A Metrical Theorem in Geometry of Numbers
A METRICAL THEOREM IN GEOMETRY OF NUMBERS BY WOLFGANG SCHMIDT Introduction. If S is a pointset in Rn, n>l, then we write L(S) for the number of lattice-points in S. Here, and throughout this paper, a lattice-point is a point with integral coordinates. If 5 is a Borel set of finite volume V(S), one would expect that L(S) is of about the same order of mag- nitude as V(S). Hence we define the "discrepancy" D(S) by (1) D(S) = \ L(S)V(S)-> - 1\ . As a companion for 7(5), we introduce P(S), the number of primitive lattice-points in 5. (A lattice-point is primitive, if its coordinates are relatively prime.) We put (2) E(S) = | P(5)r(«)F(5)-> - 11 . Next, let $ be a family of Borel sets with finite volumes, such that (i) If SQ$, FG*, then either SQT or TQS. (ii) There exist SQQ with arbitrarily large V(S). Finally, throughout this paper, \^(s), 5^0, should be a positive, nondecreas- ing function, such that /^(s)-1^ exists. Theorem 1. Suppose n>2. Then for almost every linear transformation A ("almost every" in the sense of the n2-dimensional euclidean metric induced by matrix-representation for A), (3) D(AS) = 0(V~li2 log V ^^(log V)), (4) E(AS) = 0(V~V2 log V ^''(log V)) for SQ$. More explicitly, for almost every A there exist constants Ci(^4), Ci(A), such that D(AS) fg a(A)V-^2 log F^/2(log V), whenever V(S)^Ci(A) and SQ<f>.
[Show full text]