Investigating the potential for a limited quantum speedup on protein lattice problems Carlos Outeiral1;2, Garrett M. Morris1, Jiye Shi3, Martin Strahm4, Simon C. Benjamin2;∗, Charlotte M. Deane1;y 1Department of Statistics, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, United Kingdom 2Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom 3Computer-Aided Drug Design, UCB Pharma, 216 Bath Road, Slough SL1 3WE, United Kingdom 4Pharma Research & Early Development, F. Hoffmann-La Roche, Grenzacherstrasse 4058, Basel, Switzerland ∗To whom correspondence shall be addressed:
[email protected] yTo whom correspondence shall be addressed:
[email protected] Abstract. Protein folding is a central challenge in computational biology, with important applications in molecular biology, drug discovery and catalyst design. As a hard combinatorial optimisation problem, it has been studied as a potential target problem for quantum annealing. Although several experimental implementations have been discussed in the literature, the computational scaling of these approaches has not been elucidated. In this article, we present a numerical study of quantum annealing applied to a large number of small peptide folding problems, aiming to infer useful insights for near-term applications. We present two conclusions: that even na¨ıve quantum annealing, when applied to protein lattice folding, has the potential to outperform classical approaches, and that careful engineering of the Hamiltonians and schedules involved can deliver notable relative improvements for this problem. Overall, our results suggest that quantum algorithms may well offer improvements for problems in the protein folding and structure prediction realm. arXiv:2004.01118v2 [quant-ph] 18 May 2021 Keywords: quantum annealing, protein folding, quantum optimisation, biophysics 1.