Time Series and Forecasting a Time Seres Is a Set of Observations {Y J}

Total Page:16

File Type:pdf, Size:1020Kb

Time Series and Forecasting a Time Seres Is a Set of Observations {Y J} Time Series and Forecasting A time seres is a set of observations fYjg of some variable taken at regular time intervals (monthly, quarterly, yearly, etc.). Forecasting refers to using past experience to predict values for the future, which requires summarizing the past experience in some useful way, based on the behavior that is expected to continue and factoring out random variation. The ultimate test of a forecasting method can only be carried out after the time predicted { not very helpful when the prediction is needed { so our comparisons of various methods rely on \How well would this method (if it had been used) have predicted what we (now) know really happened?". Thus we use \prediction error" (exactly the same idea as residu- als in regression) for past time periods and the mean of the squares of the errors to compare the success of different methods. Our methods break down (broadly) into two groups 1.) Smoothing methods: the simplest description and prediction with no assumption about patterns. For forecasting, these methods are appropriate only for forecasting one period (one month for monthly data, one year for yearly data, etc.) into the future 2.) Classical time series: Certain patterns (seasonal variation, underlying trend) are identified and separated out (using the methods developed for group 1 as well as regression techniques) to give a more complete representation. This requires assumptions about the existence of patterns but then allows forecasting behavior for several time periods. Because there is no unifying assumption of pattern (as there is with linear regression), there is no \best fit” prediction and no tests of significance are used { these are very much descriptive techniques being used to make forecasts. Compar- ison of results is on a case-by-case basis and based on the mean square error of the predictions of past behavior. Accuracy of a method over a particular part of the series is measured by the mean square error MSE (smaller is P 2 Yj − Y^j better) MSE = where n is the number of observations used and Y^ is the value predicted by the method n j for time j. [Some people call this \mean square deviation" { abbreviated MSD]. 1. Smoothing: (a) Moving averages To summarize behavior in a time series, our first (and most basic) tool is the moving average used to smooth out the series for forecasting. The n period moving average of a time series Yj is the average of n consecutive values.[with each new period, the oldest observation is dropped and the newest is include]) k X Yj j=k−n+1 n -period moving average, through period k = n The forecast for period i + 1 is the moving average for the n periods through time i. P Y F = forecast for period i + 1 = j , where Y = actual value at time j, sum is taken over the n periods i+1 n j ending at period i) In using a moving average for forecasting, the main issue is the number of observations to include in the moving average. (b) Weighted moving averages To treat different observations as more useful or less useful (we are likely to consider more recent observations as more useful for forecasting) we assign a weight wj to each observation and calculate a weighted moving average; then our forecast is P wjYj Fi+1 = P , with Yj = actual value at time j, wj = weight assigned to period j, sum is taken over the n wj periods ending at period i. Typically the weight is based on position in the last n observations - so the same observation has different weights depending on which moving average we are calculating. (c) Exponential smoothing This forecasting method gives a prediction based on a weighted average of the most recent observation (Yi) and the prediction for that value (Fi) (which uses the previous observed values). The effect is a weighted average, with more history [more periods included] in each prediction, but weighting the older data less and less heavily as time goes on. It involves a single weighting factor α which is less than one. Fi+1 = Fi + α(Yi − Fi) = αYi + (1 − α)Fi 1 2 n−1 (Some algebra shows that Fi+i = αYi + α(1 − α)Yi−1 + α(1 − α) Yi−2 + ··· + α(1 − α) Y1 - the increasing exponents on the (1 − α) factor are the reason for the name \exponential") 2. Trend analysis To look for an overall pattern for the \center" of the values, with random variation around this pattern, we speak of a \trend" in the data. The simplest form is linear trend | and we would use our linear regression model (with time as predictor) to model the trend. Other types of trend models are also used, depending on the expected pattern of the trend: shape name trend formula other forms rising or falling at steady rate linear y = a + bt rising at increasing rate exponential y = abt log(y) = log(a) + log(b)t falling at decreasing rate exponential y = abt(b < 1) log(y) = log(a) + log(b)t 2 n rising/falling at varying rates polynomial y = b0 + b1t + b2t + ··· + bnt We shall not work with trends other than the linear { more advanced regression methods (really linear regression with some add-ons and other considerations) are used to find trend equations of the other forms. Choosing among the types is again based on comparison of mean square error (with the usual reluctance to use too many predictors). 3. Seasonal indexes A seasonal index St represents the percentage change in values (from baseline) due to seasonal influences. The most common method of finding seasonal indexes is through the method of centered moving averages (moving average centered on the period of interest rather than ending at the period). To calculate seasonal index (described as calculation for one quarter) (a) For each quarter of each year calculate i. The four-quarter moving average centered at the middle of the quarter. ii. The seasonal irregular value for that quarter { the actual value (Yj) for the quarter divided by the centered moving average for that quarter (b) For each quarter (1, 2, 3, 4) take the average (text uses mean, many others | and Minitab | use median) of all the seasonal irregular values for those quarters in the years observed. If necessary, multiply each of the averages by 4 so that the average of the four values is 1. These four numbers are the sum of the four averages Seasonal indexes. To deseasonalize a time series (remove the{average{seasonal effects from the series) we divide each quarterly ob- servation by the Seasonal Index for that quarter. [This results in the \seasonally adjusted" figures often heard in reports of unemployment figures, retail sales figures, etc.] NOTE: To use monthly indexes, we would use the same procedure with twelve-month moving averages centered on the months, calculate Seasonal irregulars (they would be \monthly")for each month, and multiply each monthly average by 12 to make the average of the indexes equal to 1. sum of the 12 averages 4. Classical time series analysis The classic multiplicative model represents the series by Yt = Tt × St × Ct × It T = TREND = long range general movement of Y over an extended period of time. It can be estimated by a scatterplot, however, it is usually found by regression analysis. S = SEASONAL FLUCTUATION = regularly occurring patterns of Y, usually on an annual (whole cycle runs one year) basis. C = CYCLIC MOVEMENT = wide swings from the trend of a year or more in duration (due to the \business cycle" { including recessions, booms, etc.) . I = IRREGULAR MOVEMENT = all variation that cannot be explained by the above three factors (white noise) (random factors - analogous to the error term in the regression model representing deviation from the \patterned" part, but this is multiplied rather than added). Because the Cyclic movement is so hard to estimate and the irregular movement is impossible to model, we will work mainly with the model Y = T ×S recognizing that this, like the regression model, represents the basic behavior around which the random variation occurs. To estimate such a model, we generally calculate seasonal indexes first (this will, of course, require several years of data) and calculate a trend using regression on the deseasonalized data. We do not obtain confidence intervals or significance levels for our model. 2.
Recommended publications
  • Chapter 2 Time Series and Forecasting
    Chapter 2 Time series and Forecasting 2.1 Introduction Data are frequently recorded at regular time intervals, for instance, daily stock market indices, the monthly rate of inflation or annual profit figures. In this Chapter we think about how to display and model such data. We will consider how to detect trends and seasonal effects and then use these to make forecasts. As well as review the methods covered in MAS1403, we will also consider a class of time series models known as autore- gressive moving average models. Why is this topic useful? Well, making forecasts allows organisations to make better decisions and to plan more efficiently. For instance, reliable forecasts enable a retail outlet to anticipate demand, hospitals to plan staffing levels and manufacturers to keep appropriate levels of inventory. 2.2 Displaying and describing time series A time series is a collection of observations made sequentially in time. When observations are made continuously, the time series is said to be continuous; when observations are taken only at specific time points, the time series is said to be discrete. In this course we consider only discrete time series, where the observations are taken at equal intervals. The first step in the analysis of time series is usually to plot the data against time, in a time series plot. Suppose we have the following four–monthly sales figures for Turner’s Hangover Cure as described in Practical 2 (in thousands of pounds): Jan–Apr May–Aug Sep–Dec 2006 8 10 13 2007 10 11 14 2008 10 11 15 2009 11 13 16 We could enter these data into a single column (say column C1) in Minitab, and then click on Graph–Time Series Plot–Simple–OK; entering C1 in Series and then clicking OK gives the graph shown in figure 2.1.
    [Show full text]
  • Demand Forecasting
    BIZ2121 Production & Operations Management Demand Forecasting Sung Joo Bae, Associate Professor Yonsei University School of Business Unilever Customer Demand Planning (CDP) System Statistical information: shipment history, current order information Demand-planning system with promotional demand increase, and other detailed information (external market research, internal sales projection) Forecast information is relayed to different distribution channel and other units Connecting to POS (point-of-sales) data and comparing it to forecast data is a very valuable ways to update the system Results: reduced inventory, better customer service Forecasting Forecasts are critical inputs to business plans, annual plans, and budgets Finance, human resources, marketing, operations, and supply chain managers need forecasts to plan: ◦ output levels ◦ purchases of services and materials ◦ workforce and output schedules ◦ inventories ◦ long-term capacities Forecasting Forecasts are made on many different variables ◦ Uncertain variables: competitor strategies, regulatory changes, technological changes, processing times, supplier lead times, quality losses ◦ Different methods are used Judgment, opinions of knowledgeable people, average of experience, regression, and time-series techniques ◦ No forecast is perfect Constant updating of plans is important Forecasts are important to managing both processes and supply chains ◦ Demand forecast information can be used for coordinating the supply chain inputs, and design of the internal processes (especially
    [Show full text]
  • Moving Average Filters
    CHAPTER 15 Moving Average Filters The moving average is the most common filter in DSP, mainly because it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average filter is optimal for a common task: reducing random noise while retaining a sharp step response. This makes it the premier filter for time domain encoded signals. However, the moving average is the worst filter for frequency domain encoded signals, with little ability to separate one band of frequencies from another. Relatives of the moving average filter include the Gaussian, Blackman, and multiple- pass moving average. These have slightly better performance in the frequency domain, at the expense of increased computation time. Implementation by Convolution As the name implies, the moving average filter operates by averaging a number of points from the input signal to produce each point in the output signal. In equation form, this is written: EQUATION 15-1 Equation of the moving average filter. In M &1 this equation, x[ ] is the input signal, y[ ] is ' 1 % y[i] j x [i j ] the output signal, and M is the number of M j'0 points used in the moving average. This equation only uses points on one side of the output sample being calculated. Where x[ ] is the input signal, y[ ] is the output signal, and M is the number of points in the average. For example, in a 5 point moving average filter, point 80 in the output signal is given by: x [80] % x [81] % x [82] % x [83] % x [84] y [80] ' 5 277 278 The Scientist and Engineer's Guide to Digital Signal Processing As an alternative, the group of points from the input signal can be chosen symmetrically around the output point: x[78] % x[79] % x[80] % x[81] % x[82] y[80] ' 5 This corresponds to changing the summation in Eq.
    [Show full text]
  • Trend Analysis and Forecasting the Spread of COVID-19 Pandemic in Ethiopia Using Box– Jenkins Modeling Procedure
    International Journal of General Medicine Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Trend Analysis and Forecasting the Spread of COVID-19 Pandemic in Ethiopia Using Box– Jenkins Modeling Procedure Yemane Asmelash Introduction: COVID-19, which causes severe acute respiratory syndrome, is spreading Gebretensae 1 rapidly across the world, and the severity of this pandemic is rising in Ethiopia. The main Daniel Asmelash 2 objective of the study was to analyze the trend and forecast the spread of COVID-19 and to develop an appropriate statistical forecast model. 1Department of Statistics, College of Natural and Computational Science, Methodology: Data on the daily spread between 13 March, 2020 and 31 August 2020 were Aksum University, Aksum, Ethiopia; collected for the development of the autoregressive integrated moving average (ARIMA) 2 Department of Clinical Chemistry, model. Stationarity testing, parameter testing and model diagnosis were performed. In School of Biomedical and Laboratory Sciences, College of Medicine and Health addition, candidate models were obtained using autocorrelation function (ACF) and partial Sciences, University of Gondar, Gondar, autocorrelation functions (PACF). Finally, the fitting, selection and prediction accuracy of the Ethiopia ARIMA models was evaluated using the RMSE and MAPE model selection criteria. Results: A total of 51,910 confirmed COVID-19 cases were reported from 13 March to 31 August 2020. The total recovered and death rates as of 31 August 2020 were 37.2% and 1.57%, respectively, with a high level of increase after the mid of August, 2020. In this study, ARIMA (0, 1, 5) and ARIMA (2, 1, 3) were finally confirmed as the optimal model for confirmed and recovered COVID-19 cases, respectively, based on lowest RMSE, MAPE and BIC values.
    [Show full text]
  • Time Series and Forecasting
    Time Series and Forecasting Time Series • A time series is a sequence of measurements over time, usually obtained at equally spaced intervals – Daily – Monthly – Quarterly – Yearly 1 Time Series Example Dow Jones Industrial Average 12000 11000 10000 9000 Closing Value Closing 8000 7000 1/3/00 5/3/00 9/3/00 1/3/01 5/3/01 9/3/01 1/3/02 5/3/02 9/3/02 1/3/03 5/3/03 9/3/03 Date Components of a Time Series • Secular Trend –Linear – Nonlinear • Cyclical Variation – Rises and Falls over periods longer than one year • Seasonal Variation – Patterns of change within a year, typically repeating themselves • Residual Variation 2 Components of a Time Series Y=T+C+S+Rtt tt t Time Series with Linear Trend Yt = a + b t + et 3 Time Series with Linear Trend AOL Subscribers 30 25 20 15 10 5 Number of Subscribers (millions) 0 2341234123412341234123 1995 1996 1997 1998 1999 2000 Quarter Time Series with Linear Trend Average Daily Visits in August to Emergency Room at Richmond Memorial Hospital 140 120 100 80 60 40 Average Daily Visits Average Daily 20 0 12345678910 Year 4 Time Series with Nonlinear Trend Imports 180 160 140 120 100 80 Imports (MM) Imports 60 40 20 0 1986 1988 1990 1992 1994 1996 1998 Year Time Series with Nonlinear Trend • Data that increase by a constant amount at each successive time period show a linear trend. • Data that increase by increasing amounts at each successive time period show a curvilinear trend. • Data that increase by an equal percentage at each successive time period can be made linear by applying a logarithmic transformation.
    [Show full text]
  • Penalised Regressions Vs. Autoregressive Moving Average Models for Forecasting Inflation Regresiones Penalizadas Vs
    ECONÓMICAS . Ospina-Holguín y Padilla-Ospina / Económicas CUC, vol. 41 no. 1, pp. 65 -80, Enero - Junio, 2020 CUC Penalised regressions vs. autoregressive moving average models for forecasting inflation Regresiones penalizadas vs. modelos autorregresivos de media móvil para pronosticar la inflación DOI: https://doi.org/10.17981/econcuc.41.1.2020.Econ.3 Abstract This article relates the Seasonal Autoregressive Moving Average Artículo de investigación. Models (SARMA) to linear regression. Based on this relationship, the Fecha de recepción: 07/10/2019. paper shows that penalized linear models can outperform the out-of- Fecha de aceptación: 10/11/2019. sample forecast accuracy of the best SARMA models in forecasting Fecha de publicación: 15/11/2019 inflation as a function of past values, due to penalization and cross- validation. The paper constructs a minimal functional example using edge regression to compare both competing approaches to forecasting monthly inflation in 35 selected countries of the Organization for Economic Cooperation and Development and in three groups of coun- tries. The results empirically test the hypothesis that penalized linear regression, and edge regression in particular, can outperform the best standard SARMA models calculated through a grid search when fore- casting inflation. Thus, a new and effective technique for forecasting inflation based on past values is provided for use by financial analysts and investors. The results indicate that more attention should be paid Javier Humberto Ospina-Holguín to automatic learning techniques for forecasting inflation time series, Universidad del Valle. Cali (Colombia) even as basic as penalized linear regressions, because of their superior [email protected] empirical performance.
    [Show full text]
  • Package 'Gmztests'
    Package ‘GMZTests’ March 18, 2021 Type Package Title Statistical Tests Description A collection of functions to perform statistical tests of the following methods: Detrended Fluctu- ation Analysis, RHODCCA coefficient,<doi:10.1103/PhysRevE.84.066118>, DMC coeffi- cient, SILVA-FILHO et al. (2021) <doi:10.1016/j.physa.2020.125285>, Delta RHODCCA coeffi- cient, Guedes et al. (2018) <doi:10.1016/j.physa.2018.02.148> and <doi:10.1016/j.dib.2018.03.080> , Delta DMCA co- efficient and Delta DMC coefficient. Version 0.1.4 Date 2021-03-19 Maintainer Everaldo Freitas Guedes <[email protected]> License GPL-3 URL https://github.com/efguedes/GMZTests BugReports https://github.com/efguedes/GMZTests NeedsCompilation no Encoding UTF-8 LazyData true Imports stats, DCCA, PerformanceAnalytics, nonlinearTseries, fitdistrplus, fgpt, tseries Suggests xts, zoo, quantmod, fracdiff RoxygenNote 7.1.1 Author Everaldo Freitas Guedes [aut, cre] (<https://orcid.org/0000-0002-2986-7367>), Aloísio Machado Silva-Filho [aut] (<https://orcid.org/0000-0001-8250-1527>), Gilney Figueira Zebende [aut] (<https://orcid.org/0000-0003-2420-9805>) Repository CRAN Date/Publication 2021-03-18 13:10:04 UTC 1 2 deltadmc.test R topics documented: deltadmc.test . .2 deltadmca.test . .3 deltarhodcca.test . .4 dfa.test . .5 dmc.test . .6 dmca.test . .7 rhodcca.test . .8 Index 9 deltadmc.test Statistical test for Delta DMC Multiple Detrended Cross-Correlation Coefficient Description This function performs the statistical test for Delta DMC cross-correlation coefficient from three univariate ARFIMA process. Usage deltadmc.test(x1, x2, y, k, m, nu, rep, method) Arguments x1 A vector containing univariate time series.
    [Show full text]
  • Spatial Domain Low-Pass Filters
    Low Pass Filtering Why use Low Pass filtering? • Remove random noise • Remove periodic noise • Reveal a background pattern 1 Effects on images • Remove banding effects on images • Smooth out Img-Img mis-registration • Blurring of image Types of Low Pass Filters • Moving average filter • Median filter • Adaptive filter 2 Moving Ave Filter Example • A single (very short) scan line of an image • {1,8,3,7,8} • Moving Ave using interval of 3 (must be odd) • First number (1+8+3)/3 =4 • Second number (8+3+7)/3=6 • Third number (3+7+8)/3=6 • First and last value set to 0 Two Dimensional Moving Ave 3 Moving Average of Scan Line 2D Moving Average Filter • Spatial domain filter • Places average in center • Edges are set to 0 usually to maintain size 4 Spatial Domain Filter Moving Average Filter Effects • Reduces overall variability of image • Lowers contrast • Noise components reduced • Blurs the overall appearance of image 5 Moving Average images Median Filter The median utilizes the median instead of the mean. The median is the middle positional value. 6 Median Example • Another very short scan line • Data set {2,8,4,6,27} interval of 5 • Ranked {2,4,6,8,27} • Median is 6, central value 4 -> 6 Median Filter • Usually better for filtering • - Less sensitive to errors or extremes • - Median is always a value of the set • - Preserves edges • - But requires more computation 7 Moving Ave vs. Median Filtering Adaptive Filters • Based on mean and variance • Good at Speckle suppression • Sigma filter best known • - Computes mean and std dev for window • - Values outside of +-2 std dev excluded • - If too few values, (<k) uses value to left • - Later versions use weighting 8 Adaptive Filters • Improvements to Sigma filtering - Chi-square testing - Weighting - Local order histogram statistics - Edge preserving smoothing Adaptive Filters 9 Final PowerPoint Numerical Slide Value (The End) 10.
    [Show full text]
  • Public Health & Intelligence
    Public Health & Intelligence PHI Trend Analysis Guidance Document Control Version Version 1.5 Date Issued March 2017 Author Róisín Farrell, David Walker / HI Team Comments to [email protected] Version Date Comment Author Version 1.0 July 2016 1st version of paper David Walker, Róisín Farrell Version 1.1 August Amending format; adding Róisín Farrell 2016 sections Version 1.2 November Adding content to sections Róisín Farrell, Lee 2016 1 and 2 Barnsdale Version 1.3 November Amending as per Róisín Farrell 2016 suggestions from SAG Version 1.4 December Structural changes Róisín Farrell, Lee 2016 Barnsdale Version 1.5 March 2017 Amending as per Róisín Farrell, Lee suggestions from SAG Barnsdale Contents 1. Introduction ........................................................................................................................................... 1 2. Understanding trend data for descriptive analysis ................................................................................. 1 3. Descriptive analysis of time trends ......................................................................................................... 2 3.1 Smoothing ................................................................................................................................................ 2 3.1.1 Simple smoothing ............................................................................................................................ 2 3.1.2 Median smoothing ..........................................................................................................................
    [Show full text]
  • Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models
    mathematics Article Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models Oscar Trull 1,* , Juan Carlos García-Díaz 1 and Alicia Troncoso 2 1 Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Department of Computer Science, Pablo de Olavide University, 41013 Sevilla, Spain; [email protected] * Correspondence: [email protected] Received: 8 January 2020; Accepted: 13 February 2020; Published: 18 February 2020 Abstract: The Holt–Winters models are one of the most popular forecasting algorithms. As well-known, these models are recursive and thus, an initialization value is needed to feed the model, being that a proper initialization of the Holt–Winters models is crucial for obtaining a good accuracy of the predictions. Moreover, the introduction of multiple seasonal Holt–Winters models requires a new development of methods for seed initialization and obtaining initial values. This work proposes new initialization methods based on the adaptation of the traditional methods developed for a single seasonality in order to include multiple seasonalities. Thus, new methods to initialize the level, trend, and seasonality in multiple seasonal Holt–Winters models are presented. These new methods are tested with an application for electricity demand in Spain and analyzed for their impact on the accuracy of forecasts. As a consequence of the analysis carried out, which initialization method to use for the level, trend, and seasonality in multiple seasonal Holt–Winters models with an additive and multiplicative trend is provided. Keywords: forecasting; multiple seasonal periods; Holt–Winters, initialization 1. Introduction Exponential smoothing methods are widely used worldwide in time series forecasting, especially in financial and energy forecasting [1,2].
    [Show full text]
  • 1 Simple Linear Regression I – Least Squares Estimation
    1 Simple Linear Regression I – Least Squares Estimation Textbook Sections: 18.1–18.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and variance σ2. We have seen that we can write x in terms of µ and a random error component ε, that is, x = µ + ε. For the time being, we are going to change our notation for our random variable from x to y. So, we now write y = µ + ε. We will now find it useful to call the random variable y a dependent or response variable. Many times, the response variable of interest may be related to the value(s) of one or more known or controllable independent or predictor variables. Consider the following situations: LR1 A college recruiter would like to be able to predict a potential incoming student’s first–year GPA (y) based on known information concerning high school GPA (x1) and college entrance examination score (x2). She feels that the student’s first–year GPA will be related to the values of these two known variables. LR2 A marketer is interested in the effect of changing shelf height (x1) and shelf width (x2)on the weekly sales (y) of her brand of laundry detergent in a grocery store. LR3 A psychologist is interested in testing whether the amount of time to become proficient in a foreign language (y) is related to the child’s age (x). In each case we have at least one variable that is known (in some cases it is controllable), and a response variable that is a random variable.
    [Show full text]
  • Indicators of Technical Analysis on the Basis of Moving Averages As Prognostic Methods in the Food Industry
    Kolkova, A. (2018). Indicators of Technical Analysis on the Basis of Moving Averages as Prognostic Methods in the Food Industry. Journal of Competitiveness, 10(4), 102–119. https://doi.org/10.7441/ joc.2018.04.07 INDICATORS OF TECHNICAL ANALYSIS ON THE BASIS OF MOVING AVERAGES AS PROGNOSTIC METHODS IN THE FOOD INDUSTRY ▪ Andrea Kolkova Abstract Competitiveness is an important factor in a company’s ability to achieve success, and proper forecasting can be a fundamental source of competitive advantage for an enterprise. The aim of this study is to show the possibility of using technical analysis indicators in forecasting prices in the food industry in comparison with classical methods, namely exponential smoothing. In the food industry, competitiveness is also a key element of business. Competitiveness, however, requires not only a thorough historical analysis not only of but also forecasting. Forecasting methods are very complex and are often prevented from wider application to increase competi- tiveness. The indicators of technical analysis meet the criteria of simplicity and can therefore be a good way to increase competitiveness through proper forecasting. In this manuscript, the use of simple forecasting tools is confirmed for the period of 2009-2018. The analysis was com- pleted using data on the main raw materials of the food industry, namely wheat food, wheat forage, malting barley, milk, apples and potatoes, for which monthly data from January 2009 to February 2018 was collected. The data file has been analyzed and modified, with an analysis of indicators based on rolling averages selected. The indicators were compared using exponential smoothing forecasting.
    [Show full text]