4: Blood Technologies

Total Page:16

File Type:pdf, Size:1020Kb

4: Blood Technologies 4 Blood Technologies; 82 83 86 86 . 87 . 88 . 89 . 90 Page . 81 . 84 . ‘,. 90 4 Blood Technologies; PART 1: TECHNOLOGIES FOR BLOOD COLLECTION AND PROCESSING Introduction ing potentially fatal hemolytic transfusion re- actions. Modern blood bank technology began less than 100 years ago, when several technological ob- In 1945, a new test was described (Coombs) stacles were overcome. First, it was necessary to which made possible the recognition of previously arrest the blood clotting mechanisms which nor- undetectable antigens and led to the identification mally convert liquid blood into a gel in a matter of more than 400 new red blood cell types over of minutes. Second, physicians needed tools by the subsequent 30 years (284). However, prob- which blood could be collected from one individ- ably fewer than 30 of these types are of clinical ual and infused into another with minimum risk concern in routine transfusion practice (220). to donor and recipient. Third, there was a lack As the demand for blood increased, the larger of understanding of the immune system and the blood banks began to consider adaptations of clin- potential for incompatibility between donor red ical chemistry analyzers which could perform blood cells and red blood cell antibodies produced multiple tests on a single blood sample to remove by recipients. some of the tedium and manual labor from mass The coagulation problem was solved by the ad- blood-typing. These systems have evolved into dition of citrate into freshly collected blood (344); computerized testing devices which deliver sam- citrate compounds are still the basis for stored ples, interpret results, and flag any spurious find- blood anticoagulants today. Preservatives such ings for further investigation. as glucose were soon added to extend the shelf In the beginning, donor blood collection and life of stored red cells from several days to sev- testing were conducted in the same setting as eral weeks. blood transfusion; each hospital would screen Devices used in collecting, storing, and ad- donors on the basis of specific patient needs, and ministering blood have ranged from quill and tub- donors were often a patient’s family and friends. ing contraptions to syringes (used currently for World War II resulted in the creation of donor newborn exchange transfusions), to reusable centers across the United States to collect large vacuum glass bottles, still the standard in parts amounts of plasma for use in treating combat of the world today. In the United States, glass bot- casualties, and intensive research into improving tles have been replaced by flexible plastic con- the storage life and function of red blood cells. tainers with attached satellite bags to hold sepa- When the war ended, community blood centers rate blood components. began to appear under the auspices of American Red Cross chapters, community service clubs, and Landsteiner’s description of ABO blood groups local medical societies. These centers acted as stag- in the early 1900s and other researchers’ elucida- ing areas from which mobile operations could be tion of antigen/antibody relationships led to sim- sent for blood collections, after which the blood ple laboratory tests for compatibility between was returned to the center for processing and donors and recipients, but 15 percent of transfu- subsequent distribution to hospitals. sion recipients remained at risk until the Rhesus or Rh blood types were discovered (331,342). Blood collection and processing in a commu- From that time to the present, determination of nity blood center can function as an assembly- the donor and recipient ABO and Rh blood types line operation because of the need for repeating has been the most important procedure in prevent- the same battery of tests on a number of donor 79 80 ● Blood Policy and Technology samples, ranging from 200 per day in medium- Figure 9 shows an example of this labeling for- size centers to over 1,000 per day in large centers. mat. The labeling scheme has been endorsed by On the other hand, transfusion services repeat the FDA (182) and appears on 60 to 70 percent of entire workflow upon receipt of physician orders products distributed by U.S. blood banks. How- which, except in cases of standing orders for elec- ever, not all blood centers who label their prod- tive surgeries, are unpredictable and often urgent. ucts with bar codes have the equipment to make Therefore, batch or assembly-line processing is use of the machine-readable information, and few not as feasible, except for verification of donors’ transfusion services have the capability. Never- blood types and elective surgery workups. theless, eye-readable uniformity and simplicity are universally appreciated aspects of the commonality Blood is inherently variable, with each collected label, given a history of multiple color-coded la- unit representing a unique “lot. ” Because it is im- bel schemes and superfluous information on possible to test each unit for effectiveness before earlier blood product label formats. The uniform transfusion, the use of scientifically proven pro- label has allowed developers of automated testing tocols and regular checks on representative prod- systems and management information systems to ucts are important. design equipment and software around a single The use of computers for donor resources and machine-readable format for use in the United inventory management at the community blood States and several countries in Europe and the Far center, and standard policies for surgical blood East. needs at the transfusion service have improved As yet untapped, but applicable, technologies blood utilization, decreased outdating, reduced include: recruiting by computerized telecommuni- charges to the patient, and improved management cations linkages, donor and physician education of donor resources. Computer management of via cable health networks, and robotics labora- discrete functions has been accomplished at many tories to perform certain repetitive tasks (209). U.S. blood centers, but often lack coordination The feasibility of these alternatives is unproven, among donor recruitment, collection, laboratory, but studies are under way. inventory, and financial management depart- ments. One comprehensive information system has been designed as a joint venture between two Blood Collection community blood centers (Blood Center of South- Technologies involved with collection of blood eastern Wisconsin and the South Florida Blood from donors address three basic functions: 1) ac- Service) and Arthur Andersen & Co. The goals curate identification of donors, 2) determination of all such systems are to minimize manual docu- of donor suitability, and 3) collection of blood. mentation and subjective analysis, and provide useful statistics for operational management and Donor identification is accomplished in most planning. blood banks by the use of a cardboard or plastic A number of automated data management sys- card embossed with name, address, permanent identification number, and blood type. Most tems throughout the world utilize uniform bar blood banks also have rosters of “special” donors coding technology for the identification of donor against which the donor’s identification is com- units and samples for production and inventory pared. “Special” donors include individuals whose management. This uniformity, which has the blood is extraordinarily rare (for special needs), advantage of standardized machine-readable as well as simplified eye-readable features, is the re- as well as those whose blood is unacceptable for transfusion due to laboratory findings on previ- sult of a special task force of the American Blood ous donations. Commission, whose efforts were funded by the National Heart, Lung, and Blood Institute and en- Donor suitability is determined by an assess- dorsed by the International Society for Blood ment of current health status (temperature, blood Transfusion. pressure, screening test for anemia, etc. ) and an Ch. 4—Blood Technologies . 81 Figure 9.— Uniform Labeling Format for Blood Products Form 7203 (1/81) EXPIRES F 01255 I I II II I II \\ \ \ \ 9 Unit Number EXPIRES I \ -------- 1 hlrmd / LOT NO CODE SOURCE: E Rosslter, “Technologies for Blood Collection, ” 1984 interview covering past and present illnesses, im- (598). There are also concerns among blood bank munizations, hospital procedures, or other con- physicians about the adequacy of current donor ditions (including travel outside the United States, criteria when used for frequent, long-term donors lifestyle, and exposure to other individuals) which (562). could make donating blood unsafe for the donor or transfusion unsafe for the recipient. While some Pre-donation cell counts or hemoglobin meas- of the donor acceptability criteria are straightfor- urements generally assure that donating will not ward, most are subject to varying degrees of inter- be unduly risky for the donor and that an ade- pretation at the time of screening, In the absence quate number or volume of the desired compo- of factual information to support all the decisions nent can be collected. Findings of diminished that affect donor suitability, intuition is often used platelet effectiveness in individuals taking aspirin 82 . Blood Policy and Technology has led to deferral of such donors in platelet- donor who subsequently has a traumatic veni- apheresis programs (565). (See ch. 2, pt. 3, for puncture in the collecting process, only red blood a discussion of the risks to donors. ) cells and plasma
Recommended publications
  • Stem Cells and Artificial Substitutes Could Ease the Dependence on Blood Donations
    OUTLOOK BLOOD DOING WITHOUT DONORS Stem cells and artificial substitutes could ease the dependence on blood donations. ANDREW BAKER BY ELIE DOLGIN S12 | NATURE | VOL 549 | 28 SEPTEMBER©2017 Ma c2017millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. BLOOD OUTLOOK ach year, at about 13,000 collection centres worldwide, phlebotomists stick needles in the veins of healthy vol- unteers and amass in excess of 110 million donations of blood. The volume collected is enough to fill 20 Olympic- sized swimming pools — but it’s nowhere near to meeting the medical demand for whole blood or its components. To fill the gap, an enterprising group of stem-cell biologists and bio- Eengineers hopes to produce a safe, reliable and bottomless supply of on-demand blood substitutes in the laboratory. According to Robert Lanza, a pioneer of stem cell therapies and head IMAGES IWM VIA GETTY CHETWYN/ SGT. of global regenerative medicine at Astellas Pharma in Marlborough, Massachusetts, current technologies are not yet ready to compete with the real stuff. “We’re not going to put blood banks out of business any time soon,” he says. But in the near future, artificial blood products could be approved for use when transfusions are not otherwise an option, such as during combat or in people with a religious objection to receiving blood transfusions. And therapies that rely on reprogrammed stem cells to produce components of blood might also help transfusion centres to relieve shortages or to avoid donor-derived contamination.
    [Show full text]
  • Evaluation of Blood Utilization Practice in Obstetrics – a Prospective Study
    EVALUATION OF BLOOD UTILIZATION PRACTICE IN OBSTETRICS – A PROSPECTIVE STUDY Dissertation submitted to THE TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY In partial fulfillment of the regulations For the award of the degree of M.D. BRANCH - XXI IMMUNOHAEMATOLOGY & BLOOD TRANSFUSION DEPARTMENT OF TRANSFUSION MEDICINE THE TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY CHENNAI, INDIA. APRIL 2016 ABSTRACT EVALUATION OF BLOOD UTILIZATION PRACICE IN OBSTETRICS- A PROSPECTIVE STUDY Background: The optimal blood usage in modern therapeutics avoids transfusion risks and aid better blood inventory management. The maximum blood utilization in the developing country is for the Obstetrics. Frequent requests are made to cross-match units as a precautionary measure for Caesarean Sections in patients with anticipated blood loss, resulting in wastage of health care resources. Hence, studying the current Clinical Transfusion Practice in Obstetrics would ensure the appropriate blood usage in modern health care services. Aim and Objectives: To assess the Red cell utilization in Obstetrics Transfusion Practice and to assess its appropriate use. Materials & Methods: The study conducted for one year (August 2014-July 2015) on the Obstetrics in-patients for whom blood transfusion requests were given. The requests were processed and cross-matched as per the hospital transfusion guidelines. The data collected on the clinical and blood transfusion particulars of the patients were analyzed for the Red cell usage according to their diagnosis. Blood utilization indices calculated and compared with the standard cut - off values to know the current red cell transfusion practice. The appropriateness of red cell use was assessed by RCOG guidelines for Blood transfusion in Obstetrics, Green-top guidelines no.
    [Show full text]
  • Principles of Blood Transfusion
    Chapter 16 Principles of Blood Transfusion Nuri Mamak and İsmail Aytekin Additional information is available at the end of the chapter http://dx.doi.org/10.5772/48332 1. Introduction The aim of this chapter is to present a revised overview of small and large animal transfusion medicine based on a review of the veterinary literature. Blood transfusion has become more performable in small and large animal practice. By donor selection and the availability of blood component substitutes, usage of the blood products improved. The use of blood component therapy safely needed knowledge of blood groups, antibody prevalence and the impact of blood groups on veterinary transfusion medicine. Animal blood transfusions antibodies against blood group antigens also play a role. In addition knowledge of the means to decrease the risk of adverse reactions by using proper donors and screening assays that simplify detection of serological incompatibility is important. The clinical significance of blood group antigens in veterinary medicine is generally in the areas of transfusion reactions and neonatal isoerythrolysis (NI). This chapter includes an update on canine and feline, horse, donkey, cattle, sheep, gaot, pig, llama and alpaca blood groups and known blood incompatibilities, donor selection and blood collection, storage of blood components, available equine blood products and indications for transfusion, whole blood (WB) and blood product transfusion in ruminants and camelids, blood component and blood substitute therapy, administration, and adverse reactions in small and large animal blood transfusion. 2. Blood types in dogs and cats Blood types are classified according to specific antigens on the surface of erythrocytes. Platelets, leukocytes, and body tissues and fluids may also consists of erytrocyte antigens.
    [Show full text]
  • Artificial Blood
    August 2007 ARTIFICIAL BLOOD HEALTH TECHNOLOGY ASSESSMENT UNIT MEDICAL DEVELOPMENT DIVISION MINISTRY OF HEALTH MALAYSIA 008/07 Prepared by: Dr Izzuna Mudla bt Mohamed Ghazali Principal Assistant Director Health Technology Assessment Unit Ministry of Health Malaysia August 2007 Dr Mohd Aminuddin bin Mohd Yusof Principal Assistant Director Health Technology Assessment Unit Ministry of Health Malaysia August 2007 Reviewed by: Datin Dr Rugayah bt Bakri Deputy Director Health Technology Assessment Unit Ministry of Health Malaysia August 2007 ARTIFICIAL BLOOD 1. INTRODUCTION Artificial blood or blood substitutes are solutions intended to replace transfusion of banked red blood cells. Alternatives to red blood cell transfusions are designed to overcome known limitations; short supply of donor blood, risk from contamination and clerical error and the requirement for cross-matching.i,ii The risks of allogenic blood transfusions are multiple and include infectious transmission, delayed postoperative wound healing, transfusion reactions, transfusion related acute lung injury, immunomodulation and potential risk of cancer recurrence.iii The term artificial blood or blood substitutes is not accurate since human blood performs many important functions. The preferred and more accurate terms are volume expanders for inert products (crystalloid-based or colloid-based) and oxygen therapeutics for oxygen- carrying products.iv Although volume expanders are well-established in its use, oxygen therapeutics are still in clinical trials. Oxygen therapeutics can be further classified into two categories based on the transport mechanism. They are namely perfluorocarbon based and hemoglobin based.v Efforts to produce artificial blood started over a century ago. Since then many types of artificial blood products have been produced.
    [Show full text]
  • Blood Substitutes: Hemoglobin-Based Oxygen Carriers
    Blood Substitutes: Hemoglobin-Based Oxygen Carriers : By Jerrold H. Levy, MD, FAHA : : : : THE AMERICAN COUNCIL ON SCIENCE AND HEALTH Blood Substitutes: Hemoglobin-Based Oxygen Carriers By Jerrold H. Levy, MD, FAHA Professor and Deputy Chair for Research Emory University School of Medicine Director of Cardiothoracic Anesthesiology Cardiothoracic Anesthesiology and Critical Care Emory Healthcare Atlanta, Georgia Art Director: Crysthal Marin May 2009 Reviewers The American Council on Science and Health would like to thank the following people who, with the help of two anonymous reviewers, evaluated this paper. Timothy G. Buchman, PhD, MD, FACS, FCCM Washington University School of Medicine St. Louis David Burris, MD, FACS, DMCC; Col., MC, USA American College of Surgeons, Committee on Trauma Uniformed Services University of the Health Sciences Jeffrey D. Kerby, MD, PhD, FACS Alabama Resuscitation Center The University of Alabama at Birmingham Gus Vlahakes, MD Cardiothoracic Vascular Surgery Massachusetts General Hospital Disclosure: Author Jerrold H. Levy has received research support from Biopure and Alliance. ACSH accepts unrestricted grants on the condition that it is solely respon- sible for the conduct of its research and the dissemination of its work to the public. The organization does not perform proprietary research, nor does it accept support from individual corporations for specific research projects. All contributions to ACSH—a publicly funded organization under Section 501(c)(3) of the Internal Revenue Code—are tax deductible. Copyright © 2009 by American Council on Science and Health, Inc. This book may not be reproduced in whole or in part, by mimeograph or any other means, without permission. (2800) Table of Contents Current status of blood supply and need for a substitute .
    [Show full text]
  • Blood Substitutes Artificial Blood Synthetic Alternatives to Donor Blood Have Been Stuck in Development for Decades
    Blood substitutes Artificial blood Synthetic alternatives to donor blood have been stuck in development for decades. Nina Notman reports on recent promising progress Human blood substitutes have been blood reserves, says Chang. More could be contaminated, companies in the pipeline since the 1980s. But, niche needs include patients, such In short started to make many different for a combination of scientific and as Jehovah’s Witnesses, who for The HIV crisis in the types of blood substitutes, and political reasons, there are none religious reasons can not use donor 1980s triggered research unfortunately some don’t work and currently on the market in either blood, and patients who have into artificial blood some have adverse side effects.’ Europe or the US. There are a few developed immune responses to Obtaining regulatory The concerns came to a head in blood substitutes still progressing donated blood. approval for these early 2008, when a meta-analysis through clinical trials, and the Aside from not being reliant on products has proved of findings from 16 clinical trials academic community is still actively donor blood supplies, other major difficult so far in Europe of five different products that had improving the products, also advantages of artificial blood include and the US been used on over 3500 patients known as oxygen therapeutics and not needing to check blood types Commercial design was published in the Journal of haemoglobin-based oxygen carriers. before transfusion – artificial blood approaches include the American Medical Association. ‘No one was interested in this type is the universal blood group O leaving haemoglobin free The study, led by Charles of work until HIV came in the 1980s,’ negative.
    [Show full text]
  • Blood Substitutes
    BLOOD SUBSTITUTES 2- OptroHeme (USA), made from recombinant genes using E.coli, had a shelf-life of 1.5 years. Their side ef- fects were many and included fever, chills, GI distress and BLOOD SUBSTITUTES backache. 3- HemoPure (USA), made from cow Hb with a shelf-life of 3 years, is currently in use for veterinary cases in the US (phase III for humans), and used on human beings in only. These are the synthetic Per-Fluoro Carbon (PFC) and certain critical care cases in South Africa. the Hemoglobin- based O2 Carrier (HBOC) classes. 4- HemoSpan (USA), a powdered Hb-tetramer with a The PFC’s are small synthetic compounds that are not sol- shelf-life of 3 years, and of much interest for the US Army. uble in blood. They must first be mixed into an emulsion It must first be mixed with saline and poly-ethylene gly- DR Eddie Racoubian using vitamins, salts and even egg yolk before being trans- col (PEG) before it can be infused. It has passed many MD MSC fused as tiny droplets, 1/40th the size of an RBC. These re- phase III clinical trials, the last one being with 90 patients Responsible ST. MARC main in the blood for 48 hours before being exhaled from in Sweden. Laboratory the lungs. The “Liquid breathing”- filling your lungs with fluid- concept is possible due to these compounds, because Advantages AND they can carry a large load of oxygen. Disadvantages OF SUBSTITUTES: INTRODUCTION: The first FDA approved substitute was a PFC, made by the Japanese Green Cross in 1989.
    [Show full text]
  • Blood Transfusion
    Blood Transfusion Dr. Arkaprovo Roy Associate Professor Department of Surgery Medical College Kolkata Discussions on • Definition and indications of blood transfusion • Blood banking • Blood grouping and cross matching • Blood products • Blood substitutes • Auto transfusion • Complications of blood transfusion • Massive blood transfusion Definition • It is the transfusion of the whole blood or its components such as blood corpuscles or plasma from one person to another Indications for blood transfusions 1. Blood loss greater than 20% of blood volume 2. Haemoglobin level < 8g/dl without any risk factors 3. Haemoglobin level <10g% with major diseases /major surgery How to prepare blood for transfusion • Screening for blood borne infections • Blood grouping and compatibility testing RBC Contains >300 antigens, 20 blood group antigens are well known Blood Banking • In 1937 Bernard Fantus, director of therapeutics at the Cook County Hospital in Chicago, established one of the first hospital blood banks in the United States. • It preserved, refrigerated and stored donor blood - Fantus originated the term "blood bank". • Blood banking is the process that takes place in the lab to make sure that donated blood, or blood products, are safe for blood transfusions and other medical procedures. • Blood banking includes typing the blood for transfusion and testing for infectious diseases. Blood group systems Major system- • ABO system • Rhesus system Minor system • H-antigen • MNS antigen system • Lutheran system • Kell system • Duffy system Blood Grouping • Here are 4 main blood groups (types of blood) – A, B, AB and O. • The ABO and Rh blood grouping system is based on agglutination reaction. • When red blood cells carrying one or both the antigens are exposed to the corresponding antibodies they interact with each other to form visible agglutination or clumping.
    [Show full text]
  • Future Generations of Red Blood Cell Substitutes
    Journal of Internal Medicine 2003; 253: 527–535 MINISYMPOSIUM Future generations of red blood cell substitutes T. M. S. CHANG From the Artificial Cells & Organs Research Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada Abstract. Chang TMS (Artificial Cells & Organs erties. New artificial red blood cells that are more like Research Center, McGill University, Montreal, RBC are being developed. One is based on haemo- Quebec, Canada). Future generations of red blood globin lipid vesicles. A more recent one is based on cell substitutes (Minisymposium). J Intern Med 2003; nano-dimension artificial red blood cells containing 253: 527–535. haemoglobin and RBC enzymes with membrane formed from composite copolymer of polyethylene Polyhaemoglobins (PolyHb) and perfluorochemicals glycol–polylactic acid. Their circulation time is double are in advanced phase III clinical trials and conju- that of PolyHb. gated haemoglobins in phase II clinical trial. New recombinant human haemoglobin with no vasoac- Keywords: antioxidant, artificial red blood cells, tivity is being developed. A soluble macromolecule of blood substitutes, microencapsulation, nanoen- PolyHb–catalase–superoxide dismutase is being capsulation, oxygen carriers. studied as an oxygen carrier with antioxidant prop- Introduction The first attempt at modified haemoglobin was to prepare artificial red blood cells encapsulating hae- Fluids for volume replacement have been in routine moglobin and red blood cell enzymes, but this proved clinical use for many years. When haematocrit falls to be an overambitious approach at that time [6, 7]. A below the critical level and fluid replacement alone is much simpler approach is based on polyhaemoglobin not enough, red blood cells or whole blood is now (PolyHb) which is prepared based on the use of the only next step.
    [Show full text]
  • A Review on Artificial Blood: a Source We Need
    Online - 2455-3891 Vol 10, Issue 9, 2017 Print - 0974-2441 Review Article A REVIEW ON ARTIFICIAL BLOOD: A SOURCE WE NEED KRISHNA VENI R, BRINDHA DEVI P*, IVO ROMAULD S Department of Bio-Engineering, School of Engineering, Vels University, Chennai - 600 117, Tamil Nadu, India. Email: [email protected] Received: 6 April 2017, Revised and Accepted: 9 June 2017 ABSTRACT Blood is a liquid tissue, in which abundant chemical factors and millions of different cells are dissolved. It is one of the most demanding sources in clinical and medical aspects. The issues and cost of human blood collection and storage directed this procedure toward the use of alternative blood. Thus, came an invention of artificial blood and blood substitutes. These alternative blood or blood substitute is a substance which is made to play as a substitute of erythrocytes. Thus, the main objective is to replace the normal human blood with artificial blood substitutes in the place of blood transfusion during surgeries and organ transfusion. Two major and focused blood substitutes in pharmaceutical aspects are perfluorocarbons and hemoglobin-based oxygen carriers (HBOC’s). Among these HBOCs vaguely resemble normal human blood. These blood substitutes are to allow flow through the blood stream to carry the oxygen and supply it to heart and other parts of the blood. They are used to fill the lost fluid volume. They are also called as plastic blood with iron atom as the base. They are found to serve as a good oxygen carrier. The results showed by these products are discussed, and they proved that they can act as a blood substitute and also they can reach the human tissue easier than erythrocytes and can control oxygen directly.
    [Show full text]
  • Blood Substituents an Overview
    187 Shankar M. et al. / Acta Biomedica Scientia. 2016;3(4):187-192. e - ISSN - 2348 - 2168 Print ISSN - 2348 - 215X Print ISSN - Acta Biomedica Scientia Journal homepage: www.mcmed.us/journal/abs BLOOD SUBSTITUENTS AN OVERVIEW D. Likhitha, M. Shankar*, S. Kavya Lalitha, T. Supriya, M. Niranjan Babu Department of Pharmaceutical Chemistry, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati-517561, Andhra Pradesh, India. Article Info ABSTRACT Received 21/04/2016 Blood is a special type of connective tissue that is composed of white cells, red cells, Revised 01/05/2016 platelets and plasma. A blood substitute is a substance used to mimic and fulfill some Accepted 09/05/2016 functions of biological blood. It aims to provide an alternative to blood transfusion, which is transferring blood or blood based products from one person into another. Artificial blood Keywords :- is a product made to act as a substitute for red blood cells. The main categories of oxygen Human hemoglobin, carrying blood substitutes being hemoglobin based oxygen carriers and perfluoro carbon Photodynamic, based oxygen carriers. Depending on the type of artificial blood, it can be produced in Biochemical technology. different ways using synthetic production, chemical isolation, or recombinant biochemical technology. To obtain hemoglobin, a strain of E. coli bacteria that has the ability to produce human hemoglobin is used. Synthetic oxygen carriers may also show potential for cancer treatment, as their reduced size allows them to diffuse more effectively through poorly vasculated tumour tissue, increasing the effectiveness of treatments like photodynamic therapy and chemotherapy. INTRODUCTION On the membranes of these cells are proteins that the body Blood recognizes as its own.
    [Show full text]
  • Transfusion Replacement Strategies in Jehovah's Witnesses and Others Who Decline Blood Products
    Transfusion Replacement Strategies in Jehovah’s Witnesses and Others Who Decline Blood Products Thomas G. DeLoughery, MD, MACP, FAWM Departments of Medicine, Pathology, and Pediatrics, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon Correspondence: Abstract: The use of blood transfusions is a mainstay of modern Thomas G. DeLoughery, MD, MACP, FAWM medical practice. Jehovah’s Witnesses decline the use of blood Oregon Health & Science University transfusions as a matter of faith, however, and other patients do so 3181 SW Sam Jackson Park Rd for personal reasons. In all cases, it is important to document what Mail Code: OC14HO Portland, OR 97239-3098 blood products can or cannot be used. It is also essential to test all Phone: (503) 494-4335 patients for iron deficiency, and to address any correctable factors in Fax: (503) 494-3257 those who are anemic. This article reviews a variety of options that Email: [email protected] are available to aid in caring for patients who refuse blood trans- Twitter: @bloodman fusions, ranging from tranexamic acid to erythropoiesis-stimulating agents. With the use of these treatments, patients who decline blood transfusion can be safely managed in situations ranging from elective surgery to stem cell transplant to pregnancy. Introduction A challenging situation is the patient with severe anemia/bleeding who has clearly expressed a wish to decline blood transfusions. This article reviews why certain patients decline blood transfusions, the various options for the treatment of severe anemia, how to prepare for surgery patients who decline blood products, and the emergency treatment of severe bleeding in these patients.
    [Show full text]