Photomechanical Organic Crystals As Smart Materials for Advanced

Total Page:16

File Type:pdf, Size:1020Kb

Photomechanical Organic Crystals As Smart Materials for Advanced DOI:10.1002/chem.201805382 Minireview & Photochemistry |Reviews Showcase| Photomechanical Organic Crystals as Smart Materials for Advanced Applications Qi Yu,[a] Briana Aguila,[d] Jia Gao,[a] Peixin Xu,[a] Qizhe Chen,[a] Jie Yan,[a] DongXing,[a] YaoChen,[b] Peng Cheng,[a, c] Zhenjie Zhang,*[a, b, c] and Shengqian Ma*[d] Chem. Eur.J.2019, 25,5611–5622 5611 2019 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim Minireview Abstract: Photomechanical molecular crystals are receiving crystalsduring irradiationare triggered by solid-state photo- much attentiondue to their efficient conversion of light into chemicalreactions and accompanied by phase transforma- mechanical work and advantages including faster response tion. This Minireview summarizesrecent developments in time;higher Young’s modulus;and orderedstructure, as growingresearch into photoresponsive molecular crystals. measured by single-crystal X-ray diffraction. Recently,various The basic mechanisms of different kinds of photomechanical photomechanical crystals with different motions (contrac- materialsare described in detail;recent advances in photo- tion, expansion,bending, fragmentation, hopping, curling, mechanical crystalsfor promising applications as smart ma- and twisting) are appearing at the forefront of smart materi- terials are also highlighted. als research. The photomechanical motionsofthese single 1. Introduction Various types of photomechanical motionshave been ob- served in photomechanical crystals, including jumping, ex- The conversion of externalenergy into macro-, micro-, or panding, bending, twisting, crawling, rolling,and even walking, nanoscopicmechanical motion by stimuli-responsivematerials upon irradiation with UV or visible light.The mechanical is of great interest from both fundamental and technological motion of crystalsisusually directly driven by the transforma- standpoints. Stimuli-responsive materials can presentdramatic tion of their molecular structure and molecular packing upon mechanical motionsunder the stimuli such as light irradia- exposure to stimuli.Dramatic crystal shape changes always tion,[1] heating,[2] externalforce,[3] solvent,[4] electrical fields,[5] originate from strain accumulation in the crystal interior and so on.[6] Amongthese stimuli,light is currently attracting caused by crystal structural transformations. Therefore, differ- increasing interestdue to its superior advantages, including ent light-sensitivechromophores associate with different pho- noncontact control, easy to obtain, cost-effectiveness, and vari- toresponsive mechanisms, including trans–cis isomerization of ous manipulatingmethods.[7] Various photomechanical materi- azobenzene, photocyclization of diarylethenes, [2+2] cycload- als, such as polymers,[8] elastomers,[9] liquid-crystalline materi- dition of olefins, [4+4] photodimerization of anthracene, and als,[10,11] andmolecular crystals,[12] have been reported, to date. other cis–trans isomerismtransformations. Commonly,photo- In particular, photomechanical crystals have attracted increas- mechanical molecular crystals can be classified into two types, ing attention because they not only have great potential for according to the recoveryconditions from photogenerated applicationsinlight harvesting, mechanical actuators,molecu- products to original phases, namely,Ttype (thermally revers- lar machines, optical sensors, and smart switches,[13] but also ible) and Ptype (thermally irreversible, but photochemically re- provide the opportunity to understand their performance versible).[15] Most photomechanical molecular crystals are of T throughXRD methods by solving ordered molecular struc- type, which requireheating to recover their photomechanical tures.[14] Compared with polymers, elastomers, and liquid-crys- ability,such as azobenzene, olefins, and anthracene. Only a talline materials, molecular crystals possess many advantages, few familiesofmolecular crystals can undergo photochemical- such as faster response times,[12] shorter recovery times, a ly reversible reactions, such as diarylethenes. higher Young’smodulus,[15] and awell-definedcrystal struc- To date, photomechanical behavior has been observed in ture.[16,17] In addition, light and mechanical energy transfer rap- molecular crystalsoforganic compounds, coordination com- idly occurs in orderedmolecular single crystalswith less plexes, and organometallic compounds. It should be noted energy dissipation. that most studies relatedtophotomechanical crystalsfocus on organic crystalsdue to their modular design natureand con- [a] Q. Yu,J.Gao, P. Xu, Q. Chen, J. Yan, D. Xing, Prof. P. Cheng, Prof. Z. Zhang venient synthesis. Herein, recent progress and development in College of Chemistry, Nankai University,Tianjin, 300071 (P.R. China) photomechanical organic crystals are summarized,and remarks E-mail:[email protected] on existing challenges and possible future directions in this [b] Prof. Y. Chen,Prof. Z. Zhang State Key Laboratory of Medicinal Chemical biology field are given. Nankai University,Tianjin,300071 (P.R. China) [c] Prof. P. Cheng, Prof. Z. Zhang Key Laboratory of Advanced EnergyMaterialsChemistry 2. Classification of Photomechanical Organic Ministry of Education, Nankai University,Tianjin, 30007 (P.R. China) Crystals Based on Photoreactions [d] B. Aguila, Prof. S. Ma 2.1 Photomechanical organic crystals inducedbytrans–cis Department of Chemistry,University of South Florida 4202 E. Fowler Avenue, Tampa, FL 33620 (USA) isomerization E-mail:[email protected] 2.1.1 The trans–cis isomerization of azobenzene Supporting information and the ORCID identification number(s) for the author(s) of this articlecan be found under: Azobenzene, adiazene (HN=NH) derivativeinwhich both hy- https://doi.org/10.1002/chem.201805382.Table S1 summarizes the molecu- drogen atoms are replaced by phenylgroups, is aprominent lar structure, irradiationconditions,and photomechanical behavior of the reported photoresponsive crystals. family of photomechanical molecules based on trans–cis iso- [18] Selected by the EditorialOffice for our Showcaseofoutstanding Review- merization. The trans–cis isomerization phase transition is type articles (www.chemeurj.org/showcase). usually driven by UV-lightirradiation, which causes large-scale Chem. Eur.J.2019, 25,5611–5622 www.chemeurj.org 5612 2019 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim Minireview deformation of the crystal shape and size. The reverse reaction it possible for applications in remote-controlled microsized of cis to trans isomerization occurs spontaneously at room valves on solid substrates. temperature in the dark due to the thermodynamic stability of The photoinducedbending behavior of azobenzene derivate the trans isomer relative to that of the cis isomer.Geometry crystalshas been widely studied. Under continuous UV excita- changes to azobenzene result in crystal motion,owing to tion, crystals bend continuously with arange of curvatures; strain accumulated in the crystals. Azobenzene and its deriva- this provides abasis to study effects of deformation. Upon kin- tives exhibit remarkable photostability and faster responses ematic analysis, the authors disentangled the relationship be- under light irradiation (Figure 1). Photoinducedbending of the tween intrinsic factors(the size and initial shape of the crystal) azobenzene crystal under UV-light irradiation was first reported and externalfactors(excitation power, direction, andtime) in in 2009.[19] The development of azobenzene photomechanical detail.[21] The trans–cis isomerization of azobenzene crystals crystalshas boomed in the past few years. Through modulat- was usually stimulatedbyUVirradiation, which greatly limited ing the substituent sites of azobenzene and interactions be- their practical applicationsdue to the inconvenience and po- tween molecules, variousmechanical motionsare exhibited. tential dangers of UV light. Thus,the preparation of azoben- zene crystals photoresponsive to visible light is of great signifi- cance. Barrett et al. reportedaseries of azobenzene com- pounds that responded to visible-light irradiation through modifying astrong electron-withdrawing “pull” group and a strong “push” donor in molecules of azobenzene.[22] This class Figure 1. Isomerization of azobenzene. Qi Yu received her BSc and MS degrees in 2013 and 2016 from Harbin University of Sci- ence and Technology (advisor: Professor Xiao- Norikaneand co-workersreported an azobenzene derivative, jun Sun). She was then recommended as a the 3,3-dimethylazobenzene (DMAB) crystal, whichexhibited PhD candidate toNankai University under the directional and continuous motion on aglass surfaceduring si- supervision of Prof. Peng Cheng and Prof. Zhenjie Zhang. Her research is focused on l multaneousirradiation at two different wavelengths ( = 365 photoresponsive crystalline materials and [20] and 465 nm;Figure 2). Moreover,crystals can climb on verti- solid-state chemistry. cal surfaces at room temperature. This trans–cis conversion in- duced liquefaction of the crystals;inother words, caused the crystalline phasetotransform into aliquid. This finding makes Dr.Zhenjie Zhang received his BSc and MS degrees from Nankai University(advisor:Pro- fessorPeng Cheng). In 2014 he obtained his PhD degree from the University of South Flori- da (advisor: Professor Michael J. Zaworotko). From 2014–2016, he was apostdoc at UC San Diego (Advisor:Seth Cohen). From 2016, he started his independentcareer atNankai University as afull professorofInorganic Chemistry. He is currently focusingonre- searchinseparation
Recommended publications
  • The Use of Diarylethene Derivatives for Photo-Switching
    Contribution The use of Diarylethene Derivatives for Photo-switching Kenji Matsuda Masahiro Irie Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 1. Introduction The color change is attributable to the different electrical structures between the open-ring and closed-ring The process of reversible coloration changes induced isomers. In the open-ring isomers, free rotation exists at at least in one-direction by photoirradiation is referred to the ethene and aryl groups, so the isomer is non-planar as photochromism.1) The two isomers of photochromic com- and the π-electrons are localized in the two aryl groups. pounds differ in their geometrical and electrical structures. Furthermore, due to rotational energy barriers, two rota- These geometrical and electrical differences lead to tional isomers exist, namely, photo-reactive (anti-parallel) changes in the physical properties of the molecules, such and photo-inactive (parallel) (Figure 2).3) On the other hand, as their absorption and fluorescence spectra, refractive the closed ring isomer possesses high planarity, with index and electrical conductivity. Since the transformation asymmetrically arranged carbon atoms at the reaction site. between the isomers is induced by photoirradiation, It has a bond alternation polyene structure and a π-conju- optical-switching of the physical properties can be realized gated system spread throughout the molecule. Reflecting by using the photochromic units. on the differences between these geometric and electrical Diarylethene, which contains five-membered structures, their physical properties vary in many ways.4) heterocyclic rings, is well known as a photochromic com- In this review, some of the physical properties that were pound that is thermo-irreversible, has high-sensitivity and photo-switched by using photochromic diarylethene units, has fatigue resistance properties.2) Photochromic reactions i.e.
    [Show full text]
  • Alginate and Silk Fibroin Based Technologies for Biosensing
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en ALGINATE AND SILK FIBROIN BASED TECHNOLOGIES FOR BIOSENSING Augusto Márquez Maqueda Doctoral Thesis PhD in Chemistry Supervised by: Dr. Xavier Muñoz Berbel Dr. Carlos Domínguez Horna Tutored by: Dr. Julián Alonso Chamorro Departament de Química Facultat de Ciències 2020 The present thesis, entitled “Alginate and Silk Fibroin based Technologies for Biosensing”, is submitted by Augusto Márquez Maqueda as a partial fulfilment of the requirements for the Doctor of Philosophy degree in Chemistry. This thesis was carried out at the Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), in the Group of Chemical Transducers (GTQ), under the supervision of Dr. Xavier Muñoz Berbel and Dr. Carlos Domínguez Horna. This thesis was supported by the Spanish R & D National Program (MEC Project TEC2014-54449-C3-1-R) and by the MICINN for the award of a research studentship within the FPI program (BES-2015-072946). With the approval of: Dr. Xavier Muñoz Berbel Dr. Carlos Domínguez Horna (Director) (Director) Dr. Julián Alonso Chamorro Augusto Márquez Márquez (Tutor) (Author) Agradecimientos Son muchas las personas a las que he de agradecer el hecho de haber podido realizar esta tesis.
    [Show full text]
  • Design, Synthesis and Applications of Responsive Macrocycles
    REVIEW ARTICLE https://doi.org/10.1038/s42004-020-00438-2 OPEN Design, synthesis and applications of responsive macrocycles ✉ Jingjing Yu1, Dawei Qi1 & Jianwei Li 1,2 1234567890():,; Inspired by the lock and key principle, the development of supramolecular macrocyclic chemistry has promoted the prosperous growth of host-guest chemistry. The updated induced-fit and conformation selection model spurred the emerging research on responsive macrocycles (RMs). This review introduces RMs, covering their design, synthesis and applications. It gives readers insight into the dynamic control of macrocyclic molecules and the exploration of materials with desired functions. ost–guest chemistry grew out of the lock and key principle by Emil Fischer. The principle Hwas formulated in 1894 by his discovery that glycolytic enzymes could selectively recognize stereoisomers of sugars. He hypothesized that only when the geometry of the enzyme (lock) was exactly complementary with that of the substrate (key) could the recognition take place and subsequently trigger the catalytic reactions. This model not only helps us understand the basics of biochemistry but also encourages chemists to explore functional host molecules acting like the ‘lock’. The first family of artificial host molecules, crown ethers, was discovered by Charles Pederson in 19671. They were cyclic molecules, and certain metallic atoms can be bonded in the middle of the ring of these molecules. Since then, supramolecular chemists have developed many macrocycles, including natural molecules like cyclodextrins2 and syn- thesized ones, including cucurbiturils3, pillararenes4, asararenes5, calixarenes6, resorcinarenes7 and other novel supramolecular macrocycles8–10. These macrocycles and their derivatives have been extensively investigated so chemists are able to achieve structure specific and highly selective recognition properties, which provide opportunities for exploring advanced applica- tions in sensing11, transport12, catalysis13 and drug/gene delivery14.
    [Show full text]
  • Rylene Bisimide-Diarylethene Photochromic Systems for Non-Destructive Memory Read-Out
    Rylene Bisimide-Diarylethene Photochromic Systems for Non-destructive Memory Read-out Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Martin Berberich aus Amorbach Würzburg 2012 2 Eingereicht bei der Fakultät für Chemie und Pharmazie am: 10.08.2012 1. Gutachter: Prof. Dr. Frank Würthner 2. Gutachter: Prof. Dr. Markus Sauer der schriftlichen Arbeit 1. Prüfer: Prof. Dr. Frank Würthner 2. Prüfer: Prof. Dr. Markus Sauer 3. Prüfer: Prof. Dr. Tobias Brixner des öffentlichen Promotionskolloquiums Tag des öffentlichen Promotionskolloquiums: 29.10.2012 Doktorurkunde ausgehändigt am: _________________________ 3 4 Wer nichts als Chemie versteht, versteht auch die nicht recht. ca. 1790 Georg Christoph Lichtenberg (1742–1799) 5 List of Abbreviations List of Abbreviations A acceptor AIBN azobisisobutyronitrile APCI atmospheric-pressure chemical ionization BOC N-tert-butoxycarbonyl c closed form of photochrome CI conical intersection CT charge transfer CV cyclic voltammetry D donor DAE diarylethene DAEC closed form of diarylethene DAEO open form of diarylethene DBN 1,5 diazabicyclo[4.3.0]non-5-ene DCC N,N’-dicyclohexylcarbodiimide DCTB 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile diglyme 1-methoxy-2-(2-methoxyethoxy)ethane DMF N,N-dimethylformamide DMSO dimethyl sulfoxide ESI electrospray ionization FRET Förster resonance energy transfer FWHM full width half maximum HOMO highest occupied molecular orbital HRMS high resolution mass spectrometry IC internal
    [Show full text]
  • Organic Photochromic Compounds
    Organic Photochromic Compounds Literature talk 11.07.2018 Lisa-Catherine Rosenbaum, Gaich group Universität Konstanz Introduction „Photochromism“ (from Greek phos = light, chroma = color; Hirshberg, 1950) : light-induced reversible transformation of a chemical species between two forms with different absorption spectra Photochromic action: • photo-induced darkening • thermally induced reverse reaction which leads to initial transparent state - from 1960s: glass lenses impregnated with silver halides and cuprous ions (photolytic decomposition of silver halide; reversible broad absorption band from UV to near IR) - nowadays: organic photochromic lenses H. Dürr, H. Bouas-Laurent, Photochromism: Molecules and Systems , Elsevier Science, 2003 . https://www.zeiss.com/vision-care/int/better-vision/lifestyle-fashion/fast-dark-fast-clear-modern-self-tinting-lenses.html , taken on 13.06.2018 2 11.07.2018 Organic Photochromic Compounds Universität Konstanz Historical Survey Photochromic phenomena first reported by J. Fritsche (1867): Chancel (1878), Hantzsch (1907): chromoisomerism E. ter Meer (1876): (structure isomerism of “chromo -dinitro salts”) Fainzil’berg (1975): reversible formation of K-salt of ethylnitrolic acid R. Hubbard, A. Kropf (1958): photoexcitation in the process of vision 1960s: development of physical methods (UV, IR, NMR, X-Ray, time-resolved and flash spectroscopy) and organic synthesis mechanistic and synthetic studies; limited potential applications (photodegradation), stagnation of research 1980s: fatigue-resistant photoswitches (spirooxazines and chromenes), fabrication and commercial application of photochromic lenses and other systems J. Fritsche, Comptes Rendus Acad. Sci. 1867 , 69 , 1035. E. t. Meer, Justus Liebigs Ann. Chem. 1876 , 181 , 1-22. H. A., Ber. Dt. Chem. Ges. 1907 , 40 , 1533-1555. V. I. Slovetskii, V. P. Balykin, O.
    [Show full text]
  • Photochromic Diarylethene As an Information Processing Unit: Magnetic and Electric Switching*
    Pure Appl. Chem., Vol. 80, No. 3, pp. 555–561, 2008. doi:10.1351/pac200880030555 © 2008 IUPAC Photochromic diarylethene as an information processing unit: Magnetic and electric switching* Kenji Matsuda Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan Abstract: Photochromic compounds reversibly change not only the absorption spectra but also their geometrical and electronic structures. This principle can be applied for the photo- switching of the physical properties of the molecular materials. In particular, photoswitching of the flow of information through the molecule is interesting because information process- ing using molecular devices is attracting interest in the molecular electronics field. The photoswitchings of the magnetic exchange interaction and the electrical conductance using photochromic diarylethene are described. Keywords: photochromism; magnetism; exchange interaction; electric conductance; gold nanoparticles. INTRODUCTION Photochromism is a reversible phototransformation of a chemical species between two forms having different absorption spectra [1–4]. Photochromic compounds reversibly change not only the absorption spectra but also their geometrical and electronic structures. The geometrical and electronic structural changes induce some changes in physical properties, such as fluorescence, refractive index, polariz- ability, and electric conductivity. Diarylethenes with heterocyclic aryl groups are well known as thermally irreversible, highly sen- sitive, and fatigue-resistant photochromic compounds [5,6]. The photochromic reaction is based on a reversible transformation between an open-ring isomer with hexatriene structure and a closed-ring iso- mer with cyclohexadiene structure according to the Woodward–Hoffmann rule as shown in Fig. 1. While the open-ring isomer 1a is colorless in most cases, the closed-ring isomer 1b has the color of yel- low, red, or blue, depending on the molecular structure.
    [Show full text]
  • Dual Wettability on Diarylethene Microcrystalline Surface Mimicking a Termite Wing
    ARTICLE Corrected: Publisher Correction https://doi.org/10.1038/s42004-019-0192-6 OPEN Dual wettability on diarylethene microcrystalline surface mimicking a termite wing Ryo Nishimura 1, Kengo Hyodo1, Hiroyuki Mayama 2, Satoshi Yokojima3,4, Shinichiro Nakamura 4 & Kingo Uchida 1,4 1234567890():,; The termite wing has a specific property of wetting in contact with a water droplet: it adsorbs water mist, whereas larger water droplets are bounced on the surface. This is owing to the survival strategy of termites. Here, we reproduce the termite wing’s dual wettability by a photoinduced crystal growth technique. Upon UV irradiation to a microcrystalline surface of a mixture of two diarylethenes, two types of needle-shaped crystals of distinctly different sizes are observed to grow. The surface shows behavior akin to the termite wing’s dual wettability. The bouncing ability of a water droplet is attributed to the smaller-sized needle crystals, whereas the adhesive property is owing to the larger-sized ones, explaining the micro- structures of the termite wing. Considering dissipation energy and adhesion energy, the bouncing ability and dual wettability can be explained theoretically. The surface could potentially be used in water harvesting applications. 1 Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan. 2 Department of Chemistry, Asahikawa Medical University, 2-1- 1-1 Midorigaoka–higashi, Asahikawa, Hokkaido 078-8510, Japan. 3 School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan. 4 RIKEN Cluster for Science, Technology and Innovation Hub, Nakamura Laboratory, 2-1 Hirosawa, Wako, Saitama 351- 0198, Japan.
    [Show full text]
  • Partially Fluorinated Polycyclic Aromatic Compounds: Synthesis and Supramolecular Behavior
    University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2007 PARTIALLY FLUORINATED POLYCYCLIC AROMATIC COMPOUNDS: SYNTHESIS AND SUPRAMOLECULAR BEHAVIOR Don Mark Cho University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cho, Don Mark, "PARTIALLY FLUORINATED POLYCYCLIC AROMATIC COMPOUNDS: SYNTHESIS AND SUPRAMOLECULAR BEHAVIOR" (2007). University of Kentucky Master's Theses. 443. https://uknowledge.uky.edu/gradschool_theses/443 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS PARTIALLY FLUORINATED POLYCYCLIC AROMATIC COMPOUNDS: SYNTHESIS AND SUPRAMOLECULAR BEHAVIOR The field of organic electronics has received much attention over the last few years, and engineering of organic crystals to grow with pi-electron systems arranged in a face-to- face motif has been shown to be beneficial in electronic devices. The effects of combining aromatic and perfluorinated aromatic derivatives have shown that the intramolecular stacking pattern can be changed from an edge-to-face arrangement to that of a face-to-face motif. Before the work described herein, there were no reported studies of the supramolecular behavior of fused polycyclic aromatic compounds with partial peripheral fluorination, inducing the desired face-to-face behavior. This is the main focus of the thesis. Furthermore, by exploiting the interactions between the fluorinated and non-fluorinated faces of the molecule, columnar liquid crystalline behavior can be achieved through variations of the alkyl substituents on the molecule.
    [Show full text]
  • Hybrid Organic–Inorganic Photon-Powered Actuators Based
    Article Cite This: Chem. Mater. 2019, 31, 1016−1022 pubs.acs.org/cm Hybrid Organic−Inorganic Photon-Powered Actuators Based on Aligned Diarylethene Nanocrystals † † † ‡ † § Xinning Dong, Fei Tong, Kerry M. Hanson, Rabih O. Al-Kaysi, Daichi Kitagawa,*, , § † Seiya Kobatake,*, and Christopher J. Bardeen*, † Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States ‡ College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh 11426, Kingdom of Saudi Arabia § Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan *S Supporting Information ABSTRACT: When photochromic molecules are organized in a crystal, the small-scale forces generated by molecular photoisomerization events can combine together to generate work on micro- or macroscopic length scales. In this work, photomechanical nanocrystals themselves are organized on macroscopic length scales using a porous inorganic template. The organic diarylethene component provides the reversible photoresponse, whereas the porous alumina component provides structural support and directionality. This hybrid organic−inorganic photomechanical material acts as a bending actuator. Using ultraviolet and visible photons as power inputs, as little as 0.1 mg of reacted material generates enough force to tilt a 1.28 g mirror and steer a laser beam. The motion can be cycled multiple times in air and under water. Actuator figures- of-merit such as energy-to-work conversion efficiency and stiffness are probably limited by the high elastic modulus of the inorganic template, providing an obvious pathway for optimization.
    [Show full text]
  • Photochromic Diarylethene Molecules and Crystals*
    Pure Appl. Chem., Vol. 81, No. 9, pp. 1655–1665, 2009. doi:10.1351/PAC-CON-08-09-26 © 2009 IUPAC, Publication date (Web): 10 August 2009 Photochromic diarylethene molecules and crystals* Masahiro Irie‡ and Masakazu Morimoto Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan Abstract: Some of the diarylethene derivatives were found to undergo photoisomerization re- actions between two isomers even in the single-crystalline phase. The two isomers have dif- ferent electronic as well as geometrical structures. The electronic structure change induces the reversible color change of the crystal. Single crystals composed of three different kinds of diarylethenes having similar geometrical structures, bisoxazolylethene, bisthiazolylethene, and bisthienylethene have been prepared. The crystals exhibited multicolor photochromism. The colorless crystals turned yellow, red, and blue upon irradiation with the appropriate wavelength of light. The geometrical structure change of component diarylethene molecules in crystals induces reversible surface morphology as well as shape and size changes of the crystals. The photoinduced geometrical structure changes of the molecules in the densely packed crystals were successfully linked to the macro-scale mechanical motion of the solid crystals and resulted in the net task of launching a tiny silica particle. Keywords: diarylethenes; photochromism; photomechanical effects; single crystals; X-ray crystallographic analysis. INTRODUCTION Photochromism is defined as a reversible transformation of a chemical species between two isomers upon irradiation with the appropriate wavelength of light [1,2]. The two isomers have different elec- tronic as well as geometrical structures. The reversible and quick structure changes between them upon photoirradiation can be potentially applied to various photoactive devices [3–7].
    [Show full text]
  • Photomechanical Azobenzene Crystals
    crystals Review Photomechanical Azobenzene Crystals Takuya Taniguchi 1 , Toru Asahi 2,3 and Hideko Koshima 3,* 1 Center for Data Science, Waseda University, 27 Waseda-cho, Shinjuku-ku, Tokyo 1620042, Japan 2 Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan 3 Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 1620041, Japan * Correspondence: [email protected]; Tel.: +81-3-5286-8307 Received: 12 August 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Photomechanically responsive materials are promising candidates for future smart actuator applications. The photo-responsive behaviors originate from the photoisomerization of photochromic molecules. A typical photochromic compound, azobenzene, has been studied extensively in the solution state and has played a crucial role in the photomechanical behaviors of materials such as polymers and gels, via chemical bridging with their matrix. In contrast to polymers and gels, the photomechanical attributes of molecular crystals have not progressed to the same degree, due to their rigidity and fragility. However, the past decade has witnessed an increasing number of reports of the photomechanical motion of molecular crystals, including azobenzene crystals. This paper reviews the current state-of-the-art of mechanically responsive azobenzene crystals, including the history, crystal design strategy, and future promising applications. Keywords: azobenzene; photomechanical motion; trans-cis photoisomerization; molecular crystal; actuation 1. Introduction to Photomechanical Materials 1.1. Actuator Materials Actuation, which refers to mechanical motion or operation resulting from an energy conversion process, is prevalent throughout nature and characterizes some human activities.
    [Show full text]
  • A New Diarylethene with Donor-Acceptor Group Bull
    A New Diarylethene with Donor-acceptor Group Bull. Korean Chem. Soc. 2008, Vol. 29, No. 4 827 A New Diarylethene with Donor-acceptor Group for Reversible Photo-induced Electrochemical Switching Eunkyoung Kim,* Miyoung Kim: and Kyongtae Kim* Department of Chemical Engineering, Yonsei University, Seoul 120-749, Korea. *E-mail: eunkim @yonsei.ac.kr ‘School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, Korea Received January 15, 2008 A new diarylethene compound with donor and acceptor substituent was synthesized from 2,3-bis(2-methyl- benzo[b]thiophene-3-yl)hexafluorocyclopentene (BTF) over 5 steps. The donor-acceptor structured BTF compound (TBTFE) showed spectral change to a longer wavelength through photochromism with a high cyclization quantum yield (0.56). The 3,4-ethylenedioxythiophene (T) and carboethoxy (E) groups directly connected to BTF unit promoted electrical change accompanied with the photoisomerization of the BTF unit. Photo-induced electrical switching was achieved from a photocell containing TBTFE doped polymer film, which showed reversible and stable current change over repeated cycles by the alternative UV/Vis irradiation, as estimated by the I-V plot. Key Words : Photochromism, Diarylethene, Ring cyclization, Ring opening, Photo-electrical switching Introduction properties and electrical conductivity of diarylethene through the conjugated pathway. In particular, introduction Photo-induced changes of physical properties between of the electron-donating and -accepting groups to the two
    [Show full text]