Recording Anechoic Gunshot Waveforms of Several Firearms at 500 Kilohertz Sampling Rate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forensic Examination Guidelines for Silencers
FORENSIC EXAMINATION GUIDELINES FOR SILENCERS 1.0 Objective/Introduction The objective of the following guidelines is to identify the essential elements suggested for use in the forensic examination of silencers. 1.1 Establish procedures to reliably determine if a device is constructed or fabricated to reduce, suppress, attenuate or diminish the report of a firearm. 1.2 Review and/or validate established silencer examination protocols. 2.0 Definitions/Terminology Standard terminology from sources such as the Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF) Federal Firearms Regulations Reference Guide, Association of Firearm and Tool Mark Examiners (AFTE) Procedures Manual and the AFTE Glossary should be used in the documentation of silencer examinations. 2.1 Commonly used terms may include: 2.1.1 Suppressor 2.1.2 Firearm muffler 2.1.3 Decibel 2.1.4 Sound meter 2.1.5 Sound pressure level 2.1.6 Report 2.1.7 Muzzle blast 2.1.8 Internal components, e.g., baffle, ported tube, wipes, end caps, bleed holes 3.0 Equipment/Supplies Proper equipment should be used and checked for acceptable accuracy when appropriate. 3.1 Equipment and supplies may include: 3.1.1 Sound meter 3.1.2 Microphone 3.1.3 X-ray apparatus 3.1.4 Optical aids – borescope, stereoscope, magnifier 3.1.5 Safety equipment – ear muffs, eye protection Forensic Examination Guidelines for Silencers Page 1 of 5 Adopted 09/27/2005 3.1.6 Chemicals for gunshot residue examinations (GSR) 3.1.7 Various tools for disassembly 3.1.8 Remote firing devices 3.1.9 Range or shooting facility 3.1.10 Distances measuring devices 4.0 Concepts 4.1 Muzzle blast is the most significant portion of the report of a firearm. -
Understanding Distance Shooting and the Type of Firearm from the Analysis
Understanding distance shooting and the type of !rearm from the analysis of gunshot sounds Nikolaos E. Tsiatis Police Major Forensic Science Division of Hellenic Police, Athens, Greece Abstract In order to study gunshot sounds, experimental shootings were conducted in an open shooting range to record the sound of gunshots. The results were tabulated for a total of 168 gunshots. Shots were red using pistols, revolvers, submachine guns, ries and shotguns in dierent calibres from selected distances relative to the recording devices. Both a conventional sound level meter (SLM) and a measurement microphone were used. These were placed at selected points behind the shooting position and the sound of each shot was recorded. At the same time, the signal received by the microphone was transferred to a computer connected through an appropriate audio interface with a pre-amplier. The peak amplitude of the gunshot was calculated in the accepted engineering units (dB) of sound pressure level. The shortest distance for the recordings was 9.60 m and the furthest was 38.40 m. The experiment was carried out using the following calibres: 6.35 mm, 7.62 mm Tokarev, 7.65 mm, 9 mm Short, 9 mm Makarov, 9 mm Parabellum, .45 Auto, .22 LR, .32 S&W, .38 S&W, .38 Special, .357 Magnum, 7.62 mm Kalashnikov and 12 GA. A decrease of the peak amplitude, equivalent to the increasing of the distance, was observed as expected. Values appeared to follow the inverse square law. By analyzing a recorded gunshot sound it is possible to calculate the distance between that discharged rearm and the recording device. -
Force and Sound Pressure Sensors Used for Modeling the Impact of the Firearm with a Suppressor
applied sciences Article Force and Sound Pressure Sensors Used for Modeling the Impact of the Firearm with a Suppressor Jaroslaw Selech 1, Arturas¯ Kilikeviˇcius 2 , Kristina Kilikeviˇciene˙ 3 , Sergejus Borodinas 4, Jonas Matijošius 2,* , Darius Vainorius 2, Jacek Marcinkiewicz 1 and Zaneta Staszak 1 1 The Faculty of Civil and Transport Engineering, Poznan University of Technology, 5 M. Skłodowska-Curie Square PL-60-965 Poznan, Poland; [email protected] (J.S.); [email protected] (J.M.); [email protected] (Z.S.) 2 Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanaviˇciausstr. 28, LT-03224 Vilnius, Lithuania; [email protected] (A.K.); [email protected] (D.V.) 3 Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, J. Basanaviˇciausstr. 28, LT-03224 Vilnius, Lithuania; [email protected] 4 Department of Applied Mechanics, Vilnius Gediminas Technical University, Sauletekio˙ av. 11, 10223 Vilnius, Lithuania; [email protected] * Correspondence: [email protected]; Tel.: +370-684-04-169 Received: 23 December 2019; Accepted: 30 January 2020; Published: 2 February 2020 Abstract: In this paper, a mathematical model for projectiles shooting in any direction based on sensors distributed stereoscopically is put forward. It is based on the characteristics of a shock wave around a supersonic projectile and acoustical localization. Wave equations for an acoustic monopole point source of a directed effect used for physical interpretation of pressure as an acoustic phenomenon. Simulation and measurements of novel versatile mechanical and acoustical damping system (silencer), which has both a muzzle break and silencer properties studied in this paper. -
Investigation Into the Impact of Integral Suppressor Configurations on the Pressure Levels Within the Suppressor
COVER SHEET Title: Investigation into the impact of integral suppressor configurations on the pressure levels within the suppressor Authors: Aimée Helliker1 Stephen Champion1 Andrew Duncan1 Presented at 29th International Symposium on Ballistics, Edinburgh, 9th - 13th May 2016 1 Centre for Defence Engineering, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, SN6 8LA, UK This paper reports on an experimental investigation supported by basic modeling in to the performance of an integral suppressor on a low power firearm. A model was developed to determine the pressure within a suppressor chamber using iterative empirical calculations of the gas properties and flow within the system. The design of a reconfigurable suppressor chamber has been undertaken allowing suppressor chamber volume to be varied through the use of baffles. Pressure transducers were used to determine the pressure within the suppressor chamber for a series of firings. The results of the firings with different configurations within the suppressor are presented allowing trends to be established. The modeling and experimental results show an increase in suppressor chamber volume results in a reduction of recorded pressure within the suppressor chamber. INTRODUCTION The use of suppressors with firearms is becoming more commonplace, especially within the UK Armed Forces where there are an increasing number of cases of hearing damage [1]. There are also applications for areas such as animal management where the British Association for Shooting and Conservation state “it may be an act of social responsibility to fit a sound moderator to a rifle” [2]. The use of suppressors reduces the sound signature of the gases from firing by allowing the superheated, high pressure gases escaping from the barrel, to expand, cool and reduce in velocity before being released into the atmosphere. -
Estimation of the Directivity Pattern of Muzzle Blasts
Estimation Of The Directivity Pattern Of Muzzle Blasts Karl-Wilhelm Hirsch1, Werner Bertels2 1Cervus Consult, Willich, [email protected] 2Wehrtechnische Dienststelle für Waffen und Munition der Bundeswehr, WTD 91, Meppen, [email protected] Introduction The WEBER model yields full information about the sound of an explosion: The radiating body is a sphere of defined size. The Sound prediction schemes are often dedicated to a certain scope of source strength is given as a FOURIER spectrum determining the application. They are called ‘engineering’ models if they consider frequency dependent sound pressure in magnitude and phase. This the features of the source, of the propagation and of the receiver spectrum can be used to calculate any desired acoustical measure of separately. Typically, such schemes start from a compatible source the source. model to sum up the correction due to the various physical phe- nomena based on particular models as separate terms to yield the For a muzzle blast, the body of radiation is certainly not a sphere. dedicated output measure. The ISO 9613-2 describes such a predic- Due to the basic rotational symmetry around the barrel axis, the tion scheme for the A-weighted long term average sound pressure radiating body still needs to be a body of revolution but estimating level for correlation purposes with annoyance. In general, the its shape and its radiation impedance is a rather challenge. The acoustic source model is therefore a decisive feature for any sound gases leaving the barrel with supersonic speed develop a so-called prediction scheme. MACH-plate. The body of radiation will be wider to the front than looking from the rear giving reason for a strong frequency depend- For many sound sources, scheme compatible sources are elemen- ent directivity pattern. -
Deciphering Gunshot Recordings
DECIPHERING GUNSHOT RECORDINGS ROBERT C. MAHER AND STEVEN R. SHAW Digital Audio Signal Processing Laboratory, Department of Electrical and Computer Engineering Montana State University, Bozeman, MT USA [email protected] Audio gunshot recordings can be helpful for crime scene reconstruction, estimation of the shooter's location and orientation, and verification of eyewitness accounts. The audio evidence can include the muzzle blast, the shock wave signature if the projectile is traveling at supersonic speed, and possibly even the characteristic sound of the firearm's mechanical action if the recording is obtained close to the shooting position. To investigate the acoustical phenomena associated with gunshot evidence, a systematic set of rifle shots were made from distances ranging from 10 meters to nearly 800 meters away from the recording microphone. This paper summarizes the primary acoustical evidence derived from these recorded gunshots, and suggests several strengths and weaknesses of gunshot analysis for forensic purposes. INTRODUCTION propagation distance and audibility in the presence of ambient noise. The seemingly unmistakable sound of a gunshot presents an interesting challenge for forensic acoustical The remainder of this paper is organized as follows. analysis. The extremely fast rise times associated with First, the basic principles of firearm acoustics relevant acoustical shock waves, the unusually high sound to audio forensics are reviewed, with emphasis on rifles pressure levels caused by the muzzle blast, and the very and supersonic projectiles rather than handguns. Next, short duration of the direct sonic signatures all present a the behavior of the sound field close to the rifle shooting challenge to conventional audio recording gear [1-3]. -
Description of Muzzle Blast by Modified Ideal Scaling Models
1 Description of muzzle blast by modi®ed ideal scaling models Kevin S. Fansler ration need to be known accurately when peak over- U.S. Army Research Laboratory, Aberdeen Proving pressures and impulses at a ®eld point result from Ground, MD 21005, USA multiple re¯ections of the blast wave. The impulse, I, is de®ned as the time integral of the positive phase for the overpressure: Gun blast data from a large variety of weapons are scaled tc and presented for both the instantaneous energy release and I (p p ) dt; (1) the constant energy deposition rate models. For both ideal ≡ − 1 Zta explosion models, similar amounts of data scatter occur for in which t is the time for the overpressure to be- the peak overpressure but the instantaneous energy release c come zero in the blastwave. Here p is the pressure model correlated the impulse data signi®cantly better, par- and p is the atmospheric pressure, which near sea ticularly for the region in front of the gun. Two parame- 1 ters that characterize gun blast are used in conjunction with level is approximately one bar. The impulse is a very the ideal scaling models to improve the data correlation. important quantity in determining if structures are re- The gun-emptying parameter works particularly well with inforced adequately to withstand the blast wave. the instantaneous energy release model to improve data cor- The ®rst predictions of gun blast were done us- relation. In particular, the impulse, especially in the for- ing results obtained from instantaneous energy release ward direction of the gun, is correlated signi®cantly bet- blast from a point source. -
Firearm Suppressor Fact Sheet
Firearm Suppressor Fact Sheet Objectives: The foundation of the attempt to ban firearm suppressors in Virginia is built on the misconception that suppressors can render the noise of a gunshot silent or inaudible. This could hardly be further from the truth as even the quietest suppressed gunshot is as loud as a jackhammer striking concrete. Suppressors are not a danger to society and banning them will not save lives. In order to fully understand suppressors, it is imperative that you hear them for yourself. To this end, the American Suppressor Association would be happy to host an educational suppressor demonstration for any members of the legislature or media at any time of your choosing. Background: Suppressor Basics The terms “silencer” and “suppressor” refer to the same thing – a muffler for a firearm. Contrary to popular belief, no tool will ever be able to make a gunshot silent. Outside of the context of shooting, nothing will even be able to make them quiet. Guns are simply too loud. On average, suppressors reduce the noise of a gunshot by 20 – 35 decibels (dB), roughly the same sound reduction as earplugs or earmuffs. Even the most effective suppressors on the market, on the smallest and quietest calibers (.22 LR) reduce the peak sound level of a gunshot to around 110 – 120 decibels. To put that in perspective, according to the National Institute for Occupational Safety and Health (NIOSH), that is as loud as a jackhammer (110 dB) or an ambulance siren (120 dB). When a gun is fired, a controlled explosion of gunpowder propels the bullet through the barrel. -
NHCA POSITION STATEMENT Recreational Firearm Noise March 16, 2017
NHCA POSITION STATEMENT Recreational Firearm Noise March 16, 2017 Michael Stewart, Deanna K. Meinke, Gregory A. Flamme, William J. Murphy, Donald S. Finan, James E. Lankford, and Stephen M. Tasko National Hearing Conservation Association (NHCA) Task Force on Prevention of Noise-Induced Hearing Loss from Firearm Noise This document was prepared by The National Hearing Conservation Association (NHCA) Task Force on Prevention of Noise- Induced Hearing Loss from Firearm Noise and approved by the NHCA Executive Council, March 16, 2017. The judgments expressed here represent the best available evidence at the time of publication and shall be considered the position of NHCA and not the individual opinions of the contributing authors or their respective institutions. The contributing authors declare no conflict of interest. EXECUTIVE SUMMARY Recreational firearm use is a popular leisure-time activity in the United States today. Millions of Americans of all ages enjoy shooting sports including target practice, competitive shooting, and hunting. While participation in the shooting sports can be an enjoyable recreational pursuit, it can also put an individual at risk for noise-induced hearing loss (NIHL) and tinnitus resulting from unprotected exposure to high- intensity firearm noise. Almost all firearms generate impulse levels in excess of 140 dB peak SPL. Hearing loss may occur gradually over time due to repeated unprotected exposure to firearm noise. Hearing loss also may occur suddenly due to acoustic trauma from a single unprotected gunshot. The hearing loss is often characterized by normal or near normal hearing sensitivity in the lower frequency range with severely impaired hearing in the higher frequency range which results in difficulty hearing speech clearly. -
Shot-To-Shot Variation in Gunshot Acoustics Experiments Robert C
Audio Engineering Society Conference Paper Presented at the International Conference on Audio Forensics 2019 June 18–20, Porto, Portugal This conference paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This conference paper has been reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-lib), all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. Shot-to-shot variation in gunshot acoustics experiments Robert C. Maher Electrical & Computer Engineering, Montana State University, Bozeman, MT USA 59717-3780 Correspondence should be addressed to R.C. Maher ([email protected]) ABSTRACT Audio forensic examinations may involve recordings containing gunshot sounds. Forensic questions may include determining the number of shots, what firearms were involved, the position and orientation of the firearms, and similar queries of importance to the investigation. A common question is whether a sequence of shots are attributable to a single gun fired repeatedly, or if the sounds could possibly come from two or more different guns fired in succession. This paper describes a controlled experiment comparing ten repeated shots from several common handguns and rifles. Differences between shots are observed, apparently attributable to subtle differences between ammunition cartridges. The shot-to-shot differences are also compared at different azimuths, and between different firearms. -
PASI HAKONEN FIREARM SUPPRESSORS – STRUCTURES and ALTERNATIVE MATERIALS Master of Science Thesis
PASI HAKONEN FIREARM SUPPRESSORS – STRUCTURES AND ALTERNATIVE MATERIALS Master of Science Thesis Examiner: Professor Tuomo Tiainen Examiner and topic was approved in the Faculty of Automation, Mechanical and Material Engineering council meeting in Nov 3rd, 2010 II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Materiaalitekniikan koulutusohjelma HAKONEN, PASI : Äänenvaimentimet, rakenteet ja vaihtoehtoiset materiaalit Diplomityö, 47 sivua Lokakuu 2011 Pääaine: Metallimateriaalit Tarkastaja: professori Tuomo Tiainen Avainsanat: Äänenvaimennin, kuulovaurio, kivääri, kuulosuojaus Joka vuosi lukuisat metsästäjät, ampumaharrastajat ja varusmiehet kärsivät tinnituksesta ja eriasteisista kuulovaurioista. Suuri osa näistä ongelmista johtuu käsiaseiden laukausäänille altistumisesta ja epäonnistuneesta kuulonsuojauksesta ja ne olisivat vältettävissä asianmukaisilla aseisiin asennettavilla äänenvaimentimilla. Painava teräsvaimennin voi tehdä aseesta kömpelön käsiteltävän ja raskaan kantaa pitkiä matkoja, mikä voi osaltaan selittää sen miksi vaimentimien käyttö ei ole yleistynyt vielä kattavaksi. Tässä diplomityössä pyritään löytämään tähän ongelmaan ratkaisu kevyempien materiaalivaihtoehtojen avulla. Tutkimus alkoi kirjallisuusselvityksellä, jonka pohjalta suoritettiin materiaalivalinta sopivien vaihtoehtoisten materiaalien löytämiseksi. Löydetyistä materiaalivaihtoehdoista valittiin kiinnostavimmat, joista valmistettiin prototyyppi testiammuntoihin. Ensimmäinen testi keskittyi hiilikuitukomposiitin soveltuvuuteen vaimentimen ulkokuoreksi. Testissä -
Gunshot Wounds: a Review of Ballistics, Bullets, Weapons, and Myths
REVIEW ARTICLE Gunshot wounds: A review of ballistics, bullets, weapons, and myths Peter M. Rhee, MD, MPH, Ernest E. Moore, MD, Bellal Joseph, MD, Andrew Tang, MD, Viraj Pandit, MD, and Gary Vercruysse, MD, Tucson, Arizona n the United States, someone experiences a gunshot wound in the call for reviving and funding research on gun violence Ievery 4 minutes 44 seconds, and a person dies as a result each and inadequate recognition and treatment of mental illness that 16 minutes. Annually, this means that approximately 111,000 warrants federal and state tax support.7,8 As health care pro- Americans are shot and 33,800 die as a result of these injuries, viders for trauma care, we have witnessed the ravages of gun- which equates to 93 deaths caused by firearms every day.1,2 In related violence and, thus, should become proactive in the contrast, the war in Iraq and Afghanistan has resulted in less ongoing national debate as it is our duty. than 200 deaths per year from gunshot wounds during the The numbers of gunshot wounds are increasing in the height of the conflict (Table 1). Gunshot wound injuries are a United States, although the gun-related homicide rates remain preventable epidemic in the United States. This silent epidemic relatively stable.9 Guns are ubiquitous in the United States, and is largely deaf to the American public because we are so ac- it is known that where there are guns, there will be gunshot customed to these injuries that they rarely make the news. Gun wounds.10,11 In other countries, it has been shown that gun law violence leading to homicide may get some attention, but an reforms were associated with a decrease in the numbers of mass even greater toll is placed on the survivors who must live with shootings and firearm deaths.12Y14 Canada, with their strict the loss of loved ones or are burdened by the costs associated handgun control, has one-third fewer gunshot wounds than the with the temporary or permanent disability caused by these United States.