Journal of Stem Cell Research & Therapeutics Mini Review Open Access Odontogenesis - a masterful orchestration of functional redundancy or what makes tooth bioengineering an intrinsically difficult concept Abstract Volume 1 Issue 3 - 2016 Rapid increase of knowledge in stem cell research, bioengineering technology and Darko Kero,1 Mirna Saraga Babic2 molecular basis of odontogenesis has finally lead us to the point where it is possible 1Study Programme of Dental Medicine, University of Split, to develop approaches for treatment of tooth loss with bioengineered teeth, which Croatia one day might completely replace conventional prosthodontics and dental implants. 2Department of Anatomy, Histology and Embryology, University By holding onto the premise that in order to bioengineer teeth, full understanding of of Split, Croatia how teeth develop is required, it must be acknowledged that there are certain features of odontogenesis which create obstacles in gaining that understanding. One such Correspondence: Darko Kero, Study Programme of Dental feature is the functional redundancy in genetic networks responsible for molecular Medicine, School of Medicine, University of Split, Soltanska 2, control of odontogenesis. Abundant data imply that having functional redundancy of 21000 Split, Croatia, Tel +385 21 557 846, Fax +385 21 557 811, various elements in regulatory genetic networks is more than just a failsafe built into Email
[email protected] the odontogenic sequence in order to secure unhindered development of teeth. This phenomenon plays important roles in determination of tooth numbers and positioning, Received: July 02, 2016 | Published: August 05, 2016 and is increasingly recognized as important for enabling sufficient plasticity of regulatory genetic networks through which the appearance of tooth-type specific and species-specific diversity of mammalian tooth morphology can be explained.