauryliuk,*y Sebastian Hansson,z and Ma˚ns Ehrenberg* *Department of Cell and Molecular Biology, Molecular Biology Program, Uppsala University, Uppsala, Sweden; yEngelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; and zLaboratoire d’Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France ABSTRACT This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP g S.
    [Show full text]
  • Tbx15 Defines a Glycolytic Subpopulation and White Adipocyte
    2822 Diabetes Volume 66, November 2017 Tbx15 Defines a Glycolytic Subpopulation and White Adipocyte Heterogeneity Kevin Y. Lee,1,2,3 Rita Sharma,2,3 Grant Gase,2,3 Siegfried Ussar,1,4,5 Yichao Li,6 Lonnie Welch,6 Darlene E. Berryman,2,3 Andreas Kispert,7 Matthias Bluher,8 and C. Ronald Kahn1 Diabetes 2017;66:2822–2829 | https://doi.org/10.2337/db17-0218 Tbx15 is a member of the T-box gene family of mesoder- adipose tissue (WAT) is associated with insulin resistance and mal developmental genes. We have recently shown that increased risk of metabolic disease, whereas subcutaneous WAT Tbx15 plays a critical role in the formation and metabolic maybeprotectiveagainstthedevelopmentofmetabolic programming of glycolytic myofibers in skeletal muscle. disorders (1). We and others (2,3) have shown that differ- Tbx15 is also differentially expressed among white adi- ences in WAT depots are also marked by differential expres- pose tissue (WAT) in different body depots. In the current sion of developmental genes. study, using three independent methods, we show that Tbx15 is a member of the T-box gene family of develop- even within a single WAT depot, high Tbx15 expression mental genes and has an established role in skeletal forma- is restricted to a subset of preadipocytes and mature fi tion (4). We have recently shown that in skeletal muscle, white adipocytes. Gene expression and metabolic pro l- fi ing demonstrate that the Tbx15Hi preadipocyte and adipo- Tbx15 is highly and speci cally expressed in glycolytic fi fi cyte subpopulations of cells are highly glycolytic, whereas myo bers and regulates the metabolism of these myo bers Tbx15Low preadipocytes and adipocytes in the same de- (5).
    [Show full text]
  • A Dissertation Entitled Characterization of the CXCR4
    A Dissertation entitled Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ___________________________________________ Dayanidhi Raman, B.V.Sc., Ph.D., Committee Chair ___________________________________________ Amit Tiwari, Ph.D., Committee Member ___________________________________________ Ritu Chakravarti, Ph.D., Committee Member ___________________________________________ Nagalakshmi Nadiminty, Ph.D., Committee Member ___________________________________________ Saori Furuta, Ph.D., Committee Member ___________________________________________ Shi-He Liu, M.D., Committee Member ___________________________________________ Amanda C. Bryant-Friedrich, Ph.D., Dean College of Graduate Studies The University of Toledo August 2020 © 2020 Cory M. Howard This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M. Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo August 2020 Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are still lacking. In addition, patient mortality mainly results from the metastasized
    [Show full text]
  • 2014 ADA Posters 1319-2206.Indd
    INTEGRATED PHYSIOLOGY—INSULINCATEGORY SECRETION IN VIVO 1738-P increase in tumor size and pulmonary metastasis is observed, compared Sustained Action of Ceramide on Insulin Signaling in Muscle Cells: to wild type mice. In this study, we aimed to determine the mechanisms Implication of the Double-Stranded RNA Activated Protein Kinase through which hyperinsulinemia and the canonical IR signaling pathway drive RIMA HAGE HASSAN, ISABELLE HAINAULT, AGNIESZKA BLACHNIO-ZABIELSKA, tumor growth and metastasis. 100,000 MVT-1 (c-myc/vegf overexpressing) RANA MAHFOUZ, OLIVIER BOURRON, PASCAL FERRÉ, FABIENNE FOUFELLE, ERIC cells were injected orthotopically into 8-10 week old MKR mice. MKR mice HAJDUCH, Paris, France, Białystok, Poland developed signifi cantly larger MVT-1 (353.29±44mm3) tumor volumes than Intramyocellular accumulation of fatty acid derivatives like ceramide plays control mice (183.21±47mm3), p<0.05 with more numerous pulmonary a crucial role in altering the insulin message. If short-term action of ceramide metastases. Western blot and immunofl uorescent staining of primary tumors inhibits the protein kinase B (PKB/Akt), long-term action of ceramide on insulin showed an increase in vimentin, an intermediate fi lament, typically expressed signaling is less documented. Short-term treatment of either the C2C12 cell in cells of mesenchymal origin, and c-myc, a known transcription factor. Both line or human myotubes with palmitate (ceramide precursor, 16h) or directly vimentin and c-myc are associated with cancer metastasis. To assess if insulin with ceramide (2h) induces a loss of the insulin signal through the inhibition and IR signaling directly affects the expression these markers, in vitro studies of PKB/Akt.
    [Show full text]
  • Nck Adapter Proteins: Functional Versatility in T Cells Marcus Lettau, Jennifer Pieper and Ottmar Janssen
    Cell Communication and Signaling BioMed Central Review Open Access Nck adapter proteins: functional versatility in T cells Marcus Lettau, Jennifer Pieper and Ottmar Janssen Address: 1University Hospital Schleswig-Holstein Campus Kiel, Institute of Immunology, Molecular Immunology, Arnold-Heller-Str 3, Bldg 17, D-24105 Kiel, Germany E-mail: Marcus Lettau* - [email protected]; Jennifer Pieper - [email protected]; Ottmar Janssen - [email protected] *Corresponding author Published: 02 February 2009 Received: 2 December 2008 Cell Communication and Signaling 2009, 7:1 doi: 10.1186/1478-811X-7-1 Accepted: 2 February 2009 This article is available from: http://www.biosignaling.com/content/7/1/1 © 2009 Lettau et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3domaininteractionsleadtotheformationoflargerproteincomplexes.InTlymphocytes,Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse.
    [Show full text]
  • Buy Viagra Brand
    A Canonical Cancer-Network Map Eugene F. Douglass Jr., Ph.D. ;<=:>&'? Cell-Surface Interactions @@@JJ; Growth Receptor Signalling Cell-ECM Growth/Motility Proliferation Cell-Cell Contact Inhibition Metabolism MMP COLONIC CRYPT IGF/IGFR-1 EGFR / ErbB WNT ! WNT ! WNT WNT Integrin WNT RAS must be held near PI3K to activate it 5 CAD-domains Signalosome R-spdn p.195 GTP RAS PTEN NF1 SOS PLC PIP3 E-cadherin SHC PIP RASGAP GRB2 2 ZNRF3 p120 p120 " p120 p120 p120 p120 FZD Akt PDK1 PH JM Src-dep Y845 STAT3 GDP GTP Y974 F-actin PI3K PTB SHC/SHP2 GRB2 LRP Assembly vincilin talin PI3K Integrin-Linked Kinase(ILK) Y981 RAS RAS LGR RNF43 NCK2 ! ! ! ARP2/3 FAK Y988 FAK 2 min PINCH SOCS3 C hevell Akt KD s e paxilin SOS i d PDK1 Src IRS1 ! ! ! d paxilin Src (PKB) internlz AP2 RSU1 Y1015 ½ HIC5 ! t PI3K Y460 SOCS1/6 Y992 PLC" Parvin Src TESK1 PI3K Y546 SHIP2 GTP p130Cas CRK CSG ubiq axin PAK1 Y1091 Y1045 CBL S46-7 RAF-1 KSR DOCK180 SOS PI3K Y608 S1057 = GSK3 PI3K Y628 Y1127 Y1068 GRB2 14-3-3 14-3-3 PI3K Y658 GRB2 Y1086 B-RAF C-RAF GSK RHEB PI3K Y690 RASGAP 9 Wtx mTOR1 Y1163 Y1101 Gab1 Apc PI3K Y727 Y1167 PI3K Y759 RASGAP Y1168 MAPK Rac GTP Y1148 SHC GRB2 p120 p120 Y815 SHIP2 RhoGEF RalGEF p70-S6K Y1215 ! ! Y1175 SOS GTP Y891 phos SHP1 Cdc42 Y903 SHIP2 Y1253 SHP2 GRB2 ! ! PTP1 MKK1/2 PI3K Y935 Wtx GTP CT ! Rho PI3K Y983 SHIP2 Y1282 GRB2 SHP2 Y1006 Y1283 RalBP1 RalA/B GTP MP1 axin PI3K Y1352 PI3K Erk1/2 GSK3 Sprouty Apc MKP1 GTP GRB2 SHP2 Y1173 Rac 1.
    [Show full text]
  • Transcriptome Analysis of Newt Lens Regeneration Reveals Distinct Gradients in Gene Expression Patterns
    Transcriptome Analysis of Newt Lens Regeneration Reveals Distinct Gradients in Gene Expression Patterns Konstantinos Sousounis1., Mario Looso2., Nobuyasu Maki1¤, Clifford J. Ivester1, Thomas Braun3*, Panagiotis A. Tsonis1* 1 Department of Biology and Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America, 2 Department of Bioinformatics, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany, 3 Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany Abstract Regeneration of the lens in newts is quite a unique process. The lens is removed in its entirety and regeneration ensues from the pigment epithelial cells of the dorsal iris via transdifferentiation. The same type of cells from the ventral iris are not capable of regenerating a lens. It is, thus, expected that differences between dorsal and ventral iris during the process of regeneration might provide important clues pertaining to the mechanism of regeneration. In this paper, we employed next generation RNA-seq to determine gene expression patterns during lens regeneration in Notophthalmus viridescens. The expression of more than 38,000 transcripts was compared between dorsal and ventral iris. Although very few genes were found to be dorsal- or ventral-specific, certain groups of genes were up-regulated specifically in the dorsal iris. These genes are involved in cell cycle, gene regulation, cytoskeleton and immune response. In addition, the expression of six highly regulated genes, TBX5, FGF10, UNC5B, VAX2, NR2F5, and NTN1, was verified using qRT-PCR. These graded gene expression patterns provide insight into the mechanism of lens regeneration, the markers that are specific to dorsal or ventral iris, and layout a map for future studies in the field.
    [Show full text]
  • Genetics of Lipedema: New Perspectives on Genetic Research and Molecular Diagnoses S
    European Review for Medical and Pharmacological Sciences 2019; 23: 5581-5594 Genetics of lipedema: new perspectives on genetic research and molecular diagnoses S. PAOLACCI1, V. PRECONE2, F. ACQUAVIVA3, P. CHIURAZZI4,5, E. FULCHERI6,7, M. PINELLI3,8, F. BUFFELLI9,10, S. MICHELINI11, K.L. HERBST12, V. UNFER13, M. BERTELLI2; GENEOB PROJECT 1MAGI’S LAB, Rovereto (TN), Italy 2MAGI EUREGIO, Bolzano, Italy 3Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy 4Istituto di Medicina Genomica, Fondazione A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy 5UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy 6Fetal and Perinatal Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy 7Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy 8Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy 9Fetal and Perinatal Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy 10Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences, University of Genoa, Genoa, Italy 11Department of Vascular Rehabilitation, San Giovanni Battista Hospital, Rome, Italy 12Department of Medicine, University of Arizona, Tucson, AZ, USA 13Department of Developmental and Social Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy Abstract. – OBJECTIVE: The aim of this quali- Introduction tative review is to provide an update on the cur- rent understanding of the genetic determinants of lipedema and to develop a genetic test to dif- Lipedema is an underdiagnosed chronic debil- ferentiate lipedema from other diagnoses. itating disease characterized by bruising and pain MATERIALS AND METHODS: An electronic and excess of subcutaneous adipose tissue of the search was conducted in MEDLINE, PubMed, and legs and/or arms in women during or after times Scopus for articles published in English up to of hormone change, especially in puberty1.
    [Show full text]
  • TBX15 Mutations Cause Craniofacial Dysmorphism, Hypoplasia of Scapula and Pelvis, and Short Stature in Cousin Syndrome
    REPORT TBX15 Mutations Cause Craniofacial Dysmorphism, Hypoplasia of Scapula and Pelvis, and Short Stature in Cousin Syndrome Ekkehart Lausch,1 Pia Hermanns,1 Henner F. Farin,2 Yasemin Alanay,3 Sheila Unger,1,4 Sarah Nikkel,1,5 Christoph Steinwender,1 Gerd Scherer,4 Ju¨rgen Spranger,1 Bernhard Zabel,1,4 Andreas Kispert,2 and Andrea Superti-Furga1,* Members of the evolutionarily conserved T-box family of transcription factors are important players in developmental processes that include mesoderm formation and patterning and organogenesis both in vertebrates and invertebrates. The importance of T-box genes for human development is illustrated by the association between mutations in several of the 17 human family members and congenital errors of morphogenesis that include cardiac, craniofacial, and limb malformations. We identified two unrelated individuals with a com- plex cranial, cervical, auricular, and skeletal malformation syndrome with scapular and pelvic hypoplasia (Cousin syndrome) that recapitulates the dysmorphic phenotype seen in the Tbx15-deficient mice, droopy ear. Both affected individuals were homozygous for genomic TBX15 mutations that resulted in truncation of the protein and addition of a stretch of missense amino acids. Although the mutant proteins had an intact T-box and were able to bind to their target DNA sequence in vitro, the missense amino acid sequence directed them to early degradation, and cellular levels were markedly reduced. We conclude that Cousin syndrome is caused by TBX15 insufficiency and is thus the human counterpart of the droopy ear mouse. We studied two unrelated girls of German (patient 1) and sis of campomelic dysplasia (MIM 114290) because of scap- Turkish (patient 2) ancestry.
    [Show full text]
  • Regulation of the Stability of the Protein Kinase DYRK1A: Establishing Connections with the Wnt Signaling Pathway
    Regulation of the stability of the protein kinase DYRK1A: establishing connections with the Wnt signaling pathway Krisztina Arató TESI DOCTORAL UPF / 2010 Barcelona, November 2010 Regulation of the stability of the protein kinase DYRK1A: establishing connections with the Wnt signaling pathway Krisztina Arató Memòria presentada per optar al grau de Doctora per la Universitat Pompeu Fabra. Aquesta tesi ha estat realitzada sota la direcció de la Dra. Susana de la Luna al Centre de Regulació Genòmica (CRG, Barcelona), dins del Programa de Genes i Malaltia. Krisztina Arató Susana de la Luna A Pere, por haberme traído a Barcelona… Cover design by Luisa Lente (www.yoyo.es). Index Page Abstract/Resumen.................................................................................. 1 Introduction............................................................................................. 5 The protein kinase DYRK1A................................................................ 7 The DYRK family of protein ....................................................... 7 Structure and mechanism of activation of DYRK1A kinase........ 8 Regulation of DYRK1A expression ............................................ 10 Regulation of DYRK1A subcellular localization.......................... 11 Regulation of DYRK1A activity................................................... 13 DYRK1A as a regulator of signaling pathways........................... 14 The Notch signaling pathway........................................... 16 Receptor tyrosine kinase signaling.................................
    [Show full text]