Observations of Recurrent Laryngeal Nerve Injury and Recovery Using a Rat Model

Total Page:16

File Type:pdf, Size:1020Kb

Observations of Recurrent Laryngeal Nerve Injury and Recovery Using a Rat Model The Laryngoscope VC 2009 The American Laryngological, Rhinological and Otological Society, Inc. Observations of Recurrent Laryngeal Nerve Injury and Recovery Using a Rat Model Belachew Tessema, MD; Rick M. Roark, PhD; Michael J. Pitman, MD; Philip Weissbrod, MD; Sansar Sharma, PhD; Steven D. Schaefer, MD Objectives/Hypothesis: To evaluate standar- motor system. This model is useful to evaluate the ef- dized recurrent laryngeal nerve (RLN) injuries using ficacy of systemic and local neurotropic agents in the a rat model via minimally invasive transoral electro- treatment of RLN injury. myography (ToL EMG) and histologic studies. Key Words: RLN injury, rat model, histology, Methods: Forty-two female Sprague Dawley electromyography. rats weighing 200 g to 250 g underwent crush injury Laryngoscope, 119:1644–1651, 2009 to the right RLN using a calibrated pressure clip (0.61 N or 1.19 N) for 60 seconds. Following injury, serial ToL EMGs were performed on abductor and INTRODUCTION adductor laryngeal muscles during respiratory cycles The recurrent laryngeal nerve (RLN) is sometimes and spontaneous vocal fold abduction on day 4 and injured during surgeries of the head and neck region. then weekly for 6 weeks. Vocal fold motion associated Prognosis of functional recovery is challenging and often with spontaneous respiration was graded from 0 to 4. innacurate.1 Recovery from RLN injury is dependent on Rats were sacrificed at different time points for histo- the mode and extent of injury. As our knowledge of the logic evaluation of injured nerves. biology of peripheral nerve regeneration increases, there Results: EMG signals showed fibrillation poten- tials on day 4 in all experimental conditions. Crushed has been increasing interest in developing models of RLN, regardless of force, exhibited polyphasic poten- nerve regeneration that are pertinent to specific clinical tials at 2 weeks postinjury. Normal motor unit poten- questions. Succesful return of normal function is vari- tials and recruitment patterns were observed in EMG able. Neurotrophic factors are promising but, so far, signals at 4 weeks for all 0.61 N clip animals. Six have inconsistencies in the results. A highly focused weeks following crush injury, motor unit potentials study with predictable results is needed to effectively having normal appearance were observed in most ani- evaluate trophic factors. Various experimental animal mals. Synkinetic EMG signals were observed at 5 models have been used to study peripheral nerve injury weeks and 6 weeks in the 1.19 N clip animals. Endo- and functional recovery.2–6 Recently, several studies scopic evaluation of vocal fold mobility was consis- have used the rat larynx to evaluate potential agents tently normal at 6 weeks only following 0.61 N crush 7–11 injury. that promote recovery of the RLN following injury. Conclusions: This model is useful to simulate Aneurysm clips provide a consistent and reliable intraoperative RLN injuries and to better understand crush injury to peripheral nerves with a calibrated force 12,13 the electrophysiologic events during nerve recovery. that is applied to an area over a specific time. A The severity of injury to the RLN dictates histologic, standard method of compression will serve to ameliorate neurologic and functional recovery of the laryngeal discrepancies among research teams when studying crush injury of the RLN. The aim of the present study was to evaluate the regeneration and functional recovery From the Department of Otolaryngology, the New York Eye and Ear of RLN following controlled crush injury. This model is Infirmary, New York and New York Medical College, Valhalla, New York, U.S.A. (B.T., R.M.R., M.J.P., P.W., S.D.S.) and the Department of Cell Biology, intended to simulate one type of intraoperative RLN New York Medical College, Valhalla, New York, U.S.A. (S.S.). injury and to facilitate understanding of the histological Editor’s Note: This Manuscript was accepted for publication on and myoelectrical events that are observed during nerve February 24, 2009. recovery. Presented at the Triological Society Combined Sections Meeting, Orlando, Florida, U.S.A., May 1–4, 2008. This research was performed at New York Medical College, Val- MATERIALS AND METHODS halla, NY. Send correspondence to Steven D. Schaefer, MD, FACS, 310 E. Animals 14th St., 6th Fl, New York Eye and Ear Infirmary, New York, NY 10003. Forty-two Sprague Dawley rats weighing 200 g to 250 g E-mail: [email protected] were used in the present study. The animals were divided into DOI: 10.1002/lary.20293 two groups. The first group underwent crush injury using a Laryngoscope 119: August 2009 Tessema et al.: RLN Injury and Recovery in Rats 1644 commercially available Sugita calibrated 0.61 N aneurysm clip ports that are spaced 200 lm apart in a square pattern.16 Bipo- (Mizuho Ikakogyo, Tokyo, Japan), the second group underwent lar EMG signals were recorded from two of the four electrode crush injury using a 1.19 N aneurysm clip (Mizuho Ikakogyo). detectors. Assuming that diameters of rat laryngeal muscle Both aneurysm clips were 1.4 mm in width. Animal procedures fibers are approximately 25 lm,7 detectors of the quadrifilar were approved by the institutional review board of New York electrode, therefore, spanned multiple muscle fibers while pro- Medical College and performed in facilities approved by the viding an increased selectivity of individual motor unit action National Academy of Sciences and the National Society for potential morphologies over concentric needle electrodes. We Medical Research. Humane care was provided for these animals also tested clinically-available bipolar concentrilc needle and and all institutional and national guidelines were observed. monopolar needle electrodes for obtaining EMG recordings from the rat larynx; however, the quadrifilar electrode provided the most consistent and reliable recordings for the rat model. An Surgery ear clip electrode served as reference for the EMG recordings. Animals were sedated with isoflurane and then anesthe- Myoelectric signals were routed to a preamplifier module tized with an intramuscular injection of a mixture of Ketaset located at the needle head and then to high-gain differential and Rompun (1:1). A final dosage of 45 mg ketamine/100 g body amplifiers located nearby (in-house construction). Myoelectric weight and 0.9 mg/100 g body weight of xylazine plus 1 mg/kg signals were bandpass filtered from 15 Hz to 1,000 Hz (Krohn- acepromazine maleate produced sufficient anesthesia. Hite Model 3360, Brockton, MA) and then digitized at a depth With animals placed in a supine position in a stereotactic of 12 bits and a rate of 20 kilosamples per second (Data Trans- apparatus, a vertical midline neck incision was performed, and lation Model DT2821G, Marlboro, MA). Digitized data were the strap muscles were separated. The right recurrent laryngeal stored to the internal disc drive of a portable computer in real nerve was crushed in all animal groups and the left side was time (Dolch Computer Systems Model LPAC-PT, Freemont, used as control. The RLN was carefully identified in the tra- CA). EMG signals were displayed, analyzed, and compared cheoesophageal groove under a dissecting microscope. In the using Matab software (The Mathworks, Release 2007b, Natick, first group of animals, crush injury was performed at the level MA). of the seventh tracheal ring with a 0.61 N closing force for Myoelectric activity was also monitored visually using a exactly 60 seconds. The second group underwent an identical digital real-time oscilloscope (Tektronix TDS210, Tektronix, procedure using a Sugita 1.19 N closing force. Strap muscles Beaverton, OR) and audibly by means of an amplifier/speaker and overlying fascia were closed with 4-0 chromic suture and unit connected in parallel to the EMG data recoding system. the skin reapproximated with 5-0 nylon sutures. Kinematic activity (e.g., vocal fold movement and position) was observed visually by one investigator at a given time by means of ToL endoscopy. In some experiments, kinematic activity was Transoral Evaluation of Vocal Fold observed by all investigators by means of a video monitor that Movement EMG received its signal from a solid-state color camera (Richard Wolf Functional behavior was studied using transoral laryngeal S5366.40, Richard Wolf GmbH, Knittlingen, Germany) mounted electromyography (ToL EMG) obtained during spontaneous re- on the eyepiece of the endoscope. Simultaneous recordings of ki- spiratory cycles and vocal fold adduction under anesthesia. The nematic and myoelectric activities were achieved for some methodology of ToL EMG has been published in our earlier pa- experiments by feeding the audio/video signals to a VHS tape per,14 with salient details provided here. The animals were recorder (Panasonic AG-6300MD, Panasonic, Knoxville, TN). placed supine on a modified stereotactic operating table with a The audio/video signals were digitized to AVI files by a com- 15 incline in a Faraday cage recording room. The tongue was puter workstation following the experimental session. AVI files retracted using a 3-0 silk suture placed midline in the anterior facilitated postexperimental review and discussion. This tech- one third of the tongue and suspended. A 0 Storz operating nique helped to confirm judgments that were made during the endoscope equipped with an epiglottis elevator was transorally experimental session, including incidences of synkinesis. inserted to visualize the endolarynx and provide excellent visu- alization of the glottal region. Vocal fold movements observed via transoral endoscopy were independently graded by two Histology investigators using a continuous scale from 0 to 4 prior to per- Following ToL EMG, animals were sacrificed with an in- forming each ToL EMG. Scoring of vocal fold movement and traperitoneal injection of lethal dose of phenobarbital at position was guided by the following criteria: 0 no vocal fold postoperative day 4, 7, 14, 21, 28, 33, and 42.
Recommended publications
  • Neuroanatomy Crash Course
    Neuroanatomy Crash Course Jens Vikse ∙ Bendik Myhre ∙ Danielle Mellis Nilsson ∙ Karoline Hanevik Illustrated by: Peder Olai Skjeflo Holman ​ Second edition October 2015 The autonomic nervous system ● Division of the autonomic nervous system …………....……………………………..………….…………... 2 ● Effects of parasympathetic and sympathetic stimulation…………………………...……...……………….. 2 ● Parasympathetic ganglia ……………………………………………………………...…………....………….. 4 Cranial nerves ● Cranial nerve reflexes ………………………………………………………………….…………..…………... 7 ● Olfactory nerve (CN I) ………………………………………………………………….…………..…………... 7 ● Optic nerve (CN II) ……………………………………………………………………..…………...………….. 7 ● Pupillary light reflex …………………………………………………………………….…………...………….. 7 ● Visual field defects ……………………………………………...................................…………..………….. 8 ● Eye dynamics …………………………………………………………………………...…………...………….. 8 ● Oculomotor nerve (CN III) ……………………………………………………………...…………..………….. 9 ● Trochlear nerve (CN IV) ………………………………………………………………..…………..………….. 9 ● Trigeminal nerve (CN V) ……………………………………………………................…………..………….. 9 ● Abducens nerve (CN VI) ………………………………………………………………..…………..………….. 9 ● Facial nerve (CN VII) …………………………………………………………………...…………..………….. 10 ● Vestibulocochlear nerve (CN VIII) …………………………………………………….…………...…………. 10 ● Glossopharyngeal nerve (CN IX) …………………………………………….……….…………...………….. 10 ● Vagus nerve (CN X) …………………………………………………………..………..…………...………….. 10 ● Accessory nerve (CN XI) ……………………………………………………...………..…………..………….. 11 ● Hypoglossal nerve (CN XII) …………………………………………………..………..…………...………….
    [Show full text]
  • Structural Brain Abnormalities in Patients with Primary Open-Angle Glaucoma: a Study with 3T MR Imaging
    Glaucoma Structural Brain Abnormalities in Patients with Primary Open-Angle Glaucoma: A Study with 3T MR Imaging Wei W. Chen,1–3 Ningli Wang,1,3 Suping Cai,3,4 Zhijia Fang,5 Man Yu,2 Qizhu Wu,5 Li Tang,2 Bo Guo,2 Yuliang Feng,2 Jost B. Jonas,6 Xiaoming Chen,2 Xuyang Liu,3,4 and Qiyong Gong5 PURPOSE. We examined changes of the central nervous system CONCLUSIONS. In patients with POAG, three-dimensional MRI in patients with advanced primary open-angle glaucoma revealed widespread abnormalities in the central nervous (POAG). system beyond the visual cortex. (Invest Ophthalmol Vis Sci. 2013;54:545–554) DOI:10.1167/iovs.12-9893 METHODS. The clinical observational study included 15 patients with bilateral advanced POAG and 15 healthy normal control subjects, matched for age and sex with the study group. Retinal rimary open angle glaucoma (POAG) has been defined nerve fiber layer (RNFL) thickness was measured by optical formerly by intraocular morphologic changes, such as coherence tomography (OCT). Using a 3-dimensional magne- P progressive retinal ganglion cell loss and defects in the retinal tization-prepared rapid gradient-echo sequence (3D–MP-RAGE) nerve fiber layer (RNFL), and by corresponding psychophysical of magnetic resonance imaging (MRI) and optimized voxel- abnormalities, such as visual field loss.1 Recent studies by based morphometry (VBM), we measured the cross-sectional various researchers, however, have suggested that the entire area of the optic nerve and optic chiasm, and the gray matter visual pathway may be involved in glaucoma.2–23 Findings from volume of the brain.
    [Show full text]
  • Asymmetries of Dark and Bright Negative Afterimages Are Paralleled by Subcortical on and OFF Poststimulus Responses
    1984 • The Journal of Neuroscience, February 22, 2017 • 37(8):1984–1996 Systems/Circuits Asymmetries of Dark and Bright Negative Afterimages Are Paralleled by Subcortical ON and OFF Poststimulus Responses X Hui Li,1,2 X Xu Liu,1,2 X Ian M. Andolina,1 Xiaohong Li,1 Yiliang Lu,1 Lothar Spillmann,3 and Wei Wang1 1Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China, 2University of Chinese Academy of Sciences, Shanghai 200031, China, and 3Department of Neurology, University of Freiburg, 79085 Freiburg, Germany Humans are more sensitive to luminance decrements than increments, as evidenced by lower thresholds and shorter latencies for dark stimuli. This asymmetry is consistent with results of neurophysiological recordings in dorsal lateral geniculate nucleus (dLGN) and primary visual cortex (V1) of cat and monkey. Specifically, V1 population responses demonstrate that darks elicit higher levels of activation than brights, and the latency of OFF responses in dLGN and V1 is shorter than that of ON responses. The removal of a dark or bright disc often generates the perception of a negative afterimage, and here we ask whether there also exist asymmetries for negative afterimages elicited by dark and bright discs. If so, do the poststimulus responses of subcortical ON and OFF cells parallel such afterimage asymmetries? To test these hypotheses, we performed psychophysical experiments in humans and single-cell/S-potential recordings in cat dLGN. Psychophysically, we found that bright afterimages elicited by luminance decrements are stronger and last longer than dark afterimages elicited by luminance increments of equal sizes.
    [Show full text]
  • Embryology, Anatomy, and Physiology of the Afferent Visual Pathway
    CHAPTER 1 Embryology, Anatomy, and Physiology of the Afferent Visual Pathway Joseph F. Rizzo III RETINA Physiology Embryology of the Eye and Retina Blood Supply Basic Anatomy and Physiology POSTGENICULATE VISUAL SENSORY PATHWAYS Overview of Retinal Outflow: Parallel Pathways Embryology OPTIC NERVE Anatomy of the Optic Radiations Embryology Blood Supply General Anatomy CORTICAL VISUAL AREAS Optic Nerve Blood Supply Cortical Area V1 Optic Nerve Sheaths Cortical Area V2 Optic Nerve Axons Cortical Areas V3 and V3A OPTIC CHIASM Dorsal and Ventral Visual Streams Embryology Cortical Area V5 Gross Anatomy of the Chiasm and Perichiasmal Region Cortical Area V4 Organization of Nerve Fibers within the Optic Chiasm Area TE Blood Supply Cortical Area V6 OPTIC TRACT OTHER CEREBRAL AREASCONTRIBUTING TO VISUAL LATERAL GENICULATE NUCLEUSPERCEPTION Anatomic and Functional Organization The brain devotes more cells and connections to vision lular, magnocellular, and koniocellular pathways—each of than any other sense or motor function. This chapter presents which contributes to visual processing at the primary visual an overview of the development, anatomy, and physiology cortex. Beyond the primary visual cortex, two streams of of this extremely complex but fascinating system. Of neces- information flow develop: the dorsal stream, primarily for sity, the subject matter is greatly abridged, although special detection of where objects are and for motion perception, attention is given to principles that relate to clinical neuro- and the ventral stream, primarily for detection of what ophthalmology. objects are (including their color, depth, and form). At Light initiates a cascade of cellular responses in the retina every level of the visual system, however, information that begins as a slow, graded response of the photoreceptors among these ‘‘parallel’’ pathways is shared by intercellular, and transforms into a volley of coordinated action potentials thalamic-cortical, and intercortical connections.
    [Show full text]
  • Eye Essentials 5
    continuing education 33 Eye essentials 5 Successful participation in each Classification and localisation module of this approved series counts as one credit towards the GOC CET scheme administered by Vantage and of visual field defects one towards the AOI’s scheme. In the last of our features based on the Eye Essential textbooks, Dr Robert Cubbidge describes the visual pathway and its relationship with the visual field. CET module C2354 This article has been adapted and abridged from Visual Fields by Dr THE DIMENSION of the blind spot Robert Cubbidge, is approximately 7.5º high and 5.5º wide part of the new and represents the temporal visual field Eye Essentials projection of the optic nerve, found series. For further approximately 1.5º below and 15º horizon- information, tally from fixation. When interpreting including ordering, please click on visual field defects, knowledge of the the Bookstore link arrangement of nerve fibres in the visual at www.optician pathway is essential. online.net Depending on the site of damage in the visual pathway, characteristic visual field defects are produced (Figure 1). course to the optic nerve as they are not Anatomically, the visual pathway hindered by the papillomacular bundle begins at the photoreceptors which lie in (Figure 2). The nerve fibres from the nasal the outer retina. Here, photons of light are retina do not cross those of the temporal absorbed by the photopigments, which are retina and thereby form a theoretical sensitive to specific regions of the visible vertical line of demarcation which passes electromagnetic spectrum. Light energy through the centre of the fovea.
    [Show full text]
  • Anatomy and Physiology of the Afferent Visual System
    Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes.
    [Show full text]
  • Cranial Nerves II, III, IV & VI (Optic, Oculomotor, Trochlear, & Abducens)
    Cranial Nerves II, III, IV & VI (Optic, Oculomotor, Trochlear, & Abducens) Lecture (13) ▪ Important ▪ Doctors Notes Please check our Editing File ▪ Notes/Extra explanation ه هذا العمل مب ين بشكل أسا يس عىل عمل دفعة 436 مع المراجعة { َوَم نْ يَ َت َو َ ّكْ عَ َلْ ا َّْلل فَهُ َوْ َحْ سْ ُ ُُْ} والتدقيق وإضافة المﻻحظات وﻻ يغ ين عن المصدر اﻷسا يس للمذاكرة ▪ Objectives At the end of the lecture, students should be able to: ✓ List the cranial nuclei related to occulomotor, trochlear, and abducent nerves in the brain stem. ✓ Describe the type and site of each nucleus. ✓ Describe the site of emergence and course of these 3 nerves. ✓ Describe the important relations of oculomotor, trochlear, and abducent nerves in the orbit ✓ List the orbital muscles supplied by each of these 3 nerves. ✓ Describe the effect of lesion of each of these 3 nerves. ✓ Describe the optic nerve and visual pathway. Recall the how these nerves exit from the brain stem: Optic (does not exit from brain stem) Occulomotor: ventral midbrain (medial aspect of crus cerebri) Trochlear: dorsal midbrain (caudal to inferior colliculus) Abducent: ventral Pons (junction b/w pons & pyramid) Brain (Ventral view) Brain stem (Lateral view) Extra-Ocular Muscles 7 muscles: (ترفع جفن العين) .Levator palpebrae superioris 1- Origin: from the roof of the orbit (4) Recti muscles: *Rectus: ماشي على ( Superior rectus (upward and medially 2- الصراط (Inferior rectus (downward and medially 3- المستقيم 4- Medial rectus (medial) (medial) 5- Lateral rectus (lateral) How to remember the 2 فحركته muscles not supplied by نفس اسمه -اسمها عكس وظيفتها- :Oblique muscles (2) 6- Superior oblique (downward and laterally) Oblique: CN3? Superior oblique goes -1 منحرفOrigin: from the roof of the orbit 7- Inferior oblique (upward and laterally) up (superior) and turns around (oblique) a notch يمشي Origin: from the anterior floor or pulley and its supply is عكس كﻻمه NB.
    [Show full text]
  • Diseases of the Vitreous, Retina and Optic Nerve
    Diseases of the Vitreous, Retina and Optic Nerve University of Florida Normal dog fundic appearance tapetum- reflective area of the superior X fundus optic disk retinal vessels nontapetum Cat Dog Tapetal fundus color dependent on age, breed and coat color blue until 6 to 10 wks 4, 8, 13, 18 wks Tapetal fundus cellular layer of the choroid variable boundary with the nontapetum area centralis (cone rich) – visual streak: RGCs no melanin in tapetal RPE nontapetal color depends on the degree of RPE and iris pigmentation choroidal vessels (orange) may be visible Retinal vasculature usually 3 or 4 major venules – form a circle (not always complete) on the optic disk surface up to 20 arterioles – may be tortuous Optic disk variable amount of myelin pale pink in color physiological pit ± pigmented ring Normal fundic variations Cat – circular optic disk lacks myelin – 3 major venules leave the disk edge with 3 major arterioles – Tapetum is usually yellow or green in color Normal fundic variations horse – 30-60 small blood vessels extend a short distance from the disk edge – oval optic disk – Stars of Winslow – fibrous tapetum Vitreal opacities Vitreal degeneration from inflammation, trauma, senile changes may predispose to retinal detachment leukocytes hemorrhage – resolution over months asteroid hyalosis – calcium-lipid complexes Choroidal coloboma Equatorial staphyloma: Australian Shepherds Progressive Retinal Atrophy (PRA) in the dog inherited retinal photoreceptor dysplasia or degeneration PRA: progressive loss of night
    [Show full text]
  • Cranial Nerve Disorders: Clinical Manifestations and Topographyଝ
    Radiología. 2019;61(2):99---123 www.elsevier.es/rx UPDATE IN RADIOLOGY Cranial nerve disorders: Clinical manifestations and topographyଝ a,∗ a b c M. Jorquera Moya , S. Merino Menéndez , J. Porta Etessam , J. Escribano Vera , a M. Yus Fuertes a Sección de Neurorradiología, Hospital Clínico San Carlos, Madrid, Spain b Servicio de Neurología, Hospital Clínico San Carlos, Madrid, Spain c Neurorradiología, Hospital Ruber Internacional, Madrid, Spain Received 17 November 2017; accepted 27 September 2018 KEYWORDS Abstract The detection of pathological conditions related to the twelve cranial pairs rep- Cranial pairs; resents a significant challenge for both clinicians and radiologists; imaging techniques are Cranial nerves; fundamental for the management of many patients with these conditions. In addition to knowl- Cranial neuropathies; edge about the anatomy and pathological entities that can potentially affect the cranial pairs, Neuralgia; the imaging evaluation of patients with possible cranial pair disorders requires specific exami- Cranial nerve palsy nation protocols, acquisition techniques, and image processing. This article provides a review of the most common symptoms and syndromes related with the cranial pairs that might require imaging tests, together with a brief overview of the anatomy, the most common underlying processes, and the most appropriate imaging tests for different indications. © 2018 SERAM. Published by Elsevier Espana,˜ S.L.U. All rights reserved. PALABRAS CLAVE Sintomatología derivada de los pares craneales: Clínica y topografía Pares craneales; Resumen La detección de la patología relacionada con los doce pares craneales representa Nervios craneales; un importante desafío, tanto para los clínicos como para los radiólogos. Las técnicas de imagen Neuropatía de pares craneales; son fundamentales para el manejo de muchos de los pacientes.
    [Show full text]
  • Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves
    Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves Paul Rea AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First published 2014 Copyright r 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
    [Show full text]
  • Lecture 6: Cranial Nerves
    Lecture 6: Cranial Nerves Objective: To understand the organization of cranial nerves with respect to their nuclei within the brain, their course through and exit from the brain, and their functional roles. Olfactory Eye Muscles 3, 4 &6 Cranial Nerves 1-7 I overview Table, Page 49 II Lecture notes Cranial Nerves and their Functions V Trigeminal VII Facial VIII IX X XII XI Cranial Nerves 8-12 Overview sternocephalic I. Factors Responsible for the Complex Internal Organization of the Brain Stem-> leads to altered location of cranial nerve nuclei in adult brain stem 1. Development of the Fourth Ventricle a. Medulla and Pons develop ventral to the 4th ventricle cerebellum b. Alar plate is displaced lateral to basal plate 4 Medulla Developing Neural Tube 2. Cranial nerve nuclei form discontinuous columns Rostral 12 SE Page 48 Notes 3. Some cranial nerve nuclei migrate from their primitive embryonic positions (e.g., nuclei of V and VII) Facial N. Factors responsible for the complex internal organization of the brainstem: 4) Special senses develop in association with the brain stem. Nuclei of special senses 5) Development of the cerebellum and its connections Cerebellum II. Cranial Nerve Nuclei: Nucleus = column of neuron cell bodies. Efferent nuclei are composed of cell bodies of alpha or gamma motor neurons (SE) or preganglionic parasympathetic neurons (VE). III. Motor Efferent Nuclei (Basal Plate Derivatives): 1. SE (Somatic Efferent) Nuclei: SE neurons form two longitudinally oriented but discontinuous columns of cell bodies in the brain stem. Neurons that comprise these columns are responsible for innervating all of the skeletal musculature of the head.
    [Show full text]
  • What Is Optic Nerve Hypoplasia?
    What is the optic nerve? The optic nerve is a collection of more than a million nerve fibers that transmit visual signals from the eye to the brain [See Figure 1]. The optic nerve develops during the first trimester of intrauterine life. Fig. 1: Normal optic nerve. What is optic nerve hypoplasia? Optic nerve hypoplasia (ONH) is a congenital condition in which the optic nerve is underdeveloped (small) [See figure 2]. Fig. 2: Optic nerve hypoplasia. How is optic nerve hypoplasia diagnosed? The diagnosis of ONH is typically made by the appearance of small/pale optic nerve during a dilated eye exam. It is difficult to predict visual acuity potential based on the optic nerve appearance. What causes optic nerve hypoplasia? Most cases of ONH have no clearly identifiable cause. There are no known racial or socioeconomic factors in the development of ONH, nor is there a known association with exposure to pesticides. ONH has been associated with maternal ingestion of phenytoin, quinine, and LSD, as well as with fetal alcohol syndrome. What visual problems are associated with optic nerve hypoplasia? Vision impairment from ONH ranges from mild to severe and may affect one or both eyes. Nystagmus (shaking of the eyes) may be seen with both unilateral and bilateral cases. The incidence of strabismus is increased with ONH. Is optic nerve hypoplasia associated with non-visual problems? Optic nerve hypoplasia can be associated with central nervous system (CNS) malformations which put the patient at risk for other problems, including seizure disorder and developmental delay. Hormone deficiencies occur in most children, regardless of associated midline brain abnormalities or pituitary gland abnormalities on MRI.
    [Show full text]