Spacetime As a Bit More Exotic Manifold: Introduction of a Particular Semi-Regular Semi-Riemannian Manifold Emmanuel Kanambaye

Total Page:16

File Type:pdf, Size:1020Kb

Spacetime As a Bit More Exotic Manifold: Introduction of a Particular Semi-Regular Semi-Riemannian Manifold Emmanuel Kanambaye Spacetime as a bit more exotic manifold: Introduction of a particular semi-regular semi-Riemannian manifold Emmanuel Kanambaye To cite this version: Emmanuel Kanambaye. Spacetime as a bit more exotic manifold: Introduction of a particular semi- regular semi-Riemannian manifold. 2021. hal-03240148 HAL Id: hal-03240148 https://hal.archives-ouvertes.fr/hal-03240148 Preprint submitted on 8 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Spacetime as a bit more exotic manifold: Introduction of a particular semi-regular semi-Riemannian manifold Emmanuel Kanambaye Independent Researcher Email: [email protected] Abstract: Spacetime is a fundamental concept in physics. Einstein‘s general relativity teaches us that spacetime is as an elastic fabric (manifold) what can be infinitely curved or stretched. In this paper, I show that if one makes the hypothesis that spacetime is a particular kind of conformally non- degenerate semi-regular semi-Riemannian manifold; more precisely, if one makes the hypotheses that spacetime is a kind of semi-regular semi-Riemannian manifold: - that can only be curved (deformed) by an energy superior or equal to some minimum energy; - equipped with a metric that degenerates (becomes zero) at any of its point where curvature (deformation) becomes greater than some threshold; then, not only, one gets a mathematically consistent and well-defined spacetime but especially, most of the currents fundamental problems of gravitation (like black hole and initial gravitational singularities problems, cosmological constant problem; black hole entropy interpretation problem etc…) could be elegantly resolved. Keywords: spacetime as exotic manifold; spacetime capable of tearing; spacetime without gravitational singularities; spacetime capable of resolving cosmological constant problem. PACS: 04.50.Kd; 02.40.Ky. 1. Introduction semi-Riemannian manifold Einstein‘s theory of general relativity [1] despite some fundamental problems among which black equipped with the metric g [13] holes gravitational singularity [2] and initial big satisfying the condition: bang singularity [3] is our current best theory of gravitation. gE for 0 Indeed, almost all of its predictions (gravitational time dilation [4], gravitational lensing [5], gE for 0 gravitational time delay [6], black hole [7], gravitational wave [8] etc…) are verified with very high precisions [9, 10, 11, 12]. where denotes the Minkowski General relativity [1] teaches us that spacetime is metric tensor [14] and E the energy a kind of elastic fabric (manifold) capable to occupying the manifold . undergo curvature (deformation). The theory works so well that one forgets B- The spacetime fabric (the manifold) has sometimes that it makes implicitly some non- no yield strength [15] i.e. the curvature at fundamentally necessary hypotheses on the any given point of the spacetime fabric spacetime fabric. can be as big as wanted without that there be neither tearing nor plastic Indeed, for example Einstein‘s general relativity deformation [16]. makes implicitly these following two hypotheses: More precisely, the manifold is assumed to not breakdown at any finite A- There is no minimum required energy to curve (deform) spacetime fabric i.e. any Kretschmann scalar K1 [17]. energy as small as it is, curves (deforms) spacetime, even though the smaller the As we will see; these implicit Hypotheses A and energy, the smaller will be the curvature. B although naturally admitted, are not More precisely, Einstein‘s general fundamentally necessary; indeed one can show relativity assumes that spacetime is a that amending or relaxing them not destroys the consistency of spacetime, better this can lead to spacetime (manifold) capable of overcoming Let‘s notice for example that one could pose: most of the currents fundamental problems of Einstein‘s general relativity. (3) More precisely we will see that making the gf hypothesis that our physical spacetime is a kind of conformally non-degenerate semi-regular where: semi-Riemannian manifold [18, 19] could permit to elegantly resolve most of the currents E g fundamental problems of gravitation like black 2 4 holes and initial gravitational singularities ln x R x e E E problems [2, 3]; the cosmological constant problem [20]; the black hole entropy f (4) interpretation problem [21] etc... g 2 4 Throughout the paper; I will consider the ln x R x e E E signature convention (+ - - -) for the metric. In the same way, Einstein‘s summation convention will be assumed. In which ln , denotes the natural logarithm; 2. First example of exotic manifold , e the natural exponential; the metric As already mentioned; spacetime is according to tensor of Minkowski manifold [14]; the Einstein‘s general relativity a semi-Riemannian g manifold equipped with the non-degenerate expected non-Minkowskian metric tensor; Rx the usual ramp function [22] i.e.: metric tensor g satisfying the condition E gE for 0 xxEE if 0 E R x , with x 1 (5) (1) EE 0 if xE 0 Emin gE for 0 and: where denotes the Minkowski metric tensor and the energy occupying the manifold 1 for Rx 0 xEE R x E E (6) x Yet by slightly relaxing this condition (1); one can E 2 for R xEE x construct some interesting ―exotics‖ manifold (spacetime). To be convinced; one can proceed as follows: Indeed, in this case; one can verify that: Let be a semi-Riemannian four-dimensional f for E Emin manifold equipped with the non-degenerated (7) E metric tensor g . f for E Emin . From there, if is a manifold that can only be curved (made non-flat) by energies superiors or whence a manifold equipped with the metric equals to some minimum amount of energy tensor gf is a manifold that can be E ; then g will not satisfy the condition (1); min only curved (made non-flat) by energies instead, it will satisfy: superiors or equals to some minimum amount of energy E . min g for E Emin (2) it is interesting to note that in the same way; one g for E Emin can assume a manifold equipped with the non-degenerated metric tensor g satisfying for where denotes the metric tensor of the flat example: Minkowski manifold and E the energy occupying the manifold . dS then one could conceive a spacetime capable of g for E Emin overcoming most of the currents fundamental (8) g dS for E E problems [2, 3, 20, 21 etc…] of gravitation. min Let‘s note that with regard to g ; one could for dS where denotes the metric tensor of de Sitter example pose: manifold and the energy occupying . g f f g f (10) Says otherwise, one can assume a de Sitter manifold [23] that can be curved (deformed) only where f is the function given by (4); g the by an energy EE min . metric tensor given by (3) and f a function As on can verify; the interest of such manifolds writing: and is that they permit to conceive ―exotics‖ spacetime capable of naturally K g forbidding for example black holes of energies R x 2 K 4 inferiors to E . ln R x e min K Says otherwise, if our physical spacetime was a f (11) manifold of the kind or ; then black holes g R x 2 K 4 of energies inferiors to E could not exist in the ln R x e min K nature. In the section that follows; I am going to propose an even more interesting manifold. with: xx if 0 3. Second example of exotic manifold KK K1 R xKK , with x 1 (12) 0 if x 0 The ―exotic‖ manifold that I am going to propose K KX here permits to conceive a bit more interesting spacetime. and: Indeed: Let be a conformally non-degenerate semi- 1 for R x x 2xK KK regular semi-Riemannian manifold equipped with K (13) x R x KK 2 for Rx K 0 the metric tensor g [18, 19]. From there, if is such that: Indeed, in this case; one can verify that: 1- It cannot be curved (deformed, made non-flat) by any energy inferior to some f f for E Emin minimal amount Emin ; 2- Its metric degenerates (becomes zero) f f for E Emin (14) at any of its point where the curvature given by Kretschmann scalar [17] f f 0 for K1X K becomes superior to some constant KX ; Let‘s note that as for the previous example; one can get here also a viable manifold by replacing i.e. if the metric tensor g associated to with dS . satisfies: This precision made; one can now discuss of the K1 g for E Emin advantages offers by the manifold . g for E Emin (9) To achieve this; let‘s begin by writing the square g= 0 for KE K 1X of line-element associated to : 2 This little precision made; let‘s now discuss of the ds g dx dx g f dx dx (15) advantages offered by such ―non-usual‖ spacetime. From (9) one infers that: 4. Some important predictions of 2 manifold (spacetime) of metric (15) ds dx dx for E Emin 2 In this section, I am going to show that if our ds dx dx for E Emin (16) physical spacetime is a kind of conformally non- ds2 0 for K K degenerate semi-regular semi-Riemannian 1X manifold equipped with a metric of the kind (15); then most of the fundamental problems of As we are going to see; if our physical spacetime gravitation will be elegantly resolved.
Recommended publications
  • Chapter 13 Curvature in Riemannian Manifolds
    Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + .
    [Show full text]
  • Hodge Theory
    HODGE THEORY PETER S. PARK Abstract. This exposition of Hodge theory is a slightly retooled version of the author's Harvard minor thesis, advised by Professor Joe Harris. Contents 1. Introduction 1 2. Hodge Theory of Compact Oriented Riemannian Manifolds 2 2.1. Hodge star operator 2 2.2. The main theorem 3 2.3. Sobolev spaces 5 2.4. Elliptic theory 11 2.5. Proof of the main theorem 14 3. Hodge Theory of Compact K¨ahlerManifolds 17 3.1. Differential operators on complex manifolds 17 3.2. Differential operators on K¨ahlermanifolds 20 3.3. Bott{Chern cohomology and the @@-Lemma 25 3.4. Lefschetz decomposition and the Hodge index theorem 26 Acknowledgments 30 References 30 1. Introduction Our objective in this exposition is to state and prove the main theorems of Hodge theory. In Section 2, we first describe a key motivation behind the Hodge theory for compact, closed, oriented Riemannian manifolds: the observation that the differential forms that satisfy certain par- tial differential equations depending on the choice of Riemannian metric (forms in the kernel of the associated Laplacian operator, or harmonic forms) turn out to be precisely the norm-minimizing representatives of the de Rham cohomology classes. This naturally leads to the statement our first main theorem, the Hodge decomposition|for a given compact, closed, oriented Riemannian manifold|of the space of smooth k-forms into the image of the Laplacian and its kernel, the sub- space of harmonic forms. We then develop the analytic machinery|specifically, Sobolev spaces and the theory of elliptic differential operators|that we use to prove the aforementioned decom- position, which immediately yields as a corollary the phenomenon of Poincar´eduality.
    [Show full text]
  • Curvature of Riemannian Manifolds
    Curvature of Riemannian Manifolds Seminar Riemannian Geometry Summer Term 2015 Prof. Dr. Anna Wienhard and Dr. Gye-Seon Lee Soeren Nolting July 16, 2015 1 Motivation Figure 1: A vector parallel transported along a closed curve on a curved manifold.[1] The aim of this talk is to define the curvature of Riemannian Manifolds and meeting some important simplifications as the sectional, Ricci and scalar curvature. We have already noticed, that a vector transported parallel along a closed curve on a Riemannian Manifold M may change its orientation. Thus, we can determine whether a Riemannian Manifold is curved or not by transporting a vector around a loop and measuring the difference of the orientation at start and the endo of the transport. As an example take Figure 1, which depicts a parallel transport of a vector on a two-sphere. Note that in a non-curved space the orientation of the vector would be preserved along the transport. 1 2 Curvature In the following we will use the Einstein sum convention and make use of the notation: X(M) space of smooth vector fields on M D(M) space of smooth functions on M 2.1 Defining Curvature and finding important properties This rather geometrical approach motivates the following definition: Definition 2.1 (Curvature). The curvature of a Riemannian Manifold is a correspondence that to each pair of vector fields X; Y 2 X (M) associates the map R(X; Y ): X(M) ! X(M) defined by R(X; Y )Z = rX rY Z − rY rX Z + r[X;Y ]Z (1) r is the Riemannian connection of M.
    [Show full text]
  • Semi-Riemannian Manifold Optimization
    Semi-Riemannian Manifold Optimization Tingran Gao William H. Kruskal Instructor Committee on Computational and Applied Mathematics (CCAM) Department of Statistics The University of Chicago 2018 China-Korea International Conference on Matrix Theory with Applications Shanghai University, Shanghai, China December 19, 2018 Outline Motivation I Riemannian Manifold Optimization I Barrier Functions and Interior Point Methods Semi-Riemannian Manifold Optimization I Optimality Conditions I Descent Direction I Semi-Riemannian First Order Methods I Metric Independence of Second Order Methods Optimization on Semi-Riemannian Submanifolds Joint work with Lek-Heng Lim (The University of Chicago) and Ke Ye (Chinese Academy of Sciences) Riemannian Manifold Optimization I Optimization on manifolds: min f (x) x2M where (M; g) is a (typically nonlinear, non-convex) Riemannian manifold, f : M! R is a smooth function on M I Difficult constrained optimization; handled as unconstrained optimization from the perspective of manifold optimization I Key ingredients: tangent spaces, geodesics, exponential map, parallel transport, gradient rf , Hessian r2f Riemannian Manifold Optimization I Riemannian Steepest Descent x = Exp (−trf (x )) ; t ≥ 0 k+1 xk k I Riemannian Newton's Method 2 r f (xk ) ηk = −∇f (xk ) x = Exp (−tη ) ; t ≥ 0 k+1 xk k I Riemannian trust region I Riemannian conjugate gradient I ...... Gabay (1982), Smith (1994), Edelman et al. (1998), Absil et al. (2008), Adler et al. (2002), Ring and Wirth (2012), Huang et al. (2015), Sato (2016), etc. Riemannian Manifold Optimization I Applications: Optimization problems on matrix manifolds I Stiefel manifolds n Vk (R ) = O (n) =O (k) I Grassmannian manifolds Gr (k; n) = O (n) = (O (k) × O (n − k)) I Flag manifolds: for n1 + ··· + nd = n, Flag = O (n) = (O (n ) × · · · × O (n )) n1;··· ;nd 1 d I Shape Spaces k×n R n f0g =O (n) I .....
    [Show full text]
  • Deep Riemannian Manifold Learning
    Deep Riemannian Manifold Learning Aaron Lou1∗ Maximilian Nickel2 Brandon Amos2 1Cornell University 2 Facebook AI Abstract We present a new class of learnable Riemannian manifolds with a metric param- eterized by a deep neural network. The core manifold operations–specifically the Riemannian exponential and logarithmic maps–are solved using approximate numerical techniques. Input and parameter gradients are computed with an ad- joint sensitivity analysis. This enables us to fit geodesics and distances with gradient-based optimization of both on-manifold values and the manifold itself. We demonstrate our method’s capability to model smooth, flexible metric structures in graph embedding tasks. 1 Introduction Geometric domain knowledge is important for machine learning systems to interact, process, and produce data from inherently geometric spaces and phenomena [BBL+17, MBM+17]. Geometric knowledge often empowers the model with explicit operations and components that reflect the geometric properties of the domain. One commonly used construct is a Riemannian manifold, the generalization of standard Euclidean space. These structures enable models to represent non-trivial geometric properties of data [NK17, DFDC+18, GDM+18, NK18, GBH18]. However, despite this capability, the current set of usable Riemannian manifolds is surprisingly small, as the core manifold operations must be provided in a closed form to enable gradient-based optimization. Worse still, these manifolds are often set a priori, as the techniques for interpolating between manifolds are extremely restricted [GSGR19, SGB20]. In this work, we study how to integrate a general class of Riemannian manifolds into learning systems. Specifically, we parameterize a class of Riemannian manifolds with a deep neural network and develop techniques to optimize through the manifold operations.
    [Show full text]
  • Geometric Dynamics on Riemannian Manifolds
    mathematics Article Geometric Dynamics on Riemannian Manifolds Constantin Udriste * and Ionel Tevy Department of Mathematics-Informatics, Faculty of Applied Sciences, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; [email protected] or [email protected] * Correspondence: [email protected] or [email protected] Received: 22 October 2019; Accepted: 23 December 2019; Published: 3 January 2020 Abstract: The purpose of this paper is threefold: (i) to highlight the second order ordinary differential equations (ODEs) as generated by flows and Riemannian metrics (decomposable single-time dynamics); (ii) to analyze the second order partial differential equations (PDEs) as generated by multi-time flows and pairs of Riemannian metrics (decomposable multi-time dynamics); (iii) to emphasise second order PDEs as generated by m-distributions and pairs of Riemannian metrics (decomposable multi-time dynamics). We detail five significant decomposed dynamics: (i) the motion of the four outer planets relative to the sun fixed by a Hamiltonian, (ii) the motion in a closed Newmann economical system fixed by a Hamiltonian, (iii) electromagnetic geometric dynamics, (iv) Bessel motion generated by a flow together with an Euclidean metric (created motion), (v) sinh-Gordon bi-time motion generated by a bi-flow and two Euclidean metrics (created motion). Our analysis is based on some least squares Lagrangians and shows that there are dynamics that can be split into flows and motions transversal to the flows. Keywords: dynamical systems; generated ODEs and PDEs; single-time geometric dynamics; multi-time geometric dynamics; decomposable dynamics MSC: 34A26; 35F55; 35G55 This is a synthesis paper that accumulates results obtained by our research group over time [1–8].
    [Show full text]
  • Differential Geometry Lecture 18: Curvature
    Differential geometry Lecture 18: Curvature David Lindemann University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670 14. July 2020 David Lindemann DG lecture 18 14. July 2020 1 / 31 1 Riemann curvature tensor 2 Sectional curvature 3 Ricci curvature 4 Scalar curvature David Lindemann DG lecture 18 14. July 2020 2 / 31 Recap of lecture 17: defined geodesics in pseudo-Riemannian manifolds as curves with parallel velocity viewed geodesics as projections of integral curves of a vector field G 2 X(TM) with local flow called geodesic flow obtained uniqueness and existence properties of geodesics constructed the exponential map exp : V ! M, V neighbourhood of the zero-section in TM ! M showed that geodesics with compact domain are precisely the critical points of the energy functional used the exponential map to construct Riemannian normal coordinates, studied local forms of the metric and the Christoffel symbols in such coordinates discussed the Hopf-Rinow Theorem erratum: codomain of (x; v) as local integral curve of G is d'(TU), not TM David Lindemann DG lecture 18 14. July 2020 3 / 31 Riemann curvature tensor Intuitively, a meaningful definition of the term \curvature" for 3 a smooth surface in R , written locally as a graph of a smooth 2 function f : U ⊂ R ! R, should involve the second partial derivatives of f at each point. How can we find a coordinate- 3 free definition of curvature not just for surfaces in R , which are automatically Riemannian manifolds by restricting h·; ·i, but for all pseudo-Riemannian manifolds? Definition Let (M; g) be a pseudo-Riemannian manifold with Levi-Civita connection r.
    [Show full text]
  • Chapter 7 Geodesics on Riemannian Manifolds
    Chapter 7 Geodesics on Riemannian Manifolds 7.1 Geodesics, Local Existence and Uniqueness If (M,g)isaRiemannianmanifold,thentheconceptof length makes sense for any piecewise smooth (in fact, C1) curve on M. Then, it possible to define the structure of a metric space on M,whered(p, q)isthegreatestlowerboundofthe length of all curves joining p and q. Curves on M which locally yield the shortest distance between two points are of great interest. These curves called geodesics play an important role and the goal of this chapter is to study some of their properties. 489 490 CHAPTER 7. GEODESICS ON RIEMANNIAN MANIFOLDS Given any p M,foreveryv TpM,the(Riemannian) norm of v,denoted∈ v ,isdefinedby∈ " " v = g (v,v). " " p ! The Riemannian inner product, gp(u, v), of two tangent vectors, u, v TpM,willalsobedenotedby u, v p,or simply u, v .∈ # $ # $ Definition 7.1.1 Given any Riemannian manifold, M, a smooth parametric curve (for short, curve)onM is amap,γ: I M,whereI is some open interval of R. For a closed→ interval, [a, b] R,amapγ:[a, b] M is a smooth curve from p =⊆γ(a) to q = γ(b) iff→γ can be extended to a smooth curve γ:(a ", b + ") M, for some ">0. Given any two points,− p, q →M,a ∈ continuous map, γ:[a, b] M,isa" piecewise smooth curve from p to q iff → (1) There is a sequence a = t0 <t1 < <tk 1 <t = b of numbers, t R,sothateachmap,··· − k i ∈ γi = γ ! [ti,ti+1], called a curve segment is a smooth curve, for i =0,...,k 1.
    [Show full text]
  • An Introduction to Riemannian Geometry
    Lecture Notes An Introduction to Riemannian Geometry (version 1.250 - 29 January 2007) Sigmundur Gudmundsson (Lund University) The latest version of this document can be obtained at: http://www.matematik.lu.se/matematiklu/personal/sigma/index.html 1 Preface These lecture notes grew out of an M.Sc. course on differential geometry which I gave at the University of Leeds 1992. Their main purpose is to introduce the beautiful theory of Riemannian Geometry a still very active area of mathematical research. This is a subject with no lack of interesting examples. They are indeed the key to a good understanding of it and will therefore play a major role throughout this work. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu. The study of Riemannian geometry is rather meaningless without some basic knowledge on Gaussian geometry that is the differential geometry of curves and surfaces in 3-dimensional space. For this I rec- ommend the excellent textbook: M. P. do Carmo, Differential geometry of curves and surfaces, Prentice Hall (1976). These lecture notes are written for students with a good under- standing of linear algebra, real analysis of several variables, the clas- sical theory of ordinary differential equations and some topology. The most important results stated in the text are also proved there. Other smaller ones are left to the reader as exercises, which follow at the end of each chapter. This format is aimed at students willing to put hard work into the course. For further reading I recommend the very interesting textbook: M.
    [Show full text]
  • The Second Fundamental Form. Geodesics. the Curvature Tensor
    Differential Geometry Lia Vas The Second Fundamental Form. Geodesics. The Curvature Tensor. The Fundamental Theorem of Surfaces. Manifolds The Second Fundamental Form and the Christoffel symbols. Consider a surface x = @x @x x(u; v): Following the reasoning that x1 and x2 denote the derivatives @u and @v respectively, we denote the second derivatives @2x @2x @2x @2x @u2 by x11; @v@u by x12; @u@v by x21; and @v2 by x22: The terms xij; i; j = 1; 2 can be represented as a linear combination of tangential and normal component. Each of the vectors xij can be repre- sented as a combination of the tangent component (which itself is a combination of vectors x1 and x2) and the normal component (which is a multi- 1 2 ple of the unit normal vector n). Let Γij and Γij denote the coefficients of the tangent component and Lij denote the coefficient with n of vector xij: Thus, 1 2 P k xij = Γijx1 + Γijx2 + Lijn = k Γijxk + Lijn: The formula above is called the Gauss formula. k The coefficients Γij where i; j; k = 1; 2 are called Christoffel symbols and the coefficients Lij; i; j = 1; 2 are called the coefficients of the second fundamental form. Einstein notation and tensors. The term \Einstein notation" refers to the certain summation convention that appears often in differential geometry and its many applications. Consider a formula can be written in terms of a sum over an index that appears in subscript of one and superscript of P k the other variable. For example, xij = k Γijxk + Lijn: In cases like this the summation symbol is omitted.
    [Show full text]
  • Lorentzian Manifolds
    Lorentzian Manifolds Frank Pf¨affle Institut f¨ur Mathematik, Universit¨at Potsdam, [email protected] In this lecture some basic notions from Lorentzian geometry will be reviewed. In particular causality relations will be explained, Cauchy hypersurfaces and the concept of global hyperbolic manifolds will be introduced. Finally the structure of globally hyperbolic manifolds will be discussed. More comprehensive introductions can be found in [5] and [6]. 1 Preliminaries on Minkowski Space Let V be an n-dimensional real vector space. A Lorentzian scalar product on V is a nondegenerate symmetric bilinear form hh·, ·ii of index 1. This means one can find a basis e1,...,en of V such that −1, if i = j =1, hhei,ej ii = 1, if i = j =2,...,n, 0, otherwise. The simplest example for a Lorentzian scalar product on Rn is the Minkowski product hh·, ·ii0 given by hhx, yii0 = −x1y1 + x2y2 + · · · + xnyn. In some sense this is the only example because from the above it follows that any n-dimensional vector space with Lorentzian scalar product (V, hh·, ·ii) is iso- n metric to Minkowski space (R , hh·, ·ii0). We denote the quadratic form associated to hh·, ·ii by γ : V → R, γ(X) := −hhX,Xii. A vector X ∈ V \{0} is called timelike if γ(X) > 0, lightlike if γ(X) = 0 and X 6= 0, causal if timelike or lightlike, and spacelike if γ(X) > 0 or X = 0. For n ≥ 2 the set I(0) of timelike vectors consists of two connected com- ponents. We choose a timeorientation on V by picking one of these two con- nected components.
    [Show full text]
  • Chapter 11 Riemannian Metrics, Riemannian Manifolds
    Chapter 11 Riemannian Metrics, Riemannian Manifolds 11.1 Frames Fortunately, the rich theory of vector spaces endowed with aEuclideaninnerproductcan,toagreatextent,belifted to the tangent bundle of a manifold. The idea is to equip the tangent space TpM at p to the manifold M with an inner product , p,insucha way that these inner products vary smoothlyh i as p varies on M. It is then possible to define the length of a curve segment on a M and to define the distance between two points on M. 541 542 CHAPTER 11. RIEMANNIAN METRICS, RIEMANNIAN MANIFOLDS The notion of local (and global) frame plays an important technical role. Definition 11.1. Let M be an n-dimensional smooth manifold. For any open subset, U M,ann-tuple of ✓ vector fields, (X1,...,Xn), over U is called a frame over U i↵(X1(p),...,Xn(p)) is a basis of the tangent space, T M,foreveryp U.IfU = M,thentheX are global p 2 i sections and (X1,...,Xn)iscalledaframe (of M). The notion of a frame is due to Elie´ Cartan who (after Darboux) made extensive use of them under the name of moving frame (and the moving frame method). Cartan’s terminology is intuitively clear: As a point, p, moves in U,theframe,(X1(p),...,Xn(p)), moves from fibre to fibre. Physicists refer to a frame as a choice of local gauge. 11.1. FRAMES 543 If dim(M)=n,thenforeverychart,(U,'), since 1 n d'− : R TpM is a bijection for every p U,the '(p) ! 2 n-tuple of vector fields, (X1,...,Xn), with 1 Xi(p)=d''−(p)(ei), is a frame of TM over U,where n (e1,...,en)isthecanonicalbasisofR .SeeFigure11.1.
    [Show full text]