Effect on Heartbeat of Drosophila Melanogaster of Mutations in the Calcium Channel Encoding Cacophony Gene and Its Interaction W

Total Page:16

File Type:pdf, Size:1020Kb

Effect on Heartbeat of Drosophila Melanogaster of Mutations in the Calcium Channel Encoding Cacophony Gene and Its Interaction W The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 2003 Effect on Heartbeat of Drosophila melanogaster of Mutations in the Calcium Channel Encoding cacophony Gene and its Interaction with the RNA Helicase Mutant maleless^napts Vanessa McGowan Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Medicine and Health Sciences Commons, and the Zoology Commons Recommended Citation McGowan, Vanessa, "Effect on Heartbeat of Drosophila melanogaster of Mutations in the Calcium Channel Encoding cacophony Gene and its Interaction with the RNA Helicase Mutant maleless^napts" (2003). Electronic Theses and Dissertations. 352. http://digitalcommons.library.umaine.edu/etd/352 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. EFFECT ON HEARTBEAT OF Drosophila melanogaster OF MUTATIONS IN THE CALCIUM CHANNEL ENCODING cacophony GENE AND ITS INTERACTION WITH THE RNA HELICASE MUTANT malelessnapts BY Vanessa McGowan B.S. University of Maine, 2000 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Zoology) The Graduate School The University of Maine December, 2003 Advisory Committee: Harold B. Dowse, Professor of Zoology and Cooperating Professor of Mathematics, Advisor John M. Ringo, Professor of Biology Erik Johnson, Ph.D. 02003 Vanessa McGowan Ray All Rights Reserved EFFECT ON HEARTBEAT OF Drosophila melanogaster OF MUTATIONS IN THE CALCIUM CHANNEL ENCODING cacophony GENE AND ITS INTERACTION WITH THE RNA HELICASE MUTANT malelessnapts By Vanessa McGowan Ray Thesis Advisor: Dr. Harold B. Dowse An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Zoology) December, 2003 There is a lack of information concerning the genetics of heart disease, especially of those due to aberrant pacemaker activity. Drosophila melanogaster is an ideal candidate for research in this area because of its suitability to genetic manipulation and its accessible genetic database. What is most compelling, however, is that the genesis of heartbeat is Drosophila is strikingly similar to that in many other organisms, including mammals. The myogenic heart ofDrosophiIa melanogaster is stimulated to contract by a caudal pacemaker, which is regulated by ion channel interactions. A voltage-gated calcium channel of PIQ- or N-type is implicated in the pacemaker by pharmacological studies. The voltage-gated calcium channel a,subunit encoding gene in Drosophila, cacophony (cac), was identified as a candidate for this role. After examining heartbeat of the cac alleles cacSand cacfi2I report that they have increased heart rates and rhythmicities, potentially due to altered inactivation of the calcium channels they encode affecting pacemaking. The gene with which the RNA helicase mutant no action potentialremperflrure-sens'r've (mlenflPrs)interacts, causing anhythmic heartbeat, has yet to be uncovered. mlenflP'5san allele of the dosage compensation gene maleless (mle). It is possible that mlenflPrsis interacting with cac to cause deviations in heartbeat phenotype fiom wild-type. By characterizing heartbeat of cac ;mlenflPrs double mutants I determine that the genes interact, but in an unresolved manner. ACKNOWLEDGMENTS I would like to thank the Association of Graduate Students for helping fund this project through research grant awards. I would also like to thank the members of my advisory committee for the time and energy they committed to helping me mold this project and thesis into its present form. I also appreciate the example they set for fulfilling the requirements placed on research scientists in academia. There are other people who deserve recognition for their contribution to my personal development throughout my time as a graduate student. During my time as a graduate student I gained valuable experience as a teachmg assistant. Because of this commitment, I had the privilege of working closely with the laboratory coordinator, Kevin Tracewski. I thank him not only for his professional guidance and steadfast support, but also for his insight on life planning. As an athlete on the University of Maine's cross country and track & field teams I forged a strong bond with my coach, Mark Lech. He has been one of my biggest advocates, and I have relied on him for advice and guidance in personal and athletic matters. Above all, my family has always supported me in my endeavors, personally, emotionally, and sometimes financially. My parents, sisters, and husband, Benjamin, have been temfic listeners and morale coaches. TABLE OF CONTENTS ... ACKNOWLEDGMENTS.......................................................................... ill ... LIST OF TABLES .................................................................................vm LIST OF FIGURES .................................................................................ix Chapter 1. EFFECT ON HEARTBEAT OF Drosophila melanogaster OF MUTATIONS IN THE CALCIUM CHANNEL ENCODING cacophony GENE ........... 1 Introduction ...................................................................................1 Background Information on cacophony: Alleles and their Phenotypes ......1 The Discovery of the cacophony Gene: Courtship Song ............1 cac Alleles: Visual and Lethal Mutants ................................. 3 Pleiotropic Effects of cac Mutations: Courtship Defects ............ 5 Pleiotropic Effects of cac Mutations: Motor Defects .................6 Behavioral Exclusions of cac Mutants ..................................7 Calcium Channel Information .....................................................8 Composition of Voltage-Gated Calcium Channels ....................8 Types of Voltage-Gated Calcium Channels .......................... 16 Diversity of Voltage-Gated Calcium Channels ......................21 Roles of Voltage-Gated Calcium Channels ...........................22 Molecular Characterization of cacophony ..................................... 23 The cac Gene Transcript - Dmcal A ..................................23 cac Transcript Diversity ................................................. 25 Molecular Lesions of cac Mutants ..................................... 29 Heartbeat of Drosophila melanogaster .........................................31 Synaptic Physiology of cac Mutants ...................................31 The Heart of Drosophila melanogaster ...............................33 Ion Channels of the Drosophila Cardiac Pacemaker ................35 Perspectives: Importance of Drosophila Research ...........................40 Similarities Between Cardiac Physiologies of Homo sapiens and Drosophila ...........................................................41 Importance of Pacemaker Research ....................................42 Importance of Studying cac Heartbeat Mutants ..................... 46 Materials and Methods .....................................................................48 Fly Culture and Experimental Strains ..........................................48 Control Strains.... :................................................................. 49 Heartbeat Recordings andTemperature Step Protocols ......... ; ...........50 Data Analysis .....................................................................-52 Results ......................................................................................-54 Wild-type Heart Rate Phenotype ................................................54 Effect of cackn Heartbeat Frequency ......................................... 54 Effect of cacIs2 on Heartbeat Frequency .......................................79 Wild-type Rhythmicity Index Phenotype ......................................80 Effect of cac Mutations on Heartbeat Rhythmicity Index ................... 84 Discussion ................................................................................... 86 The cac Gene's Participation in Heartbeat Pacemaking ..................... 86 Aberrant Calcium Channel Inactivation in cac Mutants .....................88 Alternate Explanation for cac Mutants' Heartbeat Phenotypes .............95 Differences in Calcium Channel Defects of cac Mutants ....................97 Ion Channels of the Drosophila Cardiac Pacemaker ........................ 100 2 . EFFECT ON HEARTBEAT OF Drosophila melanogaster OF AN INTERACTION BET WEEN THE RNA HELIC A SE MUTANT malelessnflptS AND THE VOLTAGE-GATED CALCIUM CHANNEL MUTANT cacophony...................................................................................... 103 Introduction................................................................................ 103 he malelessnflP?Mutant ........................................................ 103 Interaction between mlenflPtsand para ......................................... 105 Interaction between . cbc and mlenflPts........................................... 108 Materials and Methods .......... :.......................................................... -111 Fly Culture, Experimental and Control Strains ..............................111 Double Mutant Mating Schemes .............................................. 112 Heartbeat Recordings, Temperature Step Protocols, and Data Analysis ...........................................................................115 Results ......................................................................................116
Recommended publications
  • An in Vivo Examination of the Differences Between Rapid
    www.nature.com/scientificreports OPEN An in vivo examination of the diferences between rapid cardiovascular collapse and prolonged hypotension induced by snake venom Rahini Kakumanu1, Barbara K. Kemp-Harper1, Anjana Silva 1,2, Sanjaya Kuruppu3, Geofrey K. Isbister 1,4 & Wayne C. Hodgson1* We investigated the cardiovascular efects of venoms from seven medically important species of snakes: Australian Eastern Brown snake (Pseudonaja textilis), Sri Lankan Russell’s viper (Daboia russelii), Javanese Russell’s viper (D. siamensis), Gaboon viper (Bitis gabonica), Uracoan rattlesnake (Crotalus vegrandis), Carpet viper (Echis ocellatus) and Puf adder (Bitis arietans), and identifed two distinct patterns of efects: i.e. rapid cardiovascular collapse and prolonged hypotension. P. textilis (5 µg/kg, i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms induced rapid (i.e. within 2 min) cardiovascular collapse in anaesthetised rats. P. textilis (20 mg/kg, i.m.) caused collapse within 10 min. D. russelii (100 µg/kg, i.v.) and D. siamensis (100 µg/kg, i.v.) venoms caused ‘prolonged hypotension’, characterised by a persistent decrease in blood pressure with recovery. D. russelii venom (50 mg/kg and 100 mg/kg, i.m.) also caused prolonged hypotension. A priming dose of P. textilis venom (2 µg/kg, i.v.) prevented collapse by E. ocellatus venom (50 µg/kg, i.v.), but had no signifcant efect on subsequent addition of D. russelii venom (1 mg/kg, i.v). Two priming doses (1 µg/kg, i.v.) of E. ocellatus venom prevented collapse by E. ocellatus venom (50 µg/kg, i.v.). B. gabonica, C. vegrandis and B.
    [Show full text]
  • Toxicology in Antiquity
    TOXICOLOGY IN ANTIQUITY Other published books in the History of Toxicology and Environmental Health series Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume I, May 2014, 978-0-12-800045-8 Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume II, September 2014, 978-0-12-801506-3 Wexler, Toxicology in the Middle Ages and Renaissance, March 2017, 978-0-12-809554-6 Bobst, History of Risk Assessment in Toxicology, October 2017, 978-0-12-809532-4 Balls, et al., The History of Alternative Test Methods in Toxicology, October 2018, 978-0-12-813697-3 TOXICOLOGY IN ANTIQUITY SECOND EDITION Edited by PHILIP WEXLER Retired, National Library of Medicine’s (NLM) Toxicology and Environmental Health Information Program, Bethesda, MD, USA Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright r 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).
    [Show full text]
  • Neurotoxicity in Snakebite—The Limits of Our Knowledge
    Review Neurotoxicity in Snakebite—The Limits of Our Knowledge Udaya K. Ranawaka1*, David G. Lalloo2, H. Janaka de Silva1 1 Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka, 2 Liverpool School of Tropical Medicine, Liverpool, United Kingdom been well described with pit vipers (family Viperidae, subfamily Abstract: Snakebite is classified by the WHO as a Crotalinae) such as rattlesnakes (Crotalus spp.) [58–67]. Although neglected tropical disease. Envenoming is a significant considered relatively less common with true vipers (family public health problem in tropical and subtropical regions. Viperidae, subfamily Viperinae), neurotoxicity is well recognized Neurotoxicity is a key feature of some envenomings, and in envenoming with Russell’s viper (Daboia russelii) in Sri Lanka and there are many unanswered questions regarding this South India [9,68–75], the asp viper (Vipera aspis) [76–82], the manifestation. Acute neuromuscular weakness with respi- adder (Vipera berus) [83–85], and the nose-horned viper (Vipera ratory involvement is the most clinically important ammodytes) [86,87]. neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed Acute neuromuscular paralysis is the main type of neurotoxicity neurotoxicity. Symptom evolution and recovery, patterns and is an important cause of morbidity and mortality related to of weakness, respiratory involvement, and response to snakebite. Mechanical ventilation, intensive care, antivenom antivenom and acetyl cholinesterase inhibitors are vari- treatment, other ancillary care, and prolonged hospital stays all able, and seem to depend on the snake species, type of contribute to a significant cost of provision of care. And ironically, neurotoxicity, and geographical variations. Recent data snakebite is common in resource-poor countries that can ill afford have challenged the traditional concepts of neurotoxicity such treatment costs.
    [Show full text]
  • Drosophila and Human Transcriptomic Data Mining Provides Evidence for Therapeutic
    Drosophila and human transcriptomic data mining provides evidence for therapeutic mechanism of pentylenetetrazole in Down syndrome Author Abhay Sharma Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research Delhi University Campus, Mall Road Delhi 110007, India Tel: +91-11-27666156, Fax: +91-11-27662407 Email: [email protected] Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 Running head: Pentylenetetrazole mechanism in Down syndrome 1 Abstract Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ’s therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ’s downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.
    [Show full text]
  • Endosomal PI(3)P Regulation by the COMMD/CCDC22/CCDC93
    ARTICLE https://doi.org/10.1038/s41467-019-12221-6 OPEN Endosomal PI(3)P regulation by the COMMD/ CCDC22/CCDC93 (CCC) complex controls membrane protein recycling Amika Singla 1,5, Alina Fedoseienko2,5, Sai S.P. Giridharan3, Brittany L. Overlee2, Adam Lopez1, Da Jia 4, Jie Song1, Kayci Huff-Hardy1, Lois Weisman3, Ezra Burstein 1,6 & Daniel D. Billadeau2,6 1234567890():,; Protein recycling through the endolysosomal system relies on molecular assemblies that interact with cargo proteins, membranes, and effector molecules. Among them, the COMMD/CCDC22/CCDC93 (CCC) complex plays a critical role in recycling events. While CCC is closely associated with retriever, a cargo recognition complex, its mechanism of action remains unexplained. Herein we show that CCC and retriever are closely linked through sharing a common subunit (VPS35L), yet the integrity of CCC, but not retriever, is required to maintain normal endosomal levels of phosphatidylinositol-3-phosphate (PI(3)P). CCC complex depletion leads to elevated PI(3)P levels, enhanced recruitment and activation of WASH (an actin nucleation promoting factor), excess endosomal F-actin and trapping of internalized receptors. Mechanistically, we find that CCC regulates the phosphorylation and endosomal recruitment of the PI(3)P phosphatase MTMR2. Taken together, we show that the regulation of PI(3)P levels by the CCC complex is critical to protein recycling in the endosomal compartment. 1 Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 2 Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
    [Show full text]
  • An Atlas of Cell Types in the Mouse Epididymis and Vas Deferens
    TOOLS AND RESOURCES An atlas of cell types in the mouse epididymis and vas deferens Vera D Rinaldi1†, Elisa Donnard2†, Kyle Gellatly2, Morten Rasmussen1‡, Alper Kucukural2, Onur Yukselen2, Manuel Garber2,3, Upasna Sharma4, Oliver J Rando1* 1Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States; 2Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States; 3Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States; 4Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States Abstract Following testicular spermatogenesis, mammalian sperm continue to mature in a long epithelial tube known as the epididymis, which plays key roles in remodeling sperm protein, lipid, and RNA composition. To understand the roles for the epididymis in reproductive biology, we generated a single-cell atlas of the murine epididymis and vas deferens. We recovered key epithelial cell types including principal cells, clear cells, and basal cells, along with associated *For correspondence: support cells that include fibroblasts, smooth muscle, macrophages and other immune cells. [email protected] Moreover, our data illuminate extensive regional specialization of principal cell populations across †These authors contributed the length of the epididymis. In addition to region-specific specialization of principal cells, we find equally to this work evidence for functionally specialized subpopulations of stromal cells, and, most notably, two ‡ distinct populations of clear cells. Our dataset extends on existing knowledge of epididymal Present address: Department of Virus and Microbiological biology, and provides a wealth of information on potential regulatory and signaling factors that Special Diagnostics, Statens bear future investigation.
    [Show full text]
  • In the Molecular Evolution of Snake Venom Proteins Robin Doley National University of Singapore
    University of Northern Colorado Scholarship & Creative Works @ Digital UNC School of Biological Sciences Faculty Publications School of Biological Sciences 2009 Role of Accelerated Segment Switch in Exons to Alter Targeting (Asset) in the Molecular Evolution of Snake Venom Proteins Robin Doley National University of Singapore Stephen P. Mackessy University of Northern Colorado R. Manjunatha Kini National University of Singapore Follow this and additional works at: http://digscholarship.unco.edu/biofacpub Part of the Biology Commons Recommended Citation Doley, Robin; Mackessy, Stephen P.; and Kini, R. Manjunatha, "Role of Accelerated Segment Switch in Exons to Alter Targeting (Asset) in the Molecular Evolution of Snake Venom Proteins" (2009). School of Biological Sciences Faculty Publications. 7. http://digscholarship.unco.edu/biofacpub/7 This Article is brought to you for free and open access by the School of Biological Sciences at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in School of Biological Sciences Faculty Publications by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact [email protected]. BMC Evolutionary Biology BioMed Central Research article Open Access Role of accelerated segment switch in exons to alter targeting (ASSET) in the molecular evolution of snake venom proteins Robin Doley1, Stephen P Mackessy2 and R Manjunatha Kini*1 Address: 1Protein Science Laboratory, Department of Biological Sciences, National University of
    [Show full text]
  • A New Entrez Database Transitioning from Locuslink to Entrez
    NCBI News National Center for Biotechnology Information National Library of Medicine National Institutes of Health Spring 2004 Department of Health and Human Services Transitioning from LocusLink to Entrez Gene Cancer Chromosomes: a New Entrez Database A gene-based view of annotated The Entrez Gene help document genomes is essential to capitalize on provides tips to ease the transition Three databases, the NCI/NCBI the increase in the sequencing and for LocusLink users to the current SKY (Spectral Karyotyping)/M- analysis of model genomes. The Entrez Gene database. FISH (Multiplex-FISH) and CGH Entrez Gene database has been (Comparative Genomic The default display format for developed to supply key connections Hybridization) Database, the NCI Entrez Gene is the graphics display between maps, sequences, expression Mitelman Database of Chromosome shown in Figure 1 for BMP7, which profiles, structure, function, homolo- Aberrations in Cancer, and the NCI resembles the traditional view of a gy data, and the scientific literature. Recurrent Chromosome Aberrations LocusLink record. The array of col- Unique identifiers are assigned to in Cancer databases are now integrat- ored boxes at the head of LocusLink genes with defining sequence, genes ed into NCBI’s Entrez system as the reports that provide links to gene- with known map positions, and “Cancer Chromosomes” database. related resources is replaced by the genes inferred from phenotypic Cancer Chromosomes supports “Links” menu in Gene, which information. These gene identifiers searches for cytogenetic, clinical, or includes additional links, such as are tracked, and functional informa- reference information using the flexi- those to Books, GEO, UniSTS, and tion is added when available.
    [Show full text]
  • Composition Modulating Botulinum Neurotoxin Effect
    (19) *EP003753568A1* (11) EP 3 753 568 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 23.12.2020 Bulletin 2020/52 A61K 38/17 (2006.01) A61K 31/205 (2006.01) A61K 31/4178 (2006.01) A61K 38/48 (2006.01) (2006.01) (2006.01) (21) Application number: 19181635.4 A61P 9/00 A61P 21/00 A61P 29/00 (2006.01) (22) Date of filing: 21.06.2019 (84) Designated Contracting States: •Cros, Cécile AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 74580 Viry (FR) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • Hulo, Nicolas PL PT RO RS SE SI SK SM TR 1252 Meinier (CH) Designated Extension States: • Machicoane, Mickaël BA ME 1290 Versoix (CH) Designated Validation States: KH MA MD TN (74) Representative: Barbot, Willy Simodoro-ip (71) Applicant: Fastox Pharma SA 82, rue Sylvabelle 1003 Lausanne (CH) 13006 Marseille (FR) (72) Inventors: • Le Doussal, Jean-Marc 1007 Lausanne (CH) (54) COMPOSITION MODULATING BOTULINUM NEUROTOXIN EFFECT (57) The present invention relates to a method for cholinergic neuronal transmission to the botulinum neu- modulating the effect of a botulinum neurotoxin compo- rotoxin composition. The invention also relates to com- sition, that is accelerating the onset of action and /or ex- positions comprising at least one postsynaptic inhibitor tending the duration of action and/or enhancing the in- of cholinergic neuronal transmission and a botulinum tensity of action of a botulinum neurotoxin composition, neurotoxin, and their uses for treating aesthetic or ther- comprising adding at least one postsynaptic inhibitor of apeutic conditions.
    [Show full text]
  • Complete, Duplication-Aware Phylogenetic Trees in Vertebrates
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Resource EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates Albert J. Vilella,1 Jessica Severin,1,3 Abel Ureta-Vidal,1,4 Li Heng,2 Richard Durbin,2 and Ewan Birney1,5 1EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom; 2Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom We have developed a comprehensive gene orientated phylogenetic resource, EnsemblCompara GeneTrees, based on a computational pipeline to handle clustering, multiple alignment, and tree generation, including the handling of large gene families. We developed two novel non-sequence-based metrics of gene tree correctness and benchmarked a number of tree methods. The TreeBeST method from TreeFam shows the best performance in our hands. We also compared this phylogenetic approach to clustering approaches for ortholog prediction, showing a large increase in coverage using the phylogenetic approach. All data are made available in a number of formats and will be kept up to date with the Ensembl project. [Supplemental material is available online at www.genome.org.] The use of phylogenetic trees to describe the evolution of bi- provide links to these model organisms. In this paper we provide ological processes was established in the 1950s (Hennig 1952) and the motivation, implementation, and benchmarking of this method remains a fundamental approach to understanding the evolution and document the display and access methods for these trees. of individual genes through to complete genomes; for example, in There have been a number of methods proposed for routine the mouse (Mouse Genome Sequencing Consortium 2002), rat generation of genomewide orthology descriptions, including (Gibbs et al.
    [Show full text]
  • The Ribosomal Protein Genes and Minute Loci of Drosophila
    Open Access Research2007MarygoldetVolume al. 8, Issue 10, Article R216 The ribosomal protein genes and Minute loci of Drosophila melanogaster Steven J Marygold*, John Roote†, Gunter Reuter‡, Andrew Lambertsson§, Michael Ashburner†, Gillian H Millburn†, Paul M Harrison¶, Zhan Yu¶, Naoya Kenmochi¥, Thomas C Kaufman#, Sally J Leevers* and Kevin R Cook# Addresses: *Growth Regulation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK. †Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK. ‡Institute of Genetics, Biologicum, Martin Luther University Halle-Wittenberg, Weinbergweg, Halle D-06108, Germany. §Institute of Molecular Biosciences, University of Oslo, Blindern, Olso N-0316, Norway. ¶Department of Biology, McGill University, Dr Penfield Ave, Montreal, Quebec H3A 1B1, Canada. ¥Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan. #Department of Biology, Indiana University, E. Third Street, Bloomington, IN 47405-7005, USA. Correspondence: Steven J Marygold. Email: [email protected]. Kevin R Cook. Email: [email protected] Published: 10 October 2007 Received: 17 June 2007 Revised: 10 October 2007 Genome Biology 2007, 8:R216 (doi:10.1186/gb-2007-8-10-r216) Accepted: 10 October 2007 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2007/8/10/R216 © 2007 Marygold et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Cell Mass in Response to Increased Metabolic Demand Is Dependent on HNF-4␣
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Expansion of adult ␤-cell mass in response to increased metabolic demand is dependent on HNF-4␣ Rana K. Gupta,1,3 Nan Gao,1,3 Regina K. Gorski,1,2 Peter White,1 Olga T. Hardy,1 Kiran Rafiq,1 John E. Brestelli,1 Guang Chen,2 Christian J. Stoeckert Jr.,1,2 and Klaus H. Kaestner1,4 1Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA; 2Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA The failure to expand functional pancreatic ␤-cell mass in response to increased metabolic demand is a hallmark of type 2 diabetes. Lineage tracing studies indicate that replication of existing ␤-cells is the principle mechanism for ␤-cell expansion in adult mice. Here we demonstrate that the proliferative response of ␤-cells is dependent on the orphan nuclear receptor hepatocyte nuclear factor-4␣ (HNF-4␣), the gene that is mutated in Maturity-Onset Diabetes of the Young 1 (MODY1). Computational analysis of microarray expression profiles from isolated islets of mice lacking HNF-4␣ in pancreatic ␤-cells reveals that HNF-4␣ regulates selected genes in the ␤-cell, many of which are involved in proliferation. Using a physiological model of ␤-cell expansion, we show that HNF-4␣ is required for ␤-cell replication and the activation of the Ras/ERK signaling cascade in islets. This phenotype correlates with the down-regulation of suppression of tumorigenicity 5 (ST5) in HNF-4␣ mutants, which we identify as a novel regulator of ERK phosphorylation in ␤-cells and a direct transcriptional target of HNF-4␣ in vivo.
    [Show full text]