Zootaxa, Morphological and Molecular Differentiation of the Anagrus Epos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pdf 696.18 K
Egypt. Acad. J. Biolog. Sci., 13(3):1-13 (2020) Egyptian Academic Journal of Biological Sciences A. Entomology ISSN 1687- 8809 http://eajbsa.journals.ekb.eg/ The Mymaridae of Egypt (Chalcidoidea: Hymenoptera) Al-Azab, S. A. Plant Protection Research Institute, ARC, Egypt. Email: [email protected] ______________________________________________________________ ARTICLE INFO ABSTRACT Article History Diagnostic characters of the family Mymaridae, together with diagnosis Received:15/5/2020 and keys to the Egyptian genera of the family-based upon the external Accepted:2/7/2020 morphological characters of the adult female and male are presented with ---------------------- illustrations to facilitate their recognition. Synonyms, taxonomic notes, hosts, Keywords: and habitat of the genera together with their representative species in Egypt Hymenoptera, are also provided to give general picture and high light on the occurrence, Chalcidoidea, diversity, and distribution of the mymarids in Egypt. The study based on the Mymaridae, materials kept in the main reference insect collections in Egypt, and the Taxonomy, available literature. Egypt. INTRODUCTION The Mymaridae (fairy wasps) are a family of chalcid wasps found in temperate and tropical regions throughout the world. It includes the most primitive members of the chalcid wasp and contains around 100 genera with about 1400 species (Noyes, 2005). Fairyflies are very tiny insects and include the world's smallest known insects. They generally range from 0.5 to 1.0 mm long. Adult mymarids are rather fragile, the body generally being slender and the wings narrow with an elongate marginal fringe. Their delicate bodies and their hair-fringed wings have earned them their common name. Very little is known of the life histories of fairyflies, as only a few species have been observed extensively. -
Habitat Management in Vineyards Habitat Management in Vineyards
Habitat Management in Vineyards Habitat Management in Vineyards Acknowledgements: Special thanks to all collaborating farmers, Captain Family Vineyards, Quintessa Vineyards, Foster’s Group, Ridge California, Icon States, Robert Sinsky Vineyards, Joseph Phelps Vineyards, Saintsbury Vineyards, Medlock-Ames, Spootswoode. The efforts of Ana Cecilia Galvis for assembling and formatting this manual are greatly appreciated. The following organizations provided funds to produce this manual: EPA, USDA - SARE, and Organic Farming Research Foundation (OFRF). Habitat Management in Vineyards Habitat Management in Vineyards A growers manual for enhancing natural enemies of pests. Miguel A. Altieri Clara I. Nicholls Houston Wilson Albie Miles Laboratory of Agroecology http://agroecology.berkeley.edu College of Natural Resources University of California 2010 Habitat Management in Vineyards Typical grape production in and soil-borne organisms that and environmental costs can be California is done in monocul- inhabit a vineyard system, the quite significant. Economically, tures which are expanding at a more diverse the community of in viticulture the burdens in- rapid rate resulting in the sim- pest-fighting beneficial organ- clude the need to supply crops plification of the landscape. One isms (predators, parasitoids, with costly external inputs such of the known problems with and entomopathogens) the farm as insecticides, since vineyards monocultures is that the diver- can support. deprived of functional biodiver- sity, abundance and activity of sity -
Ooctonus Vulgatus[I] (Hymenoptera, Mymaridae), A
A peer-reviewed version of this preprint was published in PeerJ on 24 March 2020. View the peer-reviewed version (peerj.com/articles/8591), which is the preferred citable publication unless you specifically need to cite this preprint. Mesmin X, Chartois M, Genson G, Rossi J, Cruaud A, Rasplus J. 2020. Ooctonus vulgatus (Hymenoptera, Mymaridae), a potential biocontrol agent to reduce populations of Philaenus spumarius (Hemiptera, Aphrophoridae) the main vector of Xylella fastidiosa in Europe. PeerJ 8:e8591 https://doi.org/10.7717/peerj.8591 Ooctonus vulgatus (Hymenoptera, Mymaridae), a potential biocontrol agent to reduce populations of Philaenus spumarius (Hemiptera, Aphrophoridae) the main vector of Xylella fastidiosa in Europe Xavier Mesmin 1, 2 , Marguerite Chartois 2 , Guenaelle Genson 2 , Jean-Pierre Rossi 2 , Astrid Cruaud 2 , Jean-Yves Rasplus Corresp. 2 1 AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, INRA, San Giuliano, France 2 CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France Corresponding Author: Jean-Yves Rasplus Email address: [email protected] As vector of Xylella fastidiosa (Wells, 1987) in Europe, the meadow spittlebug, Philaenus spumarius (Linnaeus, 1758) (Hemiptera: Aphrophoridae) is a species of major concern. Therefore, tools and agents to control this ubiquitous insect that develops and feeds on hundreds of plant species are wanted. We conducted a field survey of P. spumarius eggs in Corsica and provide a first report of Ooctonus vulgatus Haliday, 1833 (Hymenoptera, Mymaridae) as a potential biocontrol agent of P. spumarius in Europe. To allow species identification, we summarized the main characters distinguishing O. vulgatus from other European species of Ooctonus and generated COI DNA barcodes. -
Winged Sharpshooter
REPRODUCTIVE AND DEVELOPMENTAL BIOLOGY OF GONATOCERUS ASHMEADI, AN EGG PARASITOID OF THE GLASSY-WINGED SHARPSHOOTER Project leader: Cooperator: Mark Hoddle Leigh Pilkington Dept. of Entomology Dept. of Entomology University of California University of California Riverside, CA 92521 Riverside, CA 92521 Reporting period: The results reported here are from work conducted from April 2004 to October 2004. ABSTRACT The reproductive and developmental biology of Gonatocerus ashmeadi Girault, a self-introduced parasitoid of the glassy- winged sharpshooter (GWSS) Homalodisca coagulata Say, was determined at five constant temperatures in the laboratory; 15; 20; 25; 30; and 33°C. Wasps at each experimental temperature were given, on average, between 10 and 15 GWSS eggs per day for its natural life for oviposition. At 30°C, immature G. ashmeadi sustained the highest mortality rates as adult emergence was lowest at this temperature. The largest proportion of female offspring was produced at 25°C and lifetime fecundity was greatest at 25°C. The development time was greatest at 15°C and lowest at 30°C. Mean adult longevity was inversely related to temperature with a maximum of approximately 30 days at 15°C to a minimum of approximately two days at 33°C. INTRODUCTION The mymarid wasp species Gonatocerus ashmeadi Girault, G. triguttatus Girault, G. morrilli Howard, and G. fasciatus Girault are the most common natural enemies associated with the insect pest Homalodisca coagulata in it’s home range of southeastern USA and northeastern Mexico (Triapitsyn and Phillips, 2000). The wasp G. ashmeadi is a self-introduced resident of California and most likely came into the state in parasitized Homalodisca coagulata eggs (Vickerman et al., 2004) and has established widely in association with H. -
25 Using Community Group Monitoring Data to Measure The
25 Using Community Group Monitoring Data To Measure The Effectiveness Of Restoration Actions For Australia's Woodland Birds Michelle Gibson1, Jessica Walsh1,2, Nicki Taws5, Martine Maron1 1Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane, 4072, Queensland, Australia, 2School of Biological Sciences, Monash University, Clayton, Melbourne, 3800, Victoria, Australia, 3Greening Australia, Aranda, Canberra, 2614 Australian Capital Territory, Australia, 4BirdLife Australia, Carlton, Melbourne, 3053, Victoria, Australia, 5Greening Australia, PO Box 538 Jamison Centre, Macquarie, Australian Capital Territory 2614, Australia Before conservation actions are implemented, they should be evaluated for their effectiveness to ensure the best possible outcomes. However, many conservation actions are not implemented under an experimental framework, making it difficult to measure their effectiveness. Ecological monitoring datasets provide useful opportunities for measuring the effect of conservation actions and a baseline upon which adaptive management can be built. We measure the effect of conservation actions on Australian woodland ecosystems using two community group-led bird monitoring datasets. Australia’s temperate woodlands have been largely cleared for agricultural production and their bird communities are in decline. To reverse these declines, a suite of conservation actions has been implemented by government and non- government agencies, and private landholders. We analysed the response of total woodland bird abundance, species richness, and community condition, to two widely-used actions — grazing exclusion and replanting. We recorded 139 species from 134 sites and 1,389 surveys over a 20-year period. Grazing exclusion and replanting combined had strong positive effects on all three bird community metrics over time relative to control sites, where no actions had occurred. -
Progeny Quality of Gonatocerus Ashmeadi (Hymenoptera: Mymaridae) Reared on Stored Eggs of Homalodisca Coagulata (Hemiptera: Cicadellidae)
BIOLOGICAL AND MICROBIAL CONTROL Progeny Quality of Gonatocerus ashmeadi (Hymenoptera: Mymaridae) Reared on Stored Eggs of Homalodisca coagulata (Hemiptera: Cicadellidae) 1 2 WEN-LONG CHEN AND ROGER A. LEOPOLD J. Econ. Entomol. 100(3): 685Ð694 (2007) ABSTRACT This study assessed the effects of refrigerated storage on the suitability of eggs of the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae), as hosts for propagation of the parasitoid Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Develop- ment of the host eggs was terminated by chilling at 2ЊC for 5 d before storage was initiated at 10ЊC for up to 70 d. Parasitism, adult emergence rate, developmental time, and sex ratio were used to gauge the suitability of the eggs as hosts after storage. In addition to these measures, demographic growth parameters also were used to assess the quality of the wasp progeny through the F2 generation. Host eggs stored 20 d remained fully acceptable to the wasps for attack. Although the parasitism rate decreased with storage time, Ͼ 80% adult parasitoid emergence was realized from eggs stored 30 d. After 70 d storage, adult emergence rate was decreased by 48%, fecundity decreased by 53%, female production by 19%, developmental time was extended 3 d, and female longevity was shortened 5 d. The emergence pattern of F1 but not F2 adults varied with storage time of the parental and grand- parental hosts, respectively. For the F2 generation, emergence rate, development, and sex ratio did not vary with storage time when the F1 parents parasitized fresh host eggs. Demographic parameters Ͼ for the F1 population showed that net reproductive rate was 20 although it decreased signiÞcantly after their parental host eggs were stored for Ͼ 30 d. -
Habitat Diversity at the Field and Landscape Level: Conservation Biological Control Research in California Viticulture
Chapter 8 Habitat Diversity at the Field and Landscape Level: Conservation Biological Control Research in California Viticulture Albie Miles , Houston Wilson , Miguel Altieri , and Clara Nicholls 8.1 Introduction : The Need for Ecologically Based Viticulture in California The intensifi cation of viticulture in California has led to the creation of grape monocultures characterized by an absence of non-crop plant diversity in and around vineyards. The continued expansion of vineyards into California native plant communities has also led to an aggregate reduction of non-crop habitats at the landscape scale (Heaton and Merenlender 2000 ) . Such increased concentra- tion of plant host resources and the reduction of non-crop habitats supporting natural enemies have been shown to increase pest densities, with associated crop losses and reduced overall crop productivity (Root 1973 ; Russell 1989 ; Corbett and Rosenheim 1996a ; Altieri and Nicholls 2004 ) . To manage recurring pest problems, California grape growers rely principally on the use of synthetic pesticides, including organophosphate and carbamate insecticides, known to pose a range of environmental quality and human health risks (Bentley 2009 ; CDPR 2009 ; UC IPM 2010b ; Eskenazi et al. 2010 ) . With increasing concern over the environmental impacts of viticulture, rising production costs, and increased regulation of pesticides, the demand for research driven by ecologically-based pest management (EBPM) strategies has steadily grown (Broome and Warner 2008 ; Meadows 2008 ; Ross and Golino 2008 ; Brodt et al. 2009 ) . In addition to the use of insecticides accepted under the United States Department of Agriculture, National Organic Program, California grape growers have sought to use EBPM strategies, including on-farm diversifi cation to promote A. -
Conservation Assessment for the Reflexed Indiangrass Leafhopper (Flexamia Reflexa (Osborn and Ball))
Conservation Assessment for the Reflexed Indiangrass Leafhopper (Flexamia reflexa (Osborn and Ball)) USDA Forest Service, Eastern Region October 18, 2005 James Bess OTIS Enterprises 13501 south 750 west Wanatah, Indiana 46390 This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 ACKNOWLEDGEMENTS............................................................................................................ 1 NOMENCLATURE AND TAXONOMY ..................................................................................... 2 DESCRIPTION OF SPECIES....................................................................................................... -
Influence of Flowering Cover Crops on Anagrus Parasitoids (Hymenoptera: Mymaridae) and Erythroneura Leafhoppers (Homoptera: Cicadellidae) in New York Vineyards
Agricultural and Forest Entomology (2003) 5, 173–181 Influence of flowering cover crops on Anagrus parasitoids (Hymenoptera: Mymaridae) and Erythroneura leafhoppers (Homoptera: Cicadellidae) in New York vineyards Greg English-Loeb*, Marc Rhainds*†, Tim Martinson*‡ and Todd Ugine*§ *Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456, U.S.A., yGreenhouse and Processing Crops Research Centre, Harrow, Ontario, NOR 1G0, Canada, zCornell Cooperative Extension, Finger Lakes Grape Program, Cornell University, County Office Building, Penn Yan, NY 14427, U.S.A. and §Department of Entomology, Cornell University, Ithaca, NY 14853, U.S.A. Abstract 1 We tested the hypothesis that providing nectar-producing cover crops will enhance the biological control of grape leafhoppers (Erythroneura spp.) by Anagrus wasps in commercial vineyards in New York, U.S.A. 2 We established three cover crops between vine rows in a commercial vineyard: buckwheat (Fagopyrum esculentum (Moench)), clover (Trifolium repens L.) and mowed sod (Dactylis glomerata L.). 3 There was no effect of cover crop on adult Anagrus in 1996, whereas in 1997 adults were more abundant within edge vines with buckwheat compared to vines with clover or sod; adults were more abundant at the vineyard edge, especially early in the season. 4 Parasitism of ‘sentinel’ leafhopper eggs was higher on vines with buckwheat compared to parasitism on vines with clover or sod in 1996; a similar, non- significant trend, was observed in 1997. 5 Neither the abundance nor the distribution of leafhoppers was influenced by cover crops, although in 1997 there was a trend toward greater numbers of nymphs on edge vines with buckwheat. -
Introduced Parasitic Wasps Could Control Glassy-Winged Sharpshooter
California Agriculture Volume 59, Number 4 2005 Page 223 Introduced parasitic wasps could control glassy-winged sharpshooter Leigh J. Pilkington Nicola A. Irvin Elizabeth A. Boyd Mark S. Hoddle Serguei V. Triapitsyn Bryan G. Carey Walker A. Jones David J.W. Morgan Copyright c 2005 by Regents of the University of California, unless otherwise noted. This article is part of the collected publications of California Agriculture. California Agriculture is archived by the eScholarship Repository of the California Digital Library. Abstract The glassy-winged sharpshooter (GWSS) is an introduced pest that spreads the bacterium Xylella fastidiosa, which causes a variety of diseases such as Pierce’s disease in grapevines and leaf scorch in oleanders. GWSS has been established in Southern California since about 1990 and has also successfully invaded French Polynesia, Hawaii and Easter Island. Researchers from UC, the U.S. Department of Agriculture and the California Department of Food and Agriculture have introduced parasitic wasps for the biological control of GWSS. Four parasitoids from the southeastern United States have been released and appear to be establishing in Southern California. Parasitoids from Argentina are also being evaluated in quarantine but have not yet been released. Keywords: glassy-winged sharpshooter, Xylella fastidiosa, biological control, Pierce’s disease, oleander leaf scorch, Mymaridae, parasitoids, Homalodisca coagulata, Gonatocerus Suggested Citation: Leigh J. Pilkington, Nicola A. Irvin, Elizabeth A. Boyd, Mark S. Hoddle, Serguei V. Triapitsyn, Bryan G. Carey, Walker A. Jones, and David J.W. Morgan (2005) “Introduced parasitic wasps could control glassy-winged sharpshooter”, California Agriculture: Vol. 59: No. 4, Page 223. http://repositories.cdlib.org/anrcs/californiaagriculture/v59/n4/p223 REVIEW ARTICLE ▼ Introduced parasitic wasps could control glassy-winged sharpshooter Leigh J. -
Towards Classical Biological Control of Leek Moth
____________________________________________________________________________ Ateyyat This project seeks to provide greater coherence for the biocontrol knowledge system for regulators and researchers; create an open access information source for biocontrol re- search of agricultural pests in California, which will stimulate greater international knowl- edge sharing about agricultural pests in Mediterranean climates; and facilitate the exchange of information through a cyberinfrastructure among government regulators, and biocontrol entomologists and practitioners. It seeks broader impacts through: the uploading of previ- ously unavailable data being made openly accessible; the stimulation of greater interaction between the biological control regulation, research, and practitioner community in selected Mediterranean regions; the provision of more coherent and useful information to enhance regulatory decisions by public agency scientists; a partnership with the IOBC to facilitate international data sharing; and progress toward the ultimate goal of increasing the viability of biocontrol as a reduced risk pest control strategy. No Designated Session Theme BIOLOGY OF CIRROSPILUS INGENUUS GAHAN (HYMENOPTERA: EULOPHIDAE), AN ECTOPARASITOID OF THE CITRUS LEAFMINER, PHYLLOCNISTIS CITRELLA STAINTON (LEPIDOPTERA: GRACILLARIIDAE) ON LEMON 99 Mazen A. ATEYYAT Al-Shoubak University College, Al-Balqa’ Applied University, P.O. Box (5), Postal code 71911, Al-Shawbak, Jordan [email protected] The citrus leafminer (CLM), Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in- vaded the Jordan Valley in 1994 and was able to spread throughout Jordan within a few months of its arrival. It was the most common parasitoid from 1997 to 1999 in the Jordan Valley. An increase in the activity of C. ingenuus was observed in autumn and the highest number of emerged C. ingenuus adults was in November 1999. -
Hymenoptera: Mymaridae)
654 Florida Entomologist 85(4) December 2002 A NEW DISTRIBUTION AND HOST RECORD FOR GONATOCERUS TRIGUTTATUS IN FLORIDA, WITH NOTES ON ACMOPOLYNEMA SEMA (HYMENOPTERA: MYMARIDAE) SERGUEI V. TRIAPITSYN1, MARK S. HODDLE1 AND DAVID J. W. MORGAN2 1Department of Entomology, University of California, Riverside, CA 92521 2Pierce’s Disease Control Program, California Department of Food and Agriculture, Mount Rubidoux Field Station, 4500 Glenwood Drive, Riverside, CA 92501 Triapitsyn et al. (1998) reported results of the H. coagulata decreases from north-central Flor- 1997 survey of egg parasitoids of the glassy- ida southward (Timmer et al. 1982), although it is winged sharpshooter, Homalodisca coagulata known in southern Florida as far as Homestead (Say) (Homoptera: Cicadellidae), in northern (Turner & Pollard 1959). Florida. As part of an on-going classical biological Gonatocerus triguttatus has not been known control program against H. coagulata in Califor- previously from Florida and O. nigricans is a new nia, two of the authors conducted a survey of egg host record for this parasitoid. Before our discov- parasitoids of proconiine sharpshooters (Cicadel- ery, the only known record of an egg parasitoid of lidae: Cicadellinae: Proconiini) throughout Flor- O. nigricans was by Turner & Pollard (1959) who ida in August 2001 (Triapitsyn & Hoddle 2001). reported a Gonatocerus sp. (as Lymaenon sp.) in Among several species in the families Mymaridae Plant City, Florida, from eggs of Oncometopia un- and Trichogrammatidae (both Hymenoptera) data (Fabricius), that is an obvious misidentifica- that were collected (Triapitsyn & Hoddle 2001), tion of O. nigricans following Young (1968). there were two mymarid species on which the Material Examined. USA, Florida, Orange Co., previously unknown information is given below.