An Inside Job: Applications of Intracellular Single Domain Antibodies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases
Antibodies 2015, 4, 170-196; doi:10.3390/antib4030170 OPEN ACCESS antibodies ISSN 2073-4468 www.mdpi.com/journal/antibodies Review Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases Marta Westwood * and Alastair D. G. Lawson Structural Biology, UCB, 216 Bath Road, Slough, SL1 3WE UK; E-Mail: [email protected]. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-1-753-534-655 (ext.7749); Fax: +44-1-753-536-632. Academic Editor: Dimiter S. Dimitrov Received: 13 May 2015 / Accepted: 9 July 2015 / Published: 15 July 2015 Abstract: Assembly of misfolded proteins into fibrillar deposits is a common feature of many neurodegenerative diseases. Developing effective therapies to these complex, and not yet fully understood diseases is currently one of the greatest medical challenges facing society. Slow and initially asymptomatic onset of neurodegenerative disorders requires profound understanding of the processes occurring at early stages of the disease including identification and structural characterisation of initial toxic species underlying neurodegeneration. In this review, we chart the latest progress made towards understanding the multifactorial process leading to amyloid formation and highlight efforts made in the development of therapeutic antibodies for the treatment of amyloid-based disorders. The specificity and selectivity of conformational antibodies make them attractive research probes to differentiate between transient states preceding formation of mature fibrils and enable strategies for potential therapeutic intervention to be considered. Keywords: antibody; amyloids; conformation; prion; Alzheimer’s; Parkinson’s; fibrils, tau; Huntingtin; protein misfolding 1. Introduction Correct protein folding is crucial for maintaining healthy biological functions. -
Rapid Selection of Specific MAP Kinase-Binders from Designed Ankyrin Repeat Protein Libraries
Protein Engineering, Design & Selection vol. 19 no. 5 pp. 219–229, 2006 Published online March 21, 2006 doi:10.1093/protein/gzl004 Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries Patrick Amstutz1,4,5, Holger Koch1,4, H. Kaspar Binz1, form in this milieu. For this reason, antibodies were Stefan A. Deuber2 and Andreas Plu¨ckthun1,3 engineered for higher intracellular stability with some success 1 et al ¨ ¨ Biochemisches Institut der Universita¨tZu¨rich, Winterthurerstrasse 190, (Proba ., 1998; Worn and Pluckthun, 1998; Desiderio CH-8057 Zu¨rich, Switzerland and 2Institut fu¨r Medizinische Virologie der et al., 2001; Visintin et al., 2002), but the number of selected Universita¨tZu¨rich, Gloriastrasse 30, Zu¨rich, Switzerland and active binders is usually limited (Tanaka and Rabbitts, 3To whom correspondence should be addressed. 2003; Koch et al., 2006). These results can be explained by E-mail: [email protected] the selection pressure, which not only places demands on 4These authors contributed equally to this work. 5 specific binding but also requires stability under reducing Present address: Molecular Partners AG, c/o Universita¨tZu¨rich, conditions. Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland To overcome these limitations of immunoglobulin We describe here the rapid selection of specific MAP-kinase domains, a variety of novel scaffolds for the generation of binders from a combinatorial library of designed ankyrin antibody-like binding molecules, some of them possessing repeat proteins (DARPins). A combined in vitro/in vivo selec- very favorable biophysical properties, has been developed tion approach, based on ribosome display and the protein (Nygren and Skerra, 2004; Binz et al., 2005). -
Applications of Microfluidic Chips in Optical Manipulation Photoporation
APPLICATIONS OF MICROFLUIDIC CHIPS IN OPTICAL MANIPULATION & PHOTOPORATION Robert Frank Marchington A Thesis Submitted for the Degree of PhD at the University of St. Andrews 2010 Full metadata for this item is available in Research@StAndrews:FullText at: https://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/1633 This item is protected by original copyright Applications of Microfluidic Chips in Optical Manipulation & Photoporation Robert Frank Marchington A thesis presented for the degree of Doctor of Philosophy Optical Trapping & Microphotonics Groups School of Physics & Astronomy University of St Andrews June 2010 Dedicated to Mum & Mike Joe & Xanthoula Applications of Microfluidic Chips in Optical Manipulation and Photoporation Robert Frank Marchington Submitted for the degree of Doctor of Philosophy June 2010 Abstract Integration and miniaturisation in electronics has undoubtedly revolutionised the modern world. In biotechnology, emerging lab-on-a-chip (LOC) methodologies pro- mise all-integrated laboratory processes, to perform complete biochemical or medical synthesis and analysis encapsulated on small microchips. The integration of electri- cal, optical and physical sensors, and control devices, with fluid handling, is creating a new class of functional chip-based systems. Scaled down onto a chip, reagent and sample consumption is reduced, point-of-care or in-the-field usage is enabled through portability, costs are reduced, automation increases the ease of use, and favourable scaling laws can be exploited, such as improved fluid control. The capacity to mani- pulate single cells on-chip has applications across the life sciences, in biotechnology, pharmacology, medical diagnostics and drug discovery. -
Nilsson C. L. (Ed.)
Else_AT-NILSSON_prelims.qxd 6/8/2007 06:29 PM Page i Lectins Analytical Technologies This page intentionally left blank Else_AT-NILSSON_prelims.qxd 6/8/2007 06:29 PM Page iii Lectins Analytical Technologies Edited by Carol L. Nilsson National High Magnetic Field Laboratory Florida State University Tallahassee, FL, USA Amsterdam – Boston – Heidelberg – London – New York – Oxford – Paris San Diego – San Francisco – Singapore – Sydney – Tokyo Else_AT-NILSSON_prelims.qxd 6/8/2007 06:29 PM Page iv Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands Linacre House, Jordan Hill, Oxford OX2 8DP, UK First edition 2007 Copyright © 2007 Elsevier B.V. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://www.elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the -
Nanobodies Right in the Middle: Intrabodies As Toolbox to Visualize and Modulate Antigens in the Living Cell
biomolecules Review Nanobodies Right in the Middle: Intrabodies as Toolbox to Visualize and Modulate Antigens in the Living Cell Teresa R. Wagner 1,2 and Ulrich Rothbauer 1,2,* 1 Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; [email protected] 2 Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany * Correspondence: [email protected]; Tel.: +49-7121-5153-0415; Fax: +49-7121-5153-0816 Received: 30 November 2020; Accepted: 18 December 2020; Published: 21 December 2020 Abstract: In biomedical research, there is an ongoing demand for new technologies to elucidate disease mechanisms and develop novel therapeutics. This requires comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, post-translational modifications and dynamic interactions of cellular components. Traceable intracellular binding molecules provide new opportunities for real-time cellular diagnostics. Most prominently, intrabodies derived from antibody fragments of heavy-chain only antibodies of camelids (nanobodies) have emerged as highly versatile and attractive probes to study and manipulate antigens within the context of living cells. In this review, we provide an overview on the selection, delivery and usage of intrabodies to visualize and monitor cellular antigens in living cells and organisms. Additionally, we summarize recent advances in the development of intrabodies as cellular biosensors and their application to manipulate disease-related cellular processes. Finally, we highlight switchable intrabodies, which open entirely new possibilities for real-time cell-based diagnostics including live-cell imaging, target validation and generation of precisely controllable binding reagents for future therapeutic applications. Keywords: nanobody; intrabody; phage display; live-cell imaging; biosensors; target validation 1. -
M.Sc. [Botany] 346 13
cover page as mentioned below: below: mentioned Youas arepage instructedcover the to updateupdate to the coverinstructed pageare asYou mentioned below: Increase the font size of the Course Name. Name. 1. IncreaseCourse the theof fontsize sizefont ofthe the CourseIncrease 1. Name. use the following as a header in the Cover Page. Page. Cover 2. the usein the followingheader a as as a headerfollowing the inuse the 2. Cover Page. ALAGAPPAUNIVERSITY UNIVERSITYALAGAPPA [Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle Cycle Third the in (CGPA:3.64) [AccreditedNAAC by withGrade ’A+’’A+’ Gradewith by NAAC[Accredited (CGPA:3.64) in the Third Cycle and Graded as Category–I University by MHRD-UGC] MHRD-UGC] by University and Category–I Graded as as Graded Category–I and University by MHRD-UGC] M.Sc. [Botany] 003 630 – KARAIKUDIKARAIKUDI – 630 003 346 13 EDUCATION DIRECTORATEDISTANCE OF OF DISTANCEDIRECTORATE EDUCATION BIOLOGICAL TECHNIQUES IN BOTANY I - Semester BOTANY IN TECHNIQUES BIOLOGICAL M.Sc. [Botany] 346 13 cover page as mentioned below: below: mentioned Youas arepage instructedcover the to updateupdate to the coverinstructed pageare asYou mentioned below: Increase the font size of the Course Name. Name. 1. IncreaseCourse the theof fontsize sizefont ofthe the CourseIncrease 1. Name. use the following as a header in the Cover Page. Page. Cover 2. the usein the followingheader a as as a headerfollowing the inuse the 2. Cover Page. ALAGAPPAUNIVERSITY UNIVERSITYALAGAPPA [Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle Cycle Third the in (CGPA:3.64) [AccreditedNAAC by withGrade ’A+’’A+’ Gradewith by NAAC[Accredited (CGPA:3.64) in the Third Cycle and Graded as Category–I University by MHRD-UGC] MHRD-UGC] by University and Category–I Graded as as Graded Category–I and University by MHRD-UGC] M.Sc. -
In Vitro Selection for Catalytic Activity with Ribosome Display Patrick Amstutz,† Joelle N
Published on Web 07/17/2002 In Vitro Selection for Catalytic Activity with Ribosome Display Patrick Amstutz,† Joelle N. Pelletier,†,‡ Armin Guggisberg,§ Lutz Jermutus,†,⊥ Sandro Cesaro-Tadic,† Christian Zahnd,† and Andreas Plu¨ckthun*,† Biochemisches Institut, UniVersita¨tZu¨rich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland, and Organisch-Chemisches Institut der UniVersita¨tZu¨rich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland Received February 8, 2002 Abstract: We report what is, to our knowledge, the first in vitro selection for catalytic activity based on catalytic turnover by using ribosome display, a method which does not involve living cells at any step. RTEM-â-lactamase was functionally displayed on ribosomes as a complex with its encoding mRNA. We designed and synthesized a mechanism-based inhibitor of â-lactamase, biotinylated ampicillin sulfone, appropriate for selection of catalytic activity of the ribosome-displayed â-lactamase. This derivative of ampicillin inactivated â-lactamase in a specific and irreversible manner. Under appropriate selection conditions, active RTEM-â-lactamase was enriched relative to an inactive point mutant over 100-fold per ribosome display selection cycle. Selection for binding, carried out with â-lactamase inhibitory protein (BLIP), gave results similar to selection with the suicide inhibitor, indicating that ribosome display is similarly efficient in catalytic activity and affinity selections. In the future, the capacity to select directly for enzymatic activity using an entirely in vitro process may allow for a significant increase in the explorable sequence space relative to existing strategies. Naturally occurring enzymes catalyze a wide variety of selection methods sample the entire library in a single experi- chemical reactions and are increasingly used in pharmaceutical, mental step. -
In Vivo Mrna Display Enables Large-Scale Proteomics by Next Generation Sequencing
In vivo mRNA display enables large-scale proteomics by next generation sequencing Panos Oikonomoua,b,c,1, Roberto Salatinob, and Saeed Tavazoiea,b,c,1 aDepartment of Biological Sciences, Columbia University, New York, NY 10027; bDepartment of Systems Biology, Columbia University, New York, NY 10032; and cDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY10032 Edited by Jack W. Szostak, Massachusetts General Hospital, Boston, MA, and approved August 25, 2020 (received for review February 11, 2020) Large-scale proteomic methods are essential for the functional between genotype and phenotype, whereby a protein or peptide characterization of proteins in their native cellular context. How- is linked to its encoding nucleic acid. For example, in phage ever, proteomics has lagged far behind genomic approaches in display, the nucleic acid encoding the capsid displayed peptide is scalability, standardization, and cost. Here, we introduce in vivo contained within the phage (33). The resulting collection of mRNA display, a technology that converts a variety of proteomics displayed peptides can be used for the in vitro characterization of applications into a DNA sequencing problem. In vivo-expressed protein interactions, protein engineering, and selection of human proteins are coupled with their encoding messenger RNAs antibody fragment libraries (34–36). Alternative in vitro methods (mRNAs) via a high-affinity stem-loop RNA binding domain inter- linking nucleotide information to phenotype include mRNA action, enabling high-throughput identification of proteins with display (37, 38), ribosome display (39), and yeast display (40). In high sensitivity and specificity by next generation DNA sequenc- the past decade, many of these technologies have been coupled ing. -
Designer Oncolytic Adenovirus: Coming of Age
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2018 doi:10.20944/preprints201805.0273.v1 Designer Oncolytic Adenovirus: Coming of Age Alexander T. Baker1, Carmen Aguirre-Hernandez2, Gunnel Hallden2, Alan L. Parker1* 1 Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, United Kingdom 2 Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom *Corresponding author Dr. Alan L. Parker Division of Cancer and Genetics Henry Wellcome Building Cardiff University School of Medicine Heath Park Cardiff CF14 4XN Email: [email protected] Keywords: adenovirus; oncolytic; targeting; virotherapy; cancer; αvβ6 integrin; immunotherapy; tropism 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2018 doi:10.20944/preprints201805.0273.v1 Contents 1. Introduction: ................................................................................................................................... 4 2. Replication-selective adenoviruses ..................................................................................................... 6 2.1 Combination of oncolytic adenoviruses with chemotherapy ..................................................... 11 3. Oncolytic immunotherapy ................................................................................................................ 12 4. Tropism modification strategies ...................................................................................................... -
Molecular Cloning: a Laboratory Manual, 4Th Edition
This is a free sample of content from Molecular Cloning: A Laboratory Manual, 4th edition. Click here for more information or to buy the book. VOLUME 1 Molecular Cloning A LABORATORY MANUAL FOURTH EDITION © 2012 by Cold Spring Harbor Laboratory Press This is a free sample of content from Molecular Cloning: A Laboratory Manual, 4th edition. Click here for more information or to buy the book. OTHER TITLES FROM CSHL PRESS LABORATORY MANUALS Antibodies: A Laboratory Manual Imaging: A Laboratory Manual Live Cell Imaging: A Laboratory Manual, 2nd Edition Manipulating the Mouse Embryo: A Laboratory Manual, 3rd Edition RNA: A Laboratory Manual HANDBOOKS Lab Math: A Handbook of Measurements, Calculations, and Other Quantitative Skills for Use at the Bench Lab Ref, Volume 1: A Handbook of Recipes, Reagents, and Other Reference Tools for Use at the Bench Lab Ref, Volume 2: A Handbook of Recipes, Reagents, and Other Reference Tools for Use at the Bench Statistics at the Bench: A Step-by-Step Handbook for Biologists WEBSITES Molecular Cloning, A Laboratory Manual, 4th Edition, www.molecularcloning.org Cold Spring Harbor Protocols, www.cshprotocols.org © 2012 by Cold Spring Harbor Laboratory Press This is a free sample of content from Molecular Cloning: A Laboratory Manual, 4th edition. Click here for more information or to buy the book. VOLUME 1 Molecular Cloning A LABORATORY MANUAL FOURTH EDITION Michael R. Green Howard Hughes Medical Institute Programs in Gene Function and Expression and in Molecular Medicine University of Massachusetts Medical School Joseph Sambrook Peter MacCallum Cancer Centre and the Peter MacCallum Department of Oncology The University of Melbourne, Australia COLD SPRING HARBOR LABORATORY PRESS Cold Spring Harbor, New York † www.cshlpress.org © 2012 by Cold Spring Harbor Laboratory Press This is a free sample of content from Molecular Cloning: A Laboratory Manual, 4th edition. -
Article in Press
G Model MIMM-4561; No. of Pages 12 ARTICLE IN PRESS Molecular Immunology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Alternative molecular formats and therapeutic applications for ଝ bispecific antibodies ∗ Christoph Spiess, Qianting Zhai, Paul J. Carter Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA a r t i c l e i n f o a b s t r a c t Article history: Bispecific antibodies are on the cusp of coming of age as therapeutics more than half a century after they Received 28 November 2014 ® were first described. Two bispecific antibodies, catumaxomab (Removab , anti-EpCAM × anti-CD3) and Received in revised form ® blinatumomab (Blincyto , anti-CD19 × anti-CD3) are approved for therapy, and >30 additional bispecific 30 December 2014 antibodies are currently in clinical development. Many of these investigational bispecific antibody drugs Accepted 2 January 2015 are designed to retarget T cells to kill tumor cells, whereas most others are intended to interact with two Available online xxx different disease mediators such as cell surface receptors, soluble ligands and other proteins. The modular architecture of antibodies has been exploited to create more than 60 different bispecific antibody formats. Keywords: These formats vary in many ways including their molecular weight, number of antigen-binding sites, Bispecific antibodies spatial relationship between different binding sites, valency for each antigen, ability to support secondary Antibody engineering Antibody therapeutics immune functions and pharmacokinetic half-life. These diverse formats provide great opportunity to tailor the design of bispecific antibodies to match the proposed mechanisms of action and the intended clinical application. -
Targeting Ras with Macromolecules
Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Targeting Ras with Macromolecules Dehua Pei, Kuangyu Chen, and Hui Liao Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 Correspondence: [email protected] Activating Ras mutations are associated with 30% of all human cancers and the four Ras isoforms are highly attractive targets for anticancer drug discovery. However, Ras proteins are challenging targets for conventional drug discovery because they function through intracel- lular protein–protein interactions and their surfaces lack major pockets for small molecules to bind. Over the past few years, researchers have explored a variety of approaches and modalities, with the aim of specifically targeting oncogenic Ras mutants for anticancer treatment. This perspective will provide an overview of the efforts on developing “macro- molecular” inhibitors against Ras proteins, including peptides, macrocycles, antibodies, nonimmunoglobulin proteins, and nucleic acids. as is a small GTPase, acting as a molecular Mutations in K-Ras are particularly prevalent in Rswitch in many signaling pathways and some of the most deadly cancers, including pan- regulating cell proliferation, differentiation, creatic (90% prevalence), colon (35% preva- and survival, among other functions (Young lence), and lung cancers (16% prevalence). Dis- et al. 2009). Its four isoforms, H-Ras, N-Ras, ruption of Ras function genetically (i.e., by gene K-Ras4A, and K-Ras4B, are identical within mutations or small-interfering RNA [siRNA]) the amino-terminal 85 amino acids and differ inhibits the proliferation of Ras-mutant cancer primarily in the carboxyl-termini (amino acids cells and induces apoptosis, validating Ras as 165–189).